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PRINCIPAL EIGENVALUES FOR SYSTEMS OF SCHRÖDINGER

EQUATIONS DEFINED IN THE WHOLE SPACE WITH

INDEFINITE WEIGHTS

LAURE CARDOULIS*

Abstract. We present in this paper some results for the existence of princi-

pal eigenvalues for equations or systems defined in RN involving Schrödinger
operators with indefinite weight functions and with potentials which tend to

infinity at infinity.

1. Introduction

We consider the eigenvalue problem for the following system:

(−∆ + qi)ui = λ

miui +

n∑
j=1;j 6=i

mijuj

 in RN , i = 1, · · · , n. (1.1)

We consider the following hypothesis for each i = 1, . . . , n :

(H1
q): qi ∈ L2

loc(RN ) ∩ Lploc(RN ), p > N
2 , such that lim|x|→∞ qi(x) = ∞ and

qi ≥ cst > 0.

We will later specify the hypotheses on each weight mi and on each function mij

and we denote by λ a real parameter. The variational space is denoted by

V := Vq1(RN )× · · · × Vqn(RN ),

where for each i = 1, . . . , n, Vqi(RN ) is the completion of D(RN ), the set of C∞
functions with compact supports, with respect to the norm

‖u‖2qi =

∫
RN

[|∇u|2 + qiu
2].

We recall that the embedding of each Vqi(RN ) into L2(RN ) is compact.

The aim of this paper is mainly to study the existence of principal eigenvalues for
the system (1.1) with indefinite weights mi which are not necessarily bounded and
with coefficients mij which are also not necessarily bounded. This extends earlier
results obtained either for the Laplacian operator in a bounded domain (see [5],
[15], [17]), or for the Laplacian operator with an indefinite weight in RN (see [4]),
or for equations involving Schrödinger operators −∆ + qi in RN with indefinite
and non necessarily bounded weights (see [6]), or for systems involving Schrödinger
operators −∆ + qi in RN with indefinite and bounded weights and with bounded
coefficients (see [7]).

1991 Mathematics Subject Classification. (AMS) 35J10.
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We rewrite the system (1.1) under the following form

LU = λMU (1.2)

where L is the diagonal matrix given by L = diag(−∆ + qi),
tU = u = (u1, · · · , un)

and M is the n× n-matrix given by M = (mij) with mii := mi.

Our main result concerns the existence and uniqueness of a positive, global and
principal eigenvalue Λ1,M for (1.2) with a cooperative and symmetric matrix M
(i.e. mij > 0 and mij = mji for all i 6= j) and with indefinite weight mi ∈
LN/2(RN )∩LN (RN )∩L∞loc(RN ) (N ≥ 3) and non necessarily bounded coefficients
mij . We also obtain a Courant-Fischer formula for this positive principal eigenvalue
Λ1,M .

Our paper is organized as follows: In Section 2 we recall some results for the scalar
case, i.e. for the eigenvalue problem (−∆ + q)u = λmu in RN where q is a po-
tential which satisfies (H1

q) and where m is an indefinite weight, non necessarily
bounded. We also recall some results for the cooperative system (1.2) in the case
of indefinite and bounded weights (see [7, Theorems 2.5,2.6]). The Section 3 is
devoted to the study of the eigenvalue problem for the cooperative system (1.2) in
the case of indefinite weights mi ∈ LN/2(RN )∩LN (RN )∩L∞loc(RN ) (N ≥ 3). First
for positive weights mi, as in [6, 7, 15], we obtain the existence and uniqueness of a
positive principal eigenvalue Λ1,M by using a general version of the Krein-Rutman

Theorem given in [11] which allows us to work in L2∗(RN ), where 2∗ = 2N
N−2 , whose

positive cone has empty interior. We also obtain a Courant-Fischer formula for
Λ1,M . Then for indefinite weights mi, we adapt the ideas expressed in [15, 6, 7]
to our case by rewriting (1.2) in an equivalent form with positive weights and a
parameter function σ depending upon λ. Then using the properties of the function
σ and the variational characterization of the corresponding principal eigenvalue ob-
tained in the case of positive weights, we can get the existence and uniqueness of
a positive and principal eigenvalue for (1.2). Moreover we can compare Λ1,M to
each principal eigenvalue of −∆ + qi associated with mi in RN . So in Section 3 we
extend some results already obtained for bounded weights and bounded coefficients
to non necessarily bounded weights and non necessarily bounded coefficients. We
conclude this paper by the Section 4 where we give two examples of studies of the
existence of a principal eigenvalue for a two-by-two system which is non cooperative.

Finally note that, as in [7], we can get the classical maximum principal result for
(1.1) and the existence of solutions for linear systems (see for example the maximum
principle and its extension known as the fundamental positivity in [1, 2, 3, 6, 7, 12,
14, 18, 19] and also the antimaximum principle and the fundamental negativity in
[2, 9, 7, 16, 19]).

