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We report a procedure to design 2-dimensional acoustic structures with prescribed

scattering properties. The structures are designed from targeted properties in the

reciprocal space so that their structure factors, i.e., their scattering patterns under

the Born approximation, exactly follow the desired scattering properties for a set of

wavelengths. The structures are made of a distribution of rigid circular cross-sectional

cylinders embedded in air. We demonstrate the e�ciency of the procedure by designing

2-dimensional stealth acoustic materials with broadband backscattering suppression

independent of the angle of incidence and equiluminous acoustic materials exhibiting

broadband scattering of equal intensity also independent of the angle of incidence. The

scattering intensities are described in terms of both single and multiple scattering for-

malisms, showing excellent agreement with each other, thus validating the scattering

properties of each material.

Keywords: Acoustic scattering cancellation, Acoustic wave di↵usion, Stealth

materials, Hyperuniform materials,

1. Introduction

Scattering of waves by a many-body system is an interdisciplinary topic of interest
in several branches of science and technology ranging from statistical mechanics or
condensed matter to wave physics. When such a system is excited by an incident
wave, the incoming energy is both scattered and absorbed by the obstacle. This
results in a scattering pattern that is highly dependent on the geometry and size
of the scatterer distribution as well as on the frequency-dependent properties of
the material of the constituent scatterers. The manipulation of wave scattering has
long been a topic of discussion in various classical areas of physics including elec-
tromagnetism [1], photonics [2] and acoustics [3], but in recent decades significant
attention has been paid to artificial structured media to control waves. Photonic
[4–6] or phononic [7–9] crystals, hyperuniform and stealth materials [10–14] as well
as metamaterials [15–18] are just a few examples of many-body systems to control
the scattering of the incident wave.
Ordered structures, such as photonic [4–6] and phononic [7–9, 19, 20] crystals,

exhibit multiple overlapping Bragg di↵raction peaks and thus peculiar dispersion

⇤
Corresponding author. Email: svetlana.kuznetsova@univ-lemans.fr

1



November 22, 2021 2D˙Stealth

relations that can serve as e�cient tools for the control of wave scattering. Meta-
materials are complex structures that can be tuned and reconfigured to control the
scattering of the incident wave through the resonance of their constituent building
blocks [9, 21, 22]. Another way of manipulating wave scattering is o↵ered by dis-
ordered structures, in which the phase transition between the wave di↵usion and
localization regimes occurs due to the interference of the waves scattered in the
media [23, 24]. Among the disordered systems, stealth materials are characterized
by the stealthiness, i.e. the suppression of the single scattering of the incident radi-
ation for a given subset of wave vectors [11, 12]. Recently, one dimensional stealth
acoustic materials have been numerically and experimentally designed to provide
stealthiness on demand robust to losses [25]. A subclass of stealth materials is
given by the stealth hyperunifom materials for which transparency appears in a
subset of wave vectors around the origin meaning that there is a cancellation of
density fluctuations at infinite wavelength [10–14, 26, 27]. Hyperuniform materials
are made by placing scatterers following a hyperuniform pattern. Hyperuniform
patterns present a variance of the number of points within a sphere of radius R
that vanishes when R tends to infinity [13, 14]. The relevance of hyperuniformity
appeared in condensed matter physics when classical systems of particles inter-
acting with certain soft long-ranged pair potentials could counterintuitively freeze
into hyperuniform states. In other words, these systems were against the common
expectation that liquids freeze into crystal structures with high symmetry.
An increasing interest was focused on stealth hyperuniform materials, or simply

on hyperuniform materials, as they have been used to design networks with com-
plete band gaps comparable in size to those of a photonic/phononic crystal, while
at the same time maintain statistical isotropy, enabling waveguide geometries not
possible with photonic/phononic crystals as well as high-density disordered trans-
parent materials [12, 28–31]. In acoustics, a numerical study has investigated the
generation of isotropic band gaps with hyperuniofrm materials for elastic waves
[32]. More recently, the e↵ects of the strong multiple scattering and particle size ef-
fects on transparency have been analyzed, showing that the transparency is robust
to the heterogeneity in the material [33]. In the later the hyperuniform materi-
als made of resonant scatterers has shown that the material works as an acoustic
filter at the resonance frequency. Moreover, the reminiscences of periodicity in hy-
peruniform materials has been also used to excite interface localize modes [34].
Another important class of disordered many-body systems are equiluminous ma-
terials [12], which scatter waves uniformly in all directions. Such omnidirectional
di↵usion could play an important role in improving room acoustics by avoiding
unwanted reflections [3, 35, 36].
Materials with targeted scattering properties are usually designed by inverse

