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Sound diffusion refers to the ability of a surface to evenly scatter sound energy in both time and space. However, omni-
directional radiation of sound, or perfect diffusion, can be impractical or difficult to reach under traditional means.
This is due to the considerable size required by, and the lack of tunability, of typical quarter-wavelength scattering
strategies necessary for producing the required complexity of the surface acoustic impedance. As such, it can be a
challenge to design sound diffusing structures that can display near perfect diffusion performance within slim dimen-
sions. In this work, we propose a method for obtaining quasi-perfect and broadband sound diffusion coefficients using
deep-subwavelength acoustic diffusers, i.e., metadiffusers. The relation between the geometry of the metasurface, the
bandwidth and the diffusion performance is analytically and numerically studied. For moderate bandwidths, around
1/3 of an octave, the method results in nearly perfect sound diffusion, while for a bandwidth of 2.5 octaves a normal-
ized diffusion coefficient of 0.8 was obtained using panels 1/30" thinner than traditional phase-grating designs. The
ratio between the wavelength and the size of the unit cell was identified as a limitation of the performance. This work
demonstrates the versatility and effectiveness of metadiffusers to generate diffuse reflections outperforming those of

classical sound diffusers.

PACS numbers: 43.20.Fn, 78.76.Pt

The theory behind sound diffusion is based on the physical
principles of wave diffraction. The phenomenon can com-
monly be defined through the Helmholtz-Kirchhoff integral
formulation, which allows to describe the output scattered
wave field generated by a diffracting object given a certain
input wave field> . In acoustics, sound diffusers are often
sought for scattering the reflected sound field; may it be for
dispersing it or focusing it toward specific directions. In this
work, an emphasis is given to diffusers that radiate waves
omnidirectionnally, resulting in a perfect diffusion of the
reflected sound field.

Sound diffusion can be reached through a specific spatial
distribution of the impedance along the surface, leading to
a profile of the reflection coefficient. These locally reacting
surfaces are often termed Schroeder diffusers’ . Usually,
Schroeder diffusers make use of quarter-wavelength res-
onators (QWRs), in order to achieve a phase profile of the
reflection coefficient following a numerical sequence with a
flat Fourier transform. However, this strategy often results
in bulky structures for large wavelengths, as the maximum
phase shift of the reflection coefficient occurs at L = ¢y /4f,
where f is the working frequency, L is the depth of the QWR,
and ¢ is the speed of sound in air. This size limitation, along
with the fact that QWRs do not offer a great tunability of
the magnitude and phase of the reflection coefficient, limit
the use of Schroeder diffusers where adjustable phase and
magnitude behaviours are required.

Through the last decades, several diffuser strategies have
been proposed in order to enhance the major inconvenients
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of Schroeder diffusers. Folding strategies were proposed to
minimize space between slits’ * . Hunecke ef al.’ proposed a
closed QWR model by adding perforated or micro-perforated
sheets’ »* for lowering the resonant frequencies along with
the low cut off design frequency. More recently, sonic
crystals (SCs) were used to construct volumetric acoustic
diffusers® - . In addition, optimized sound diffusers made
of slotted panels incorporating two dimensional Helmholtz
resonators’ (HRs) instead of QWRs have already being
commercialized. By using HRs, the resonance frequency of
each slit can be down-shifted, thus extending the diffusion
bandwidth. This idea has lately been revisited by using
metamaterial-inspired strategies, allowing the design of
metasurfaces presenting simultaneously efficient diffusion
properties and deep-subwavelength dimensions. In 2017, Zhu
et al’ revisited the problem to design an ultrathin Quadratic
Residue Diffuser (QRD) using a planar array of HRs focused
on the low frequency range. Also in 2017, the concept of
metadiffusers was proposed by Jiménez ez al’ .

Metadiffusers are rigidly backed slotted panels based on
slow-sound metamaterials’ , where each slit is loaded by
an array of HRs. That way, strong dispersion is introduced
and the effective sound speed inside each slit is drastically
reduced in the low frequency regime’-’. This causes
the quarter-wavelength resonance to be shifted into the
deep-subwavelength regime, therefore strongly reducing the
effective thickness of the panel’ > * . The geometry variables
of each metadiffuser design can be calculated following an
optimization procedure for replicating the reflection coeffi-
cient profile corresponding to a given numerical sequence
at a particular frequency’. As such, many designs were
proposed based on numerical sequences that already exist for
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traditional diffusers. Recently, the diffusion characteristics of
a 3D-printed Quadratic Residue Metadiffuser (QRM) were
experimentally measured and compared to analytical and
numerical results’ , where good agreement was found.

In this work, we propose a method for obtaining quasi-
perfect diffusion (QPD) of sound in narrow frequency bands
based on acoustic metadiffusers. We also provide an opti-
mization study underlining the changes of inner components
geometry required to reach high broadband sound diffusion
over a significant portion of the audible frequency range.
These structures work within deep-subwavelength dimen-
sions much thinner than typical QWR strategies.