2. Review of results

2.1. Review of results for the scalar case. We recall in this section some results
for the eigenvalue problem for the Schrödinger operator −∆+q associated with the
weight m. We assume that q is a potential which satisfies (H1

q). We will add another
hypothesis upon the potential q which assures that any element of the weak domain
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of the operator −∆+q belongs to the strong domain D(−∆+q). It is the following
hypothesis.

(H2
q): Any element of the weak domain of the operator −∆ + q belongs to
the strong domain D(−∆ + q).

(H3
q): For all x ∈ RN and all h ∈ RN , h 6= 0, | q(x+h)−q(x)

h | ≤ cst
√
q(x).

Note that for example, the potential q(x) = 1 + |x| satisfies (H3
q). Then we have

the following lemma based on the methods of translations due to Nirenberg.

Lemma 2.1. ([7, Lemma 2.1]) Assume that the potential q satisfies (H1
q) and

(H3
q). Let u be a weak solution of (−∆ + q)u = f in RN with f ∈ L2(RN ). Then

u ∈ H2(RN ), qu ∈ L2(RN ) and therefore u ∈ D(−∆ + q). So q satisfies (H2
q).

The weight m will assume one of the following hypotheses:

(H∗1m ): 0 < m ≤ cst in RN .

(H2
m): m ∈ LN/2(RN ) ∩ L∞loc(RN ) (N ≥ 3), m ≥ 0, m 6= 0.

(H′1m): m ∈ L∞(RN ), m is positive in the open subset Ω+
m = {x ∈ RN ,m(x) >

0} with non zero measure and m is negative in the open subset Ω−m = {x ∈
RN ,m(x) < 0} with non zero measure.

(H′2m): m ∈ LN/2(RN ) ∩ L∞loc(RN ) (N ≥ 3), m is positive in the open subset
Ω+
m with non zero measure and m is negative in the open subset Ω−m with

non zero measure.

For a positive weight we have:

Theorem 2.1. (cf [6, Theorems 2.1,2.2]) Assume that q satisfies (H1
q) and m

satisfies (H∗1m ) or (H2
m). Then there exists a unique principal eigenvalue λ1,q,m

which is simple and associated with a positive eigenfunction φ1,q,m and:

(−∆ + q)φ1,q,m = λ1,q,m m φ1,q,m in RN ; λ1,q,m > 0; φ1,q,m > 0. (2.1)

λ1,q,m = inf{
∫
RN [|∇φ|2 + qφ2]∫

RN mφ2
, φ ∈ Vq(RN ) s. t.

∫
RN

mφ2 > 0}. (2.2)

For a weight m which changes sign in RN , we have:

Theorem 2.2. (cf [6, Theorem 3.1]) Assume that q satisfies (H1
q), (H3

q) and m

satisfies (H′1m) or (H′2m). Then the operator −∆+q associated with the weight m has
a unique positive principal eigenvalue λ1,q,m associated with a positive eigenfunction
φ1,q,m and (λ1,q,m, φ1,q,m) satisfy (2.1) and (2.2). Moreover the operator −∆ +

q associated with the weight m has a unique negative principal eigenvalue λ̃1,q,m

associated with a positive eigenfunction φ̃1,q,m and (λ̃1,q,m, φ̃1,q,m) satisfy

(−∆ + q)φ̃1,q,m = λ̃1,q,m m φ̃1,q,m in RN ; λ̃1,q,m < 0; φ̃1,q,m > 0.

λ̃1,q,m = sup{
∫
RN [|∇φ|2 + qφ2]∫

RN mφ2
, φ ∈ Vq(RN ) s. t.

∫
RN

mφ2 < 0}.
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2.2. Review of results for systems. We recall in this section some results for
the existence of a positive principal eigenvalue when the cooperative system (1.1)
has bounded weights. So we consider the eigenvalue problem for the system

(−∆ + qi)ui = λ

miui +

n∑
j=1;j 6=i

mijuj

 in RN , i = 1, · · · , n,

where each of the potentials qi satisfy (H1
q) and each of the weights mi satisfy one

of the hypotheses among (H∗1m ) and (H′1m). We denote by M the n×n-matrix given
by M = (mij) with mii := mi. We will consider the following hypotheses:

(H3): For all i 6= j, mij ∈ L∞(RN ) and mij > 0.
(H4): M is a symmetric matrix.
(H5): Ω := ∩ni=1Ω+

i is an open subset of RN with non zero measure and with
Ω+
i := {x ∈ RN ,mi(x) > 0}.