methods, i.e., their structure parameters are extracted from the scattering data.
Although this approach relies on an ill-posed problem [37, 38], various material de-
sign tools based on targeting the scattering properties of the structure have been
implemented in both wave physics and condensed matter. Inverse approach [39–41]
consists in optimizing the inter-particle interactions (thus minimizing some ener-
getic characteristics) leading to self-assembling from a simpler condition. Optimiza-
tion methods operating in direct space rely on zero-temperature and near-melting
temperature technique to obtain lattice ground state configurations [39, 42–46]
and collective-coordinates technique for soft matter and disordered ground states
[47, 48]. Usual numerical methods include black-box optimization benchmarking
[49], probabilistic [50, 51] and genetic algorithms [52–54] to name a few. A flat
acoustic lens [55, 56] focusing sound at a predefined point, a photonic-crystal-
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based structure [57] performing requested optical tasks, or a sonic demultiplexing
device [58] spatially separating several wavelengths were designed using a genetic
algorithm in conjunction with the multiple scattering theory (MST) [59, 60] to
optimize a cluster of scatterers. A 2-dimensional low loss acoustic cloak for air-
born sound has also been designed by means of genetic algorithm and simulated
annealing [61]. Nonlinear conjugate gradient algorithm has been used to optimize
a graded porous medium composed of a periodic arrangement of ordered unit cells
to provide the optimal acoustic reflection and transmission [62]. Recently scatter-
ing suppression of electromagnetic waves for prescribed wavelengths and directions
has been achieved by pre-assigning the scattering properties in the reciprocal space
and using generalized Hilbert transform [63].
In this work, we design disordered 2-dimensional (2D) acoustic structures con-

sisting of rigid circular cross-sectional cylinders embedded in air. These structures
are designed to present prescribed scattering properties when excited by a plane
wave. We target the information on the scattering pattern in the reciprocal space
and use an optimization procedure, which optimizes the positions of scatterers to
ensure the targeted scattering properties. A weak scattering approach is followed,
which allows us to characterize the system by its structure factor. This factor turns
out to be proportional to the scattered intensity and only depends on the scatterer
positions when they are identical. Therefore, the optimization procedure finds the
distribution of scatterers producing the targeted structure factor values by fixing
the scattering properties in the reciprocal space and as a consequence the desired
scattering properties. The polar scattering pattern of the optimized distribution of
scatterers is first evaluated from the representation of the structure factor in the
reciprocal space by using the von Laue formulation. This scattering pattern is then
evaluated independently by the MST, which is a self-consistent method accounting
for all orders of scattering. Comparison of the results of the two methods allows us
to validate the approximation of weak scattering and consequently the results. We
apply the proposed approach to design and describe 2D stealth and equiluminous
materials showing broadband back-scattering suppression and broadband equally
intense scattering respectively, independently of the angle of incidence.

2. Scattering in many-body systems: Structure factor and multiple
scattering theory

We are interested in the scattering of acoustic waves by structures made of a
distribution of N rigid cylindrical scatterers with circular cross-section of identical
radius Ri = R0 and located at positions ~ri with i = 1, ..., N . These N scatterers
are embedded in a square area ⌦ of the direct space of side L. We assume weak
scattering, i.e., the amplitude of the scattered field is small compared to that of
the incident field. Under this condition, we assume that the Born approximation is
satisfied. Strictly speaking, Born approximation corresponds to the case in which
the incident field to the i-th cylinder is only composed of the incident wave, i.e.
no scattererd waves by the other scatterers impinges the i-th scatterer. For the
geometries considered in this work, the weak scattering approximation is thus valid
for low filling fractions and when the scatterer radii are small compared to the
wavelength (see Appendix A for more details).
This discrete system can be characterized by the following scalar function defined
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in the spatial (direct) domain ⌦ as

⇢(~r) = f(~r) ⇤
NX

i=1

�(~r � ~ri), (1)

where ⇤ is the convolution operator, �(~x) is the Dirac’s delta and f(~r) is the trans-
parency of the scatterer, defined without loss of generality as

f(~r) =

⇢
0 if |~r| > R0,
1 if |~r|  R0.