Following Fraunhofer’s diffraction theory as an approxima-
tion of the Helmholtz-Kirchhoff integral equation, the scat-
tered sound pressure distribution over a reflecting surface can
usually be described by a spatial Fourier transform of the com-
plex reflection coefficient. In this case, the far-field scattered
pressure distribution at normal incidence, ps(0,¢), of a re-
flecting rectangular surface with a spatially dependent reflec-
tion coefficient, R(x,y), of size 2a and 2b in the x and y di-
rections respectively, can be calculated using the Fraunhofer
integral®

a b , . . .
ps(97 ¢) _ / hR(x7y)€zlc()c31n9sm¢+ysmGcos¢)dxdy7 (1)
—aJ—

where 0 and ¢ are the elevational and azimuthal angles, re-
spectively.

The diffusion coefficient of a surface rates the uniformity
of the aforementioned scattered sound field. The directional
diffusion coefficient’ s 5‘11’ produced when a sound diffuser is
illuminated by a plane wave at the incident angle y = (6’, ¢')
(primed superscripts denoting incident angles) can be esti-
mated from the hemispherical distribution

[//Is(e,q))dsr—//152(97¢)dS
J[ 1e.0)as ’

where 1;(0,9) o< |ps(6,9)|* is proportional to the scattered
intensity. The integration is performed over a hemispherical
surface (—m/2 <0 <m/2and 0 < ¢ < 27) where dS = d6d¢.
This coefficient must be normalized to that of a plane reflec-
tor, 5f1a,, so as to eliminate the diffracting effect caused by the
finite size of the structure, i.e., 8,y = (8y — 8710 ) /(1 — Of1ar).-
We analyse here the 2D case of normal wave incidence in the
elevational plane only, i.e., 6’ = 0 and J, y = &.

61// = ()

Analytical surface reflection coefficients required to calcu-
late the far-field sound scattering and frequency dependent
diffusion coefficients were obtained with the Transfer Matrix
Method’ (TMM), which relates the acoustic pressures
and normal particle velocities at the extremities of a one-
dimensional acoustic system. Numerical simulations were
computed using Finite Element Method (FEM) in COMSOL
Multiphysics®. The surface was installed at the centre of a

circular domain filled with air, surrounded by a concentric

perfectly matched layer (PML) with a far-field boundary
condition at the boundary of the air domain to simulate the
radiation condition.

Whereas the geometry of the previous metadiffusers was
being optimized to produce a reflection coefficient profile
fitting a particular numerical sequence at a certain frequency,
a different approach to design metadiffusers for QPD is
proposed here: we look for the geometry of the metadiffuser
that directly maximizes the normalized diffusion coefficient
at the target frequency. The optimization paradigm relies on
the same constrained minimization algorithm used in Ref. [?
], where the cost function €gpp = 1 — §,, y(f) is minimized
so that the normalized diffusion coefficient (0 < &,y (f) < 1)
would tend to unity at the target frequency.

The total surface of the metadiffuser, of length D, is
divided in N unit cells of periodicity a, = D/N. The j-th
unit cell presents a slit of thickness L/ and width i/ loaded
with M resonators which are characterized by the lengths of
the neck and cavity, [; and lg respectively, and the widths
of the neck and the cavity, w, and w} respectively. In such
way, the reflection coefficient presents a profile along x
with N different values over the total length of the surface.
This profile is then optimized with the previously described
methodology.

Figure ??(a) shows the geometry obtained from the
optimization of an N = 11, M =1, D = 132 m, and L =
3 cm QPD-metadiffuser, as well as the target phase of the
reflection coefficient required for QPD at 500 Hz. The spatial
Fourier transform of such phase profile provides a constant
scattered amplitude in space. A large panel width D =1.32 m
has been taken here in order to avoid the low frequency
diffraction regime that would otherwise occur at dimensions
close to A &~ 0.7 m at 500 Hz. The geometry dimensions of
the QPD can be found in Tab. ??. Figure ??(b) compares the
analytical and numerical normalized diffusion coefficients
of two QPD-metadiffusers of same width D = 1.32 m, one
with N = 11 slits aimed for perfect diffusion at 500 Hz and
another with N = 20 slits tuned at 1.5 kHz. In addition, a
similarly optimized N = 11 slits quarter-wavelength diffuser

TABLE I. Geometrical parameters for the j-th well of the N = 11
QPD-metadiffuser. / is the width of the slit, /,,, [, w;,, and w, are the
lengths and widths of the neck and the cavity of the HR, respectively.