For positive bounded weights, we have:

Theorem 2.3. [7, Theorem 2.5] Assume that each of the potentials qi satisfy (H1
q)

and each of the weights mi satisfy (H∗1m ). Assume also that (H3) is satisfied.
Then there exists a unique principal eigenvalue Λ1,M > 0 associated with a positive
eigenfunction Φ1,M = (φ1,M , · · · , φn,M ) ∈ V := Vq1(RN ) × · · · × Vqn(RN ) for the
system (1.1). Moreover if (H4) and (H2

q) are satisfied then

Λ1,M = inf

{ ∑n
i=1 ‖ui‖2qi∑n

i=1

∫
RN miu2

i +
∑n
i,j;i 6=j

∫
RN mijuiuj

, u = (u1, · · · , un) ∈ V

such that

n∑
i=1

∫
RN

miu
2
i +

n∑
i,j;i 6=j

∫
RN

mijuiuj > 0

 . (2.3)

Note that the condition
∑n
i=1

∫
RN miu

2
i +
∑n
i,j;i 6=j

∫
RN mijuiuj > 0 is automatically

satisfied if M is a definite positive matrix (i. e. for all X 6= 0, tXMX > 0).

For indefinite bounded weights, we have:

Theorem 2.4. [7, Theorem 2.6] Assume that each of the potentials qi satisfy (H1
q)

and (H2
q) and each of the weights mi satisfy (H′1m). Assume also that (H3)-(H5)

are satisfied. Then there exists a unique principal eigenvalue Λ1,M > 0 associated
with a positive eigenfunction Φ1,M = (φ1,M , · · · , φn,M ) ∈ V := Vq1(RN ) × · · · ×
Vqn(RN ), φi,M > 0 and Λ1,M satisfies (2.3).

3. Existence of a global positive eigenvalue

In this section (N ≥ 3), we consider the eigenvalue problem for the system (1.1)

(−∆ + qi)ui = λ

miui +

n∑
j=1;j 6=i

mijuj

 in RN , i = 1, · · · , n,

where each of the potentials qi satisfy (H1
q) and (H2

q) and each of the weights mi

satisfy (H3
m) or (H′3m). We will consider the following hypotheses:

(H3
m): m ∈ LN (RN ) ∩ (LN/2(RN ) ∪ L∞(RN )) ∩ L∞loc(RN ) (N ≥ 3), m > 0.
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(H′3m): m ∈ LN (RN ) ∩ (LN/2(RN ) ∪ L∞(RN )) ∩ L∞loc(RN ) (N ≥ 3), m is
positive in the open subset Ω+

m with non zero measure and m is negative
in the open subset Ω−m with non zero measure.

(H6): For all i 6= j, mij ∈ LN (RN ) ∩ (LN/2(RN ) ∪ L∞(RN )) ∩ L∞loc(RN ) and
mij > 0.

For strictly positive weights, we can prove the existence of a positive eigenvalue
associated with a positive eigenfunction for (1.1).

Theorem 3.1. Assume that each of the potentials qi satisfy (H1
q) and each of the

weights mi satisfy (H3
m). Assume also that (H6) is satisfied. Then there exists

a unique principal eigenvalue Λ1,M > 0 associated with a positive eigenfunction
Φ1,M = (φ1,M , · · · , φn,M ) ∈ V := Vq1(RN ) × · · · × Vqn(RN ) for the system (1.1).
Moreover if (H4) and (H2

q) are satisfied then Λ1,M satisfies (2.3).

Proof. We denote by M : ((L2∗(RN ))n, ‖.‖(L2∗ (RN ))n)→ ((L2(RN ))n, ‖.‖(L2(RN ))n)
the operator of multiplication by the matrix M . The operator M is well-defined
since the coefficients of the matrix are in LN (RN ). Let the operator

L−1M : ((L2∗(RN ))n, ‖.‖(L2∗ (RN ))n)→ ((L2(RN ))n, ‖.‖(L2(RN ))n).

The operator L−1M is compact because of the compact embedding of V into
(L2(RN ))n and, due to the strong maximum principle for each operator −∆ + qi
in RN and the hypotheses (H3

m) and (H6), is also strongly positive in the sense of
quasi-interior points in (L2∗(RN ))n, in the sense of Daners and Koch-Medina. This
implies that L−1M is irreducible and we apply the version of the Krein-Rutman
Theorem given in [11, Theorem 12.3] to deduce that r(L−1M), the spectral radius
of L−1M, is a strictly positive and simple eigenvalue associated with an eigenfunc-
tion Φ1,M = (φ1,M , · · · , φn,M ) which is a quasi-interior point of (L2∗(RN ))n, that
is φi,M > 0 in RN for all i. Of course Λ1,M = 1

r(L−1M) > 0 and r(L−1M) is the

only one eigenvalue of L−1M associated with a positive eigenfunction.