(2)

Under these assumptions, the amplitude of the scattered wave is proportional to
the spatial Fourier transform of ⇢(~r), FT ( ~G), where ~G is a vector of the recipro-
cal space. This follows from the well known theory in optics that the di↵raction
pattern of a structure is equal to the product of the di↵raction pattern of the base
element and that of the array [64]. Through this work we assume a time harmonic
dependence of the type e�ı!t where ! the angular frequency. With this, we simply
end with

FT ( ~G) = f( ~G)⇥
NX

i=1

e�ı ~G~ri . (3)

Therefore, the scattered intensity is given by

I( ~G) = |f( ~G)|2 ⇥
NX

i=1

NX

j=1

e�ı ~G(~ri�~rj), (4)

where f( ~G) is known as the atomic structure factor and only depends on the
geometry of the scatterer as our scatterers are considered rigid. Thus, the scattered
intensity can be simply written as

I( ~G) = |f( ~G)|2NS( ~G), (5)

where

S( ~G) =
1

N

NX

i=1

NX

j=1

e�ı ~G(~ri�~rj) =
1

N

������

NX

j=1

eı
~G~rj

������

2

, (6)

is the structure factor. It should be noted here that the structure factor only de-
pends on the position of the scatterers in ⌦. Moreover, we notice that S( ~G) =
S(� ~G) (see Appendix B for more details and additional demonstrations). The
structure factor is extensively used in condensed matter or wave physics to de-
scribe the scattering of an incident wave by a given structure made of a distribu-
tion of scatterers. However, multiple scattering e↵ects are neglected, although this
approach has the benefit of allowing fast predictions.
The wave scattering by a distribution of scatterers can e↵ectively be more pre-

cisely described by the MST [59, 60]. The far-field expression of the scattered field
provided by the MST (see Appendix A for more details) when the structure is
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radiated by a plane wave with wave vector ~k0, is given by

pfs = P f
s (✓,!)

r
k

ı2⇡r
eıkr, r ! 1, (7)

where k = |~k0| and the far-field scattered amplitude P f
s (✓,!), at angle ✓, reads as

P f
s (✓,!) =

2

k

NX

i=1

e�ık|~ri| cos (✓�✓~ri )
X

n

(�i)nAi
ne

ın✓, (8)

with ✓~ri , the azimuthal angle of the position vector of the i-th cylinder ~ri and Ai
n,

the scattering coe�cients of the i-th cylinder calculated by MST. The scattered
far-field intensity is thus proportional to I(✓,!) / |P f

s (✓,!)|2. The scattering cross
section of the scatterer distribution when excited by a plane wave eıkx is also
computed by applying the Optical Theorem (see Appendix A) via

� = �2Re(P f
s (0,!)) = �4

k
Re

 
NX

i=1

e�ıkx~ri

X

n

(�i)nAi
n

!
. (9)

In order to illustrate the di↵erent results provided by each method and the
interpretation of the scattering in the reciprocal space, the scattering properties of
both a periodic and a random distribution of N = 64 rigid cylinders of radii R0 =
L/100 are analyzed (array of 8⇥8 rigid cylinders in the periodic case). The random
distribution has been generated by choosing random positions of the scatterers
and avoiding overlapping between them. The periodic [random] distribution of
scatterers is plotted in Fig. 1(a) [1(f)]. Figures 1(b-c) [1(g-h)] respectively depict
S( ~G) and |FT ( ~G)| in the reciprocal space. In the periodic case, both S( ~G) and
FT ( ~G) consist of a periodic pattern of sinc-type functions. The maxima appear

due to the periodicity of the square distribution at ~G =
⇣
n2⇡

p
N

L ,m2⇡
p
N

L

⌘
with

(n,m) 2 Z2. In the random case, the representations in the reciprocal space are
not periodic as shown in Fig. 1(g-h). In both periodic and random cases, a hot
spot in the center that represents the forward scattering is exhibited. The parity
of both S( ~G) = S(� ~G) and |FT ( ~G)| = |FT (� ~G)— is clearly visible.
To interpret the scattering produced by these distributions, we first discuss how