j L (mm) h(mm) [, (mm) [, (mm) w,(mm) w. (mm)
1 30 15.5 60.7 29.1 7.2 28
2 30 14.2 25.7 73.2 9.2 28
3 30 14.9 50.9 48.5 7.5 28
4 30 26.0 35.4 46.3 14.4 28
5 30 24.8 30.1 51.4 13.9 28
6 30 20.0 26.4 62.0 16.1 28
7 30 25.1 30.2 52.8 15.3 28
8 30 22.7 44.7 39.2 14.3 28
9 30 14.8 53.9 45.6 74 28
10 30 13.7 25.6 74.5 9.6 28
11 30 19.6 59.4 30.7 7.2 28
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(a) Geometry of the N = 11 slits Quasi-Perfect Diffusion (QPD) metadiffuser design with L =3 cm, M = 1, and D = 1.32 m (inset)

Target phase of the reflection coefficient at 500 Hz. (b) Normalized diffusion coefficients of an N = 11 slit QPD (blue), an N = 20 slit QPD
(red), and an optimised N = 11 quarter wavelength diffuser (QWD) (grey). (c-d) Far-field scattered sound energy against frequency for a flat
surface and N = 11 QPD. (e) Near-field of the N = 11 QPD obtained through FEM. (f) Far field scattered sound energy at f = 500 Hz for the

N =11 QPD and flat reference surface of same width.

(QWD) made for replicating the complex surface impedance
required for QPD is displayed alongside the two previous
metadiffusers. This enables the comparison of diffusion
properties between the equally optimized QPD structures.
Figure ??(b) shows that the overall shapes of the analyti-
cal and numerical curves are in fair agreement along the
frequency axis despite some discrete discrepancies. These
can be explained by the limitation of analytical assumptions
where the evanescent coupling between slits, affecting the
local distribution of the acoustic impedance at the surface, is
not accounted for. Other assumptions, such as higher order
lateral modes for the HRs are not accounted for as well and
might explain some high frequency analytical-to-numerical
disparities. Nonetheless, the numerical curve for the N = 11
QPD displays an excellent normalized diffusion peak value of
0p,0 = 0.92 at 500 Hz, which is fairly close to the analytical
design value of 8,0 = 0.99. A very good agreement is shown
at the second diffusion peak near 2 kHz, probably due to the
second resonance mode of the slits. Higher diffusion peaks
around 3 kHz seem to have more discrepancies between the
different methods but reside within the same frequency range.
The N = 11 QWD shown in Fig. ??(b) displays a
normalized diffusion coefficient as good as the N = 11
QPD-metadiffuser at 500 Hz, i.e., 5,,70 = 0.99. Howeyver, this
performance comes at a steep price in terms of slit depth,
resulting in a maximum depth of 81 cm, which is 27 times
larger than the N = 11 QPD-metadiffuser of 3 cm.
The N = 20 metadiffuser tuned for 1.5 kHz shown in
Fig. ??(b) has been made with a higher number of slits in
order to increase the modularity of the panel and better adapt

to the more complex surface impedance that is required to
reach QPD in a higher frequency regime for the same panel
width. In such case, a numerical normalized diffusion peak
value of 8,0 = 0.77 is obtained at 1.5 kHz. Although the
analytical reflection coefficient at such frequency produces
QPD (6,0 = 0.99), it appears that the numerical results do
not match so well. This is probably due to the effects not con-
sidered in the theory that are likely to arise in high frequency
regimes, i.e., higher order modes and evanescent coupling
between slits. The numerical amplitude peak at 1.5 kHz could
be mitigated by directly optimizing the numerical model for
generating omnidirectional scattering. Physically, reaching
near-perfect diffusion values at high frequencies (D/A > 1)
can be achieved by increasing the number of slits within the
same panel width. This is because the sum of the scattered
waves generated by wide slits, radiating as directive pistons,
cannot interfere at other directions than in normal and thus
fail to efficiently produce uniform scattering. In addition, if
the separation between slits is larger than half wavelength,
secondary diffraction grating lobes emerge in the far field
at angles B, = sin"'(¢gAN/D), with ¢ = 1,2,... being the
diffraction order. To reach efficient sound diffusion, each
slit would thus need to approximate a punctual scatterer
and the separation between them should grant the absence
of diffraction grating lobes. This suggests a requirement
for QPD following the relation ka, < m, where k is the
wavenumber.