We recall that V := Vq1(RN )×· · ·×Vqn(RN ) and the inner product in V is defined
by
< u, v >V =

∑n
i=1 < ui, vi >qi for all u = (u1, · · · , un) ∈ V and v = (v1, · · · , vn) ∈

V. We set the bilinear form

β(u, v) =

n∑
i=1

∫
RN

miuivi +

n∑
i,j=1;i 6=j

∫
RN

mijujvi for all u ∈ V and v ∈ V.

Note that H1(RN ) ⊂ L2∗(RN ) (N ≥ 3) with a continuous embedding. Therefore
from hypotheses (H4) and (H6), β is a bilinear, symmetric and continous form.
From the Riesz Theorem, we get the existence of a continuous linear operator
T : V → V, T = (T1, · · · , Tn), such that β(u, v) =< Tu, v >V for all u ∈ V and
v ∈ V.

Now we prove that the operator T is compact.
Let (up)p = (u1p, · · · , unp) be a bounded sequence in V. We want to show that
there exists a convergent subsequence of (Tiup)p which is a Cauchy sequence for
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‖.‖qi . We have:

‖Tiup−Tiul‖2qi =

∫
RN

mi(uip−uil)(Tiup−Tiul)+
n∑

j=1;j 6=i

∫
RN

mij(ujp−ujl)(Tiup−Tiul).

If the weight mi ∈ LN/2(RN ) (similarly the coefficient mij) then:∫
RN

mi(uip−uil)(Tiup−Tiul) ≤ (

∫
RN

|mi(uip−uil)|
2N

N+2 )
N+2
2N (

∫
RN

|Tiup−Tiul|
2N

N−2 )
N−2
2N .

SinceN ≥ 3, the embedding ofH1(RN ) into L2∗(RN ) is continuous where 2∗ = 2N
N−2

and so the embedding of Vqi(RN ) into L2∗(RN ) is continuous too. Therefore we
get the existence of a positive constant k such that:∫

RN

mi(uip − uil)(Tiup − Tiul) ≤ k‖mi(uip − uil)‖
L

2N
N+2 (RN )

‖Tiup − Tiul‖qi .

Moreover, since the sequence (uip)p is bounded in Vqi(RN ), we deduce that the
sequence (uip)p is bounded in H1(BR) for all ball BR = {x ∈ RN , ‖x‖ < R}. Since
BR is bounded, the embedding of H1(BR) into L2(BR) is compact and we get

that (uip)p admits a convergent subsequence in L2(BR) and therefore in L
2N

N+2 (BR)

(because of the continuous embedding of L2(BR) into L
2N

N+2 (BR)). Let ε > 0. We
have:

‖mi(uip−uil)‖
L

2N
N+2 (RN )

=

(∫
BR

|mi(uip − uil)|
2N

N+2 +

∫
RN−BR

|mi(uip − uil)|
2N

N+2

)N+2
2N

.

Since (x+ y)1/p ≤ x1/p + y1/p for all p > 1, x, y > 0 we get:

‖mi(uip−uil)‖
L

2N
N+2 (RN )

≤
(∫

BR

|mi(uip − uil)|
2N

N+2

)N+2
2N

+

(∫
RN−BR

|mi(uip − uil)|
2N

N+2

)N+2
2N

.

Moreover:

‖mi(uip − uil)‖
L

2N
N+2 (RN−BR)

≤ ‖mi‖LN/2(RN−BR)‖uip − uil‖L2∗ (RN−BR).

Since (uip)p is a bounded sequence in Vqi(RN ) and so in L2∗(RN ), we deduce that

‖uip−uil‖L2∗ (RN−BR) is uniformly bounded respect toR. Furthermoremi ∈ LN/2(RN )

and we can choose R sufficiently large to make ‖mi‖LN/2(RN−BR) as small as we
need. Thus there exists R0 such that

‖mi(uip − uil)‖
L

2N
N+2 (RN−BR)

≤ ε for all n, p and R ≥ R0.

Moreover, from the convergence of the sequence (uip)p in L
2N

N+2 (BR0), we get:

‖mi(uip−uil)‖
L

2N
N+2 (BR0

)
≤ ‖mi‖L∞(BR0

)‖uip−uil‖
L

2N
N+2 (BR0

)
≤ ε for p, l sufficiently large.

If the coefficient mij ∈ L∞(RN ) (similarly the weight mi) then:∫
RN

mij(ujp−ujl)(Tiup−Tiul) ≤ cst‖mij‖L∞(RN )‖ujp−ujl‖L2(RN )‖Tiup−Tiul‖qi .