the scattering is directly interpreted in the reciprocal space using the von Laue
formulation. Let us consider that the system is excited by an incident plane wave
the wavevector of which is ~k0 = k(~ex, 0), with ~ex the unitary vector along the x
direction and k = |~k0|. We choose k = ⇡N/L in this particular example to analyze
the Bragg scattering in the periodic case. This wavevector ~k0 is represented in Figs.
1(b-c) [Figs. 1(g-h)] for the periodic [random] case pointing one of the points of the
reciprocal space. The von Laue formulation of the wave di↵raction [65] stipulates
that the di↵erence between the vector of the scattered wave, ~ks, and that of the
incident wave, must be a vector of the reciprocal space, i.e., ~ks � ~k0 = ~G, for
constructive interference to occur. Assuming elastic scattering, |~ks| ⌘ ks = | ~k0| =
k = 2⇡/�, only the vectors pointing non zero values of S( ~G) along the Ewald
sphere [65] can lead to scattered waves for 3D problems. This sphere of radius k0 is
centered at the origin of ~k0 in the reciprocal space. More precisely, all the possible
scattered waves are given by the Ewald sphere. The scattered wavevectors, ~ks, are
then given by the vector connecting the center of the sphere and the points along
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Figure 1. Scattering by an array of N scatterers radiated by an incident plane wave characterized by

the wavevector ~k0. (a) and (f) represent a periodic and a random distribution of N = 64 cylinders with

R0 = L/100 respectively. (b) and (g) show the representation of the structure factor S( ~G) for the periodic

and the random distribution respectively. (c) and (h) show the representation of the spatial Fourier trans-

form |FT ( ~G)| for the periodic and the random distribution respectively. In (b-c) and (g-h) the incident

wavevector and the scattered wavevector are related through the Ewald circumference with the vectors of

the reciprocal space. (d) and (i) show the polar distribution of the normalized scattered far field intensity

between ✓ = [90, 270] degrees for the periodic and the random distributions respectively. Black dotted (red

dashed line) [continuous blue line] represents the results obtained from the S( ~G) (|FT ( ~G)|2) [|P f
s (✓,!)|2].

(e) and (j) represents the scattering cross section of the periodic and random distributions respectively.

this sphere having a non null value of S( ~G). The scattering is finally activated along
the direction given by these vectors ~ks. This discussion is valid for any dimension,
the Ewald sphere is a circumference in 2D of radius k0 centred in ~k0, and is given
by the limits of a segment of length 2k0 centred in ~k0 in 1D.
Following this procedure, the values of S( ~G) and |FT ( ~G)| along the Ewald cir-

cumference between ✓ = [90, 270] degrees can be evaluated and, this polar distri-
bution provides the back scattering produced by systems. Figure 1(d) [Figure 1(i)]
shows the polar pattern of the scattered field by the periodic [random] distribution.
Both S( ~G) and |FT ( ~G)| present a strong back scattering around 180o as expected
from the Bragg scattering. We then compare the results with the scattered far field
as calculated by the MST, i.e., when accounting for all the scattering orders. We
conclude that the Bragg scattering is produced and that the results are very close
to those given by both S( ~G) and |FT ( ~G)|. For the random scatterer distribution,
scattering along more directions than in the periodic case is expected, because
more vectors are possible in the reciprocal space. Some directions predicted by
both S( ~G) and |FT ( ~G)| are nevertheless missing when comparing the results with
the scattered far field as calculated with the MST. This is due to the fact that
scatterers are too close to each other in some area of the distribution for the weak
scattering approximation to be valid as shown in Fig. 1(f). In that case, the most
realistic modeling is that provided by the MST. However, it should be noted that
the main directions of scattering are captured by both S( ~G) and FT ( ~G).
To conclude this analysis concerning the scattering by a periodic and a random

pattern of scatterers, Figs. 1(e) and 1(j) depict the scattering cross section as
calculated with the MST for the periodic and the random cases respectively. The
Bragg interference produces a peak of scattering at the Bragg frequency fBragg =
Nc/2L, where c is the speed of sound in the host fluid material, for the periodic
distribution while the scattering cross section almost continuously increases with
frequency for the random distribution.