Figure ??(c) shows the far-field scattered sound energy
against frequency for a flat reflector, where natural diffraction
lobes generated by wave interference are illustrated by the
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FIG. 2. (a) Cross-dependency of 8, ¢ g, in function of the number of slits N and frequency ranges A, for a metadiffuser of fixed width D
= 1.32 m. (b) Normalized diffusion coefficients of various broadband metadiffuser designs for different Ay frequency ranges. (c-f) Far-field
scattered sound energy against frequency for various A frequency ranges.

increasing number of high and low polar energy distributions
along frequency. Alternatively, the QPD of the N = 11
metadiffuser is illustrated in Fig. ??(d) by a thin and uniform
energy band around 500 Hz. Figure ??(e) shows the intri-
cacies of the QPD in the near field obtained numerically in
which a darker field amplitude area can be seen at 6 ~ 17°.
This is also illustrated in Fig. ??(f) which displays the
scattered far-field for the same QPD-metadiffuser, where the
magnitude of the normalized scattering obtained numerically
at 6 = 17° is - 4 dB. The numerical polar distribution at other
angles is otherwise quite uniform, resulting in high diffusion
performance.

Heretofore, two scenarios of QPD-metadiffusers have
been discussed, which targeted different frequencies
with a specific number of slits. However, metadiffuser
optimizations can be further extended to go from sin-
gle frequency QPD to high broadband sound diffusion.
In such case, broadband metadiffusers are designed by
modifying the optimization cost function to account for
normalized diffusion coefficients held between a low and
high cut frequency, i.e., €00 = 1 — 5n70,avge(nf)? , where

On0.avge(nf) = f Fiigh On0df/ny is the normalized diffusion
coefficient averaged over ny frequency samples. Thus, highly
efficient broadband metadiffusers can be designed where the
geometry constraints (N,D,M,L) remain the same as previ-
ously whilst the rest of the geometry (slits and HRs) would
now fit the cost function &,,,4 for several frequency ranges

A¢ = [fiow © fnigh)- The broadband dimension constraints
were chosen to be the same as the QPD case in order to
demonstrate the adaptability of the metadiffuser for going
from QPD to highly effective broadband diffusion within
the same overall structure dimensions. Considering this
multitude of variables, Fig. ?? emphasizes on the general
rate of dependence between the average diffusion coefficient
and the number of slits per panel which was obtained over
a large population of optimizations with different broadband
objectives.

Figure ??(a) thus illustrates the cross-dependency of the
number of slits N and the frequency ranges A for optimizing
Sn,omge for a metadiffuser of fixed width D = 1.32 m.
First, a trend emerges from the positive gradient of the data
presented, i.e., the higher the number of slits, the more likely
the diffusion coefficient would be efficiently optimized for
all the different frequency ranges, with a minimum limit
of N = 3 slits. This is due to the increased number of slits
with which the surface can better adapt to more complex
impedance requirements. This can be observed at N = 3,
where orange-red curves (large frequency ranges) do not
reach as high values as the bluer curves (small frequency
ranges). However, at N = 13, orange-red curves show
diffusion values close to the blue curves despite the much
larger frequency ranges being covered. These results allow
to clearly demonstrate that a high number of narrow slits is
indeed required to modulate at best the scattered field. Thus,



in a similar way to QPD, this would suggests a requirement
for obtaining quasi-perfect broadband diffusion to follow the
relation ka, < 7,Vk € 2rAs/c. Figure 2?(b) shows examples
of the various normalized diffusion coefficients obtained
through different Ay frequency bandwidths tested. In the case
of Ay = [500 : 600] Hz, a value &, 0.4 = 0.98 is achieved.
This an extremely high value considering its frequency span
over 100 Hz. For the other cases, one can observe that as the
frequency range Ay increases, On0.avge decreases. Yet, the
latter still remains at high values, viz., 5,1’0_,,1%,6 = 0.96, 0.90,
and 0.84, for ranges Ay = [500 : 700] Hz, Ay = [500 : 1000]
Hz and Ay = [500 : 1500] Hz, respectively. In addition,
a diffusion peak can be outlined for all the Ay designs.
In the case of Ay = [500 : 1500] Hz, this peak provides a
continuous decrease of the normalized diffusion coefficient
to even higher frequencies. Figures ??(c-f) show the far-field
scattered sound pressure fields for the different Ay ranges
selected. The fact that the diffusion coefficient gets broader
along the frequency axis is displayed through a larger and
more uniform angular energy band.

In this work, we have demonstrated the potential of metad-
iffusers for displaying quasi-perfect normalized sound diffu-
sion coefficients within deep-subwavelength dimensions. It
has been shown that the slit width and the separation between
them is a major factor to account for when aiming for quasi-
perfect or broadband sound diffusion due to the directive ra-
diation of individual slits and the emergence of diffraction
grating lobes. In addition, using multiple slits rather than a
few enhances the flexibility to engineer the complex surface
impedance, thus resulting in efficient uniform scattering. The
ability to obtain such range of efficient scattered sound dis-
tributions within ultra-thin dimensions, instead of larger al-
ternatives, can be welcome when dealing with environments
where space is at a premium, e.g., aerospace applications’ or
orchestra pits’ . The results shown in this work demonstrate
the usefulness of metadiffusers to be applied in many practi-
cal situations where they can outshine classical solutions due
to their versatility.
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