Since the embedding of Vqj (RN ) into L2(RN ) is compact, there exists a subsequence

of (ujp)p, still denoted by (ujp)p, which is a convergent sequence in L2(RN ). There-
fore we obtain the compactness of the operator T.
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We can conclude for the rest of the proof as in [7, Theorem 2.5]. Since the matrix M
is assumed to be symmetric, the operator T is selfadjoint. So the largest eigenvalue
of T is given by:

µ1,M = sup
u∈V,u6=0

< Tu, u >V
< u, u >V

= sup
u∈V,u6=0

∑n
i=1

∫
RN miu

2
i +

∑n
i,j=1;i6=j

∫
RN mijujui∑n

i=1

∫
RN [|∇ui|2 + qiu2

i ]
.

Choosing u = (u1, · · · , un) ∈ V such that supp ui ⊂ {x ∈ RN ,mi(x) > 0} for one i
and uj = 0 if j 6= i, we get that µ1,M > 0.

Now, we prove that Λ1,M = 1
µ1,M

. We have L−1MΦ1,M = r(L−1M)Φ1,M or equiv-

alently LΦ1,M = Λ1,MMΦ1,M . Therefore for all i = 1, · · · , n :

(−∆ + qi)φi,M = Λ1,M (miφi,M +
∑

j=1;j 6=i

mijφj,M ) in RN .

Thus for all v = (v1, · · · , vn) ∈ V, we have:

n∑
i=1

∫
RN

[∇φi,M .∇vi+qiφi,Mvi] = Λ1,M

n∑
i=1

∫
RN

miφi,Mvi +

n∑
j=1;j 6=i

∫
Rn

mijφj,Mvi

 .

For vi = φi,M , we get:

1

Λ1,M
=

∑n
i=1

∫
RN miφ

2
i,M +

∑n
i,j=1;i 6=j

∫
RN mijφj,Mφi,M∑n

i=1

∫
RN [|∇φi,M |2 + qiφ2

i,M ]
≤ µ1,M . (3.1)

Moreover, since µ1,M is an eigenvalue of the operator T defined above, let ψ =
(ψ1, · · · , ψn) be an eigenfunction associated with µ1,M . Since Tψ = µ1,Mψ, we
have for all v ∈ V :
µ1,M < ψ, v >V =< Tψ, v >V = β(ψ, v) and so

µ1,M

n∑
i=1

∫
RN

[∇ψi.∇vi + qiψivi] =

n∑
i=1

∫
RN

miψivi +

n∑
i,j=1;j 6=i

∫
Rn

mijψjvi.

For v = (0, · · · , 0, vi, 0, · · · , 0) ∈ V, we get:∫
RN

[∇ψi.∇vi + qiψivi] =
1

µ1,M

∫
RN

miψivi +

n∑
j=1;j 6=i

∫
Rn

mijψjvi

 .

Therefore we have Lψ = 1
µ1,M

Mψ or equivalently L−1Mψ = µ1,Mψ. Thus µ1,M is

an eigenvalue of the operator L−1M and

0 < µ1,M ≤ r(L−1M) =
1

Λ1,M
. (3.2)

From (3.1) and (3.2), we deduce that µ1,M = 1
Λ1,M

and Λ1,M satisfies (2.3). �

Now, for indefinite and non necessarily bounded weights mi, we prove the existence
and uniqueness of a principal positive eigenvalue for (1.1) which extends the Theo-
rem 2.6 in [7] to the case of non necessarily bounded weights and coefficients of the
matrix M. Indeed, since N ≥ 3, we have H1(RN ) ⊂ L2∗(RN ) with a continuous
embedding and so Vqi(RN ) ⊂ L2∗(RN ) with a continuous embedding too and this

allows us to work with weights mi ∈ LN/2(RN ) and coefficients mij ∈ LN/2(RN )
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contrary to [7] where we had mi ∈ L∞(RN ) and mij ∈ L∞(RN ) . This is the
following result.

Theorem 3.2. Assume that each of the potentials qi satisfy (H1
q) and (H2

q) and

each of the weights mi satisfy (H′3m). Assume also that (H4)-(H6) are satisfied.
Then there exists a unique principal eigenvalue Λ1,M > 0 associated with a positive
eigenfunction Φ1,M = (φ1,M , · · · , φn,M ) ∈ V := Vq1(RN )×· · ·×Vqn(RN ), φi,M > 0
and Λ1,M satisfies (2.3).

Proof. We follow a method developed in [15] (for an equation in a bounded domain)
and in [7, Theorem 2.6]. Let Ω+

i = {x ∈ RN ,mi(x) > 0}, meas (Ω+
i ) > 0,

Ω−i = {x ∈ RN ,mi(x) < 0}, meas (Ω−i ) > 0, and Ω0
i = {x ∈ RN ,mi(x) = 0}.