6



November 22, 2021 2D˙Stealth

3. Material design tool

Depending on the values of the structure factor in the reciprocal space, di↵erent
kinds of materials can be designed [12]. In general, the following constraint can be
imposed on the structure factor

S( ~G) = S0 for K1  | ~G|  K2, (10)

where K1 and K2 are respectively the lower and the upper limits of an area of the
reciprocal space for which S( ~G) has a constant value S0. Stealth materials present
zero structure factor, S0 = 0, for a general set of reciprocal vectors. Hyperuniform
materials [12–14, 28–30, 32, 66, 67] are specific type of stealth materials for which
K1 = 0, i.e., infinite-wavelength density fluctuations vanish up to K2 = K. Hyper-
uniform materials are characterized by the stealthiness, �, being the ratio between
the number of independent vectors in the constrained domain in which S( ~G) = 0 in
the reciprocal space and the number of degrees of freedom in real space [14, 26, 27].
The values and expression of � depends on the chosen shape of the constrained
domain. In d = 2 dimensions with N >> 1, if the domain is a circumference of

radius K2 centered at origin, � ' (K2L)2

16⇡N (see Appendix C for more details).
In this section, we present a methodology to design structured materials with pre-

scribed scattering features. In contrast to real-space methods, the desired scattering
characteristics are introduced directly in the reciprocal space via the structure fac-
tor and an optimization procedure is used to find, the scatter distributions that
gives rise to the targeted value of structure factor for a set of wavelengths. The
cost function that is minimized during the optimization procedure is a function
of the structure factor itself S( ~G) [Eq. (6)]. For a given limit of wavevectors, the
structure factor must have a target value S0 for all the wavevectors in domain ⇤.
The objective function reads as

�(~r1, . . . ,~rN ) =
X

~G2⇤

⇣
S( ~G)� S0

⌘
, (11)

and is subjected to the following constrains to avoid overlapping of scatterers of
radius R0,

|~ri � ~rj | � 2R0 8i 6= j. (12)

We note that Eq. (11) is already norm L2 as S( ~G) is already norm L2. The op-
timization algorithm looks for distribution of scatterers ~ri that minimizes the Eq.
(11). The starting point pattern is random. We run 10 optimizations and chose the
configuration that provides the minimal value of the cost function. Stealth, Hyper-
uniform, and Equiluminous materials or more generally any kind of materials with
targeted properties in the reciprocal space can be designed.
As an example, Figs. 2(a-c) show a hyperuniform material made of a distributions

of N = 100 rigid cylinders with R0 = L/100 with � = 0.196 designed by the present
procedure. Figure 2(b) represents the structure factor of the corresponding scat-
terer distribution. The scattering suppression area with S( ~G) = 0 between K1 = 0

and K2 = 0.52⇡
p
N

L is clearly visible. Following the discussion on the interpretation
of the scattering in the reciprocal space given in Section 2, Fig. 2(c) shows the

Ewald circumferences for two di↵erent incident wavevectors ~k0 = (0.362⇡
p
N

L ~ex, 0)

7



November 22, 2021 2D˙Stealth

k
0

k
s

G

µ

Figure 2. Structure factor and scattering produced by a Hyperuniform material made of N = 100 cylinders

with R0 = L/100. (a) represents the point distribution for the Hyperuniform material (with � = 0.196).
(b) shows the structure factor. (c) is a zoom the region of interest in (b). We plot the Ewald circumference

corresponding to an incident wavevector ~k0. (d) represents the polar plot of the normalized scattered

intensity calculated from the structure factor for the Hyperuniform (at k0 = ks = 0.36 2⇡
p
N

L [white

circumference in (c)] between ✓ = [90, 270] degrees in order to analyze the back scattering components.