Let U = (u1, · · · , un) be a solution of (1.1). Let h > 0, h a fixed function which
satisfies h ∈ LN (RN ) ∩ LN/2(RN ) ∩ L∞(RN ). We have for all i :

(−∆ + qi)ui + λm−i ui = λ(m+
i ui +

n∑
j=1;j 6=i

mijuj) in RN . (3.3)

For given λ ≥ 0, we rewrite (3.3) as an eigenvalue problem with parameter σ(λ).
For all i,

(−∆+qi)ui+λ(m−i +1ih)ui = σ(λ)

(m+
i + 1ih)ui +

n∑
j=1;j 6=i

mijuj

 in RN (3.4)

where 1i denotes the characteristic function of Ω0
i ∪ Ω−i . We denote by Qi,λ :=

qi + λ(m−i + 1ih) and ρi := m+
i + 1ih. Then (3.4) is equivalent to

(−∆ +Qi,λ)ui = σ(λ)(ρiui +

n∑
j=1;j 6=i

mijuj) in RN . (3.5)

Note that the weight ρi > 0 in RN , ρi satisfies (H3
m)and the potential Qi,λ satisfies

(H1
q) and (H2

q) since λ ≥ 0. From Theorem 3.1, we deduce that the system (3.5)
has a unique principal eigenvalue σ(λ) associated with a principal eigenfunction
Φλ = (φ1,λ, · · · , φn,λ), φi,λ > 0. From (2.3), we get:

σ(λ) = inf

{∑n
i=1

∫
RN [|∇φi|2 + qiφ

2
i ] + λ

∑n
i=1

∫
RN (m−i + 1ih)φ2

i∑n
i=1

∫
RN (m+

i + 1ih)φ2
i +

∑n
i,j=1;i 6=j

∫
RN mijφiφj

, φ = (φ1, · · · , φn) ∈ V

such that

n∑
i=1

∫
RN

(m+
i + 1ih)φ2

i +

n∑
i,j=1;i 6=j

∫
RN

mijφiφj > 0

 . (3.6)

Therefore, σ(λ) < Λ+
1,Q,N the principal eigenvalue of the operator LQ associated

with the matrix N = (nij) where LQ = diag (−∆ +Qi,λ), nii = ρi and nij = mij

in Ω = ∩ni=1Ω+
i with Dirichlet boundary condition. Note that Λ+

1,Q,N is in fact

independant of λ. Therefore the function σ is bounded. Note that σ : λ 7→ σ(λ)
is increasing and continuous and that σ(0) > 0. Therefore for all λ > 0, we have

0 < σ(0) < σ(λ) < Λ+
1,Q,N . Thus we deduce that there exists 0 < λ̃ < Λ+

1,Q,N such

that σ(λ̃) = λ̃. Proceeding as in [15], we can show that λ̃ is unique.
Indeed, let λ > µ > 0. If we denote by Φλ = (φ1,λ, · · · , φn,λ), φi,λ > 0, and by
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Φµ = (φ1,µ, · · · , φn,µ), φi,µ > 0 the associated eigenfunctions with σ(λ) and σ(µ),
from the variational characterization (3.6), since λ 6= µ we have:

σ(λ)− σ(µ)

λ− µ
≤

∑n
i=1

∫
RN (m−i + 1ih)φ2

i,µ∑n
i=1

∫
RN (m+

i + 1ih)φ2
i,µ +

∑n
i,j=1;i 6=j

∫
RN mijφi,µφj,µ

.

For µ = λ̃ < λ, we get

σ(λ)− λ̃
λ− λ̃

≤

∑n
i=1

∫
RN (m−i + 1ih)φ2

i,λ̃∑n
i=1

∫
RN (m+

i + 1ih)φ2
i,λ̃

+
∑n
i,j=1;i 6=j

∫
RN mijφi,λ̃φj,λ̃

< 1.

And so σ(λ) < λ for λ > λ̃. In the same way we show that σ(λ) > λ for λ < λ̃ and

this gives the uniqueness of λ̃.

Now, we verify that λ̃ satisfies (2.3). We proceed exactly as in [7, Theorem 2.6].
Let us denote by

λ∗ = inf

{ ∑n
i=1

∫
RN [|∇φi|2 + qiφ

2
i ]∑n

i=1

∫
RN miφ2

i +
∑n
i,j=1;i 6=j

∫
RN mijφiφj

, φ = (φ1, · · · , φn) ∈ V

such that

n∑
i=1

∫
RN

miφ
2
i +

n∑
i,j=1;i 6=j

∫
RN

mijφiφj > 0

 .

Since

λ̃ =

∑n
i=1

∫
RN [|∇φi,λ̃|2 + qiφ

2
i,λ̃

] + λ̃
∑n
i=1

∫
RN (m−i + 1ih)φ2

i,λ̃∑n
i=1

∫
RN (m+

i + 1ih)φ2
i,λ̃

+
∑n
i,j=1;i6=j

∫
RN mijφi,λ̃φj,λ̃

,

we have λ̃ ≥ λ∗.
Moreover let φ = (φ1, · · · , φn) ∈ V be such that

n∑
i=1

∫
RN

miφ
2
i +

n∑
i,j=1;i 6=j

∫
RN

mijφiφj > 0.