(white continuous line) and ~k0 = (0.152⇡
p
N

L ~ex, 0) (white dashed line). These two
situations correspond respectively to cases where the Ewald circumference is either
partially or completely within the scattering suppression area where S( ~G) = 0.
In both cases, the points along the circumference falling in the region S( ~G) = 0
do not produce scattering. For this reason, hyperuniform materials suppress the
scattering of incident radiation at low frequencies. This is the case of the Ewald

circumference for ~k0 = (0.152⇡
p
N

L ~ex, 0) [white dashed line in Fig. 2(c)]. In the op-

posite, strong back scattering occurs for ~k0 = (0.362⇡
p
N

L ~ex, 0). Figure 2(d) shows
the corresponding polar diagrams of the normalized scattered intensities between
✓ = [90, 270] degrees as calculated with Eq. (5). The intensity is normalized with

respect to its maximum value for ~k0 = (0.362⇡
p
N

L ~ex, 0). Therefore, back scattering

is clearly exhibited when ~k0 = (0.362⇡
p
N

L ~ex, 0) while no back scattering occurs

when ~k0 = (0.152⇡
p
N

L ~ex, 0). Note that the asymmetry of the polar diagram in Fig.
2(d) around the direction ✓ = 180� is a direct consequence of the disorder of the
scatterer distribution.

4. Results

In this section we show the results for di↵erent materials with targeted scattering
properties both angularly and spectrally using the structure factor. We compare
the results obtained from the structure factor, the spatial Fourier transform, and
the MST showing the robustness of the obtained results.

4.1. Broadband back-scattering suppression independent of the angle
of incidence

We start by analyzing the properties of a stealth material presenting a scattering

suppression area between K1 = 0.752⇡
p
N

L and K2 = 1.12⇡
p
N

L . A distribution
of N = 64 identical cylindrical rigid scatterers with R0 = L/100 is considered.
Figure 3(a) shows the scatterer distribution that minimizes Eq. (11) resulting from
the material design tool. Figure 3(b) depicts the corresponding structure factor
showing the scattering suppression area between the imposed limits. Note that this
particular shape of scattering suppression area implies that the back scattering is
completely suppressed for any frequency and for any incident wavevector in this
area. In Fig. 3(b), two di↵erent Ewald circumferences are shown for two di↵erent
incident directions at the same frequency. The whitish areas represent those of the

8
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Figure 3. Scattering properties of an stealth material for broadband and omnidirectional back scattering

suppression. (a) Stealth distribution. (b) Structure factor S( ~G) of the stealth material. Ewald circumference

distribution for two di↵erent incident directions of the same wave. Whitish area shows the scattering

suppression for these two examples. Red circles in (b) represent the limits of scattering suppression, K1 =

0.75 2⇡
p

N
L and K2 = 1.1 2⇡

p
N

L . Green (yellow) arrow represents the incident (scattered) plane wave. (c)

Polar plot of the scattered field, |pfs (✓,!)| produced by this Stealth material obtained from the structure

factor (dotted black line), the Fourier transform (dashed red line) and the MST (continuous blue line)

for k = 0.43 2⇡
p

N
L . (d) ✓ � |k| map of the scattered pressure field |pfs (✓,!)| obtained from MST for

an incident wavevector ~k0 = (0.43 2⇡
p
N

L ~ex, 0). (e-h) Scattered pressure field |ps| for an incident wave

with |~k0| = 0.43 2⇡
p

N
L (inside the scattering suppression region) along 0

o
, 270

o
, 180

o
, 90

o
of incidence

respectively. (i-l) Normalized scattered pressure field |ps| for an incident wave with |~k0| = 0.65 2⇡
p
N

L
(outside the scattering suppression region) along 0

o
, 270

o
, 180

o
, 90

o
of incidence respectively.

suppressed scattered wavevectors at this particular frequency. It should be noted
here that fixing the frequency of an incident wave having scattered wavevectors in
the suppression zone, the suppressed scattering remains the same for any incident
direction.
Figure 3(c) shows the polar plot of the scattered field |pfs (✓,!)| by this stealth ma-

terial as calculated with the structure factor (dotted black line), the Fourier trans-

form (dashed red line) and the MST (continuous blue line) for ~k0 = (0.432⇡
p
N

L , 0).
The back scattering is almost suppressed as evidenced by the polar plot. Figure
3(d) represents the ✓� |k| map of |pfs (✓,!)| obtained from the MST. The scattering
suppression is clearly in good agreement with the results presented Fig. 3(b). This
evidences the broadband back scattering suppression independent of the incident
angle.
Figures 3(e-h) finally show the scattered pressure field |ps| for an incident plane

wave with k0 = 0.432⇡
p
N

L for four di↵erent incident directions, ~k0 = (k0, 0), ~k0 =

(0, k0), ~k0 = (�k0, 0), and ~k0 = (0,�k0) respectively (white arrow). The back
scattering components are strongly reduced for each angle of incidence.
As predicted with the Ewald circumference in the structure factor map, the

forward component is the most important. Although the values of the structure
factor, i.e., the scattered intensity, inside the suppression area are not exactly zero,

9
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Figure 4. Scattering properties of an equiluminus material for broadband and omnidirectional di↵usion.