Since λ̃ = σ(λ̃), we get

λ̃ ≤
∑n
i=1

∫
RN [|∇φi|2 + qiφ

2
i ]∑n

i=1

∫
RN miφ2

i +
∑n
i,j=1;i 6=j

∫
RN mijφiφj

.

Thus λ̃ ≤ λ∗. �

As in [7], note that for all i = 1, · · · , n, Λ1,M < λ1,qi,mi .
Indeed, from (2.1) and (2.3), we have Λ1,M ≤ λ1,qi,mi . Suppose that Λ1,M =
λ1,qi,mi

. Then we have:

(−∆+qi)(φi,M−φ1,qi,mi
) = λ1,qi,mi

mi(φi,M−φ1,qi,mi
)+λ1,qi,mi

n∑
j=1;j 6=i

mijφj,M in RN .

Multiplying by φ1,qi,mi
and integrating over RN , we obtain (since λ1,qi,mi

> 0),∫
RN

∑n
j=1;j 6=imijφj,Mφ1,qi,mi = 0. Since mij > 0, φi,M > 0 and φ1,qi,mi > 0 we get

a contradiction.
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4. Some two-by-two non cooperative systems

We will study in this section the existence of a global positive eigenvalue Λ1,M

associated with a positive eigenfunction Φ1,M (i.e. a pincipal positive eigenvalue)
in the case of two 2 × 2 non cooperative systems. In a first example, we study
a non cooperative system with constant coefficients and with the same potential
q := q1 = q2. So we rewrite (1.1) under the following form{

(−∆ + q)u = λ(au+ bv) in RN
(−∆ + q)v = λ(cu+ dv) in RN (4.1)

where the constant coefficients satisfy the following hypotheses

(H7):


a ∈ R, a > 2; b ∈ R, b < 0, |b| <

√
a.

c = b+ k + b+k
n with k =

−b+
√
b2+4(a−2)

2 > 0 and n ∈ R, n > 3a− 1.
d = 1

k (b+ k − b+k
n (1 + k2)).

The idea here is to insert this non cooperative 2 × 2 system (4.1) (b < 0) into a
strictly cooperative and symmetric 3 × 3 one. But we cannot follow the insertion
used in [13, 8] because we need to obtain a 3 × 3 symmetric system with strictly
positive off-diagonal coefficients in order to apply Theorems 2.3 or 2.4. We have
the following result

Theorem 4.1. Assume that the potential q satisfies (H1
q) and (H2

q). Assume also
that (H7) is satisfied. Then there exists a principal positive eigenvalue Λ1,M > 0
associated with a positive eigenfunction Φ1,M = (φ1,M , φ2,M ) ∈ V := Vq(RN ) ×
Vq(RN ), φi,M > 0 for the system (4.1).

Proof. First note that b + k > 0 (and so c > 0). Also note that d > 0 (since
n > 3a − 1). Let (u, v) be a solution of (4.1) and let w = u − kv. Then (u, v, w)
satisfies the following system

(−∆ + q)u = λ((a− 1)u+ (b+ k)v + w) in RN
(−∆ + q)v = λ((b+ k)u+ (d+ k b+kn )v + b+k

n w) in RN
(−∆ + q)w = λ(u+ b+k

n v + (1− k b+kn )w) in RN .
(4.2)

Moreover 1 − k b+kn > 0. Since the matrix of the system (4.2) is symmetric and
with strictly positive coefficients, from the Theorem 2.3 we get the existence of
a positive principal eigenvalue Λ1,M > 0 associated with a positive eigenfunction
Φ1,M = (φ1,M , φ2,M , φ2,M ) ∈ V := Vq(RN ) × Vq(RN ) × Vq(RN ), φi,M > 0 for the
system (4.2). And we have

(−∆ + q)φ1,M = Λ1,M ((a− 1)φ1,M + (b+ k)φ2,M + φ3,M ) in RN
(−∆ + q)φ2,M = Λ1,M ((b+ k)φ1,M + (d+ k b+kn )φ2,M + b+k

n φ3,M ) in RN
(−∆ + q)φ3,M = Λ1,M (φ1,M + b+k

n φ2,M + (1− k b+kn )φ3,M ) in RN .

Denote by φ = φ1,M − kφ2,M . Then

(−∆+q)φ = Λ1,M ((a−1−k(b+k))φ1,M+(b+k−k(d+k
b+ k

n
))φ2,M+(1−k b+ k

n
)φ3,M ) in RN .

Therefore

(−∆ + q)φ = Λ1,M (φ1,M +
b+ k

n
φ2,M + (1− k b+ k

n
)φ3,M ) = (−∆ + q)φ3,M in RN .
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So φ = φ3,M and (φ1,M , φ2,M ) satisfies{
(−∆ + q)φ1,M = Λ1,M (aφ1,M + bφ2,M ) in RN
(−∆ + q)φ2,M = Λ1,M (cφ1,M + dφ2,M ) in RN .

�

We now consider as a last example of this section the following system:{
(−∆ + q1)u = λ(au+ bv) in RN
(−∆ + q2)v = λ(cu+ dv) in RN (4.3)

where the coefficients a, b, c, d are bounded. The ideas, here, are to decouple the sys-

tem in order to diagonalise the matrix M. We denote by M(x) =

(
a(x) b(x)
c(x) d(x)

)
the coupling matrix of the coefficients of the system (4.3). Following [10], we intro-
duce S an invertible 2 × 2 matrix of constants such that S diagonalises M(x) for
all x. In [10], it is proved that such a choice is possible only if either (case I) b(x)
and c(x) are both multiples of a(x) − d(x) or (case II) a(x) = d(x) for all x and
b(x) and c(x) are positive multiples of each other. We will only consider the case I
in order to have a non cooperative system. We define the functions u∗ and v∗ by(
u∗

v∗

)
= S−1

(
u
v

)
and since S is a constant matrix, we obtain(

−∆ + q1 0
0 −∆ + q2

)(
u∗

v∗

)
= λS−1M(x)S

(
u∗

v∗

)
. (4.4)

We suppose that the coefficients a, b, c, d of the system satisfy the following hy-
potheses:

(H8):

{
(i) a, b, c, d ∈ L∞(RN ).
(ii) b and c are positive multiples of a− d.

We rewrite the matrix M(x) under the following forms:

M(x) =

(
a(x) b∗(a(x)− d(x))

c∗(a(x)− d(x)) d(x)

)
where a 6= d and b∗ and c∗ are constants.

Following [10], we can decouple the system (4.4) if and only if 1 + 4b∗c∗ ≥ 0.

If 1 + 4b∗c∗ > 0 and b∗ < 0, c∗ > 0, we define the two positive constants ρ1 =

1+
√

1+4b∗c∗

2 and ρ2 = 1−
√

1+4b∗c∗

2 . We choose S =

(
−b∗ −b∗
ρ1 ρ2

)
and we have

u = −b∗(u∗ + v∗) and v = ρ1u
∗ + ρ2v

∗. Now, if we define the functions

µ1(x) :=
1

ρ1 − ρ2
[ρ1d(x)− ρ2a(x) + 2ρ1ρ2(a(x)− d(x))] (4.5)

µ2(x) :=
1

ρ1 − ρ2
[ρ1a(x)− ρ2d(x)− 2ρ1ρ2(a(x)− d(x))], (4.6)

then we can write the decoupled system as{
(−∆ + q1)u∗ = λµ1u

∗ in RN
(−∆ + q)2v

∗ = λµ2v
∗ in RN . (4.7)

Therefore we have the following result
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Theorem 4.2. Assume that each of the potential qi satisfy (H1
q). Assume also

that (H8) is satisfied. Then if λ1,q1,µ1 = λ1,q2,µ2 (resp. if λ̃1,q1,µ1 = λ̃1,q2,µ2) there
exists a principal positive (resp. negative) eigenvalue Λ1,M associated with a positive
eigenfunction Φ1,M = (φ1,M , φ2,M ) ∈ V := Vq1(RN ) × Vq2(RN ), φi,M > 0 for the

system (4.3), where λ1,qi,µi (resp. λ̃1,qi,µi) is the unique positive (resp. negative)
principal eigenvalue for the operator −∆+qi associated with the potential µi defined
by (4.5) and (4.6).

Proof. Assume that for example λ1,q1,µ1 = λ1,q2,µ2 . Then from Theorems 2.1, 2.2
there exists φ1,q1,µ1 > 0 a positive eigenfunction associated with the eigenvalue
λ1,q1,µ1

and there exists φ1,q2,µ2
> 0 a positive eigenfunction associated with the

eigenvalue λ1,q2,µ2
= λ1,q1,µ1

. Then (φ1,q1,µ1
, φ1,q2,µ2

) is a solution of (4.7). Let
φ1,M = −b∗(φ1,q1,µ1

+ φ1,q2,µ2
) > 0 and φ2,M = ρ1φ1,q1,µ1

+ ρ2φ1,q2,µ2
> 0. We

get that (φ1,M , φ2,M ) is a positive solution of (4.3) associated with the positive
eigenvalue λ1,q1,µ1 . �
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