(a) Equiluminus distribution. (b) Structure factor S( ~G) of the Equiluminus material. White circles in (b)

represent the limits of equally intense scattering area, K1 = 0.8 2⇡
p
N

L and K2 = 1.2 2⇡
p
N

L (with S0 = 1).

(c) Polar plot of the scattered field, |pfs (✓,!)| produced by this Equiluminus material obtained from the

structure factor (dotted black line), the Fourier transform (dashed red line) and the MST (continuous

blue line) for k = 0.55 2⇡
p
N

L . (d) ✓ � |k| map of the scattered pressure field |p(s✓,!)| obtained from MST

for an incident wavevector ~k0 = (0.55 2⇡
p
N

L ~ex, 0). (e-h) Scattered pressure field |ps| for an incident wave

with |~k0| = 0.55 2⇡
p
N

L (inside the equally intense scattering region) along 0
o
, 270

o
, 180

o
, 90

o
of incidence

respectively.

the independence of the back scattering with respect to the incidence angle is still
remarkable. In order to prove the strong e↵ect of this back scattering suppression,
we show the scattered pressure distribution for a frequency at which the scattered
wavevectors fall outside the scattering suppression region. Figures 3(i-l) show the

scattered pressure field for k0 = 0.652⇡
p
N

L at the same incident directions. Both
the back scattering and the forward scattering are of equal importance.

4.2. Broadband equally intense scattering independently of the angle
of incidence

Contrary to the stealth materials, we design an equiluminous materials thanks to
the proposed material design tool that produce broadband equally intense scat-
tering independent of the angle of incidence. In this section, we discuss an equi-

luminous material of equally intense scattering area between K1 = 0.82⇡
p
N

L and

K2 = 1.22⇡
p
N

L . For this particular case, and without loss of generality, we consider
a distribution of N = 100 rigid scatterers with R0 = L/100. Figure 4(a) shows
the scatterer distribution minimizing Eq. (11) with S0 = 1. Figure 4(b) shows the
corresponding structure factor showing the equally intense scattering area between
the imposed limits [white circles in Fig. 4(a)]. Similarly to the stealth material, this
particular shape of equally intense scattering area implies that the back scattering
is equally distributed for any frequency and any incident direction (see Fig. 3(b) for
the Ewald circumference representation) in this area. Nevertheless, the values of
S( ~G) inside the equally intense scattering are not completely homogeneous due to
the discrete character of the proposed design contrary those of the stealth material.
This finds translation in a quasi-equally intense scattering pattern. The values of
S( ~G) are however clearly smother inside the target area than outside.

Figure 4(c) depicts the polar plot of the scattered field |pfs (✓,!)| by this equilumi-
nus material as calculated with the structure factor (dotted black line), the Fourier
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transform (dashed red line) and the MST (continuous blue line) for k = 0.552⇡
p
N

L .
Contrary to the stealth material, the back scattering is almost evenly distributed
along the angles and quasi-equally intense as evidenced by the polar plot. Fig-
ure 4(d) represents the ✓ � |k| map of |pfs (✓,!)| obtained from the MST. The
quasi-equally intense scattering is in good agreement with the results plotted in
Fig. 4(b). This evidences the broadband back scattering behaviour of the structure
independent of the incident angle.
Figures 4(e-h) show the scattered pressure field |ps| for an incident wave with

k0 = 0.552⇡
p
N

L for four di↵erent incident directions, ~k0 = (k0, 0), ~k0 = (0, k0),
~k0 = (�k0, 0), and ~k0 = (0,�k0) respectively. The back scattering components
are angularly distributed with quasi-equal intensity for each angle of incidence.
Although the values of the structure factor, i.e., the scattered intensity, inside the
equally intense scattering area are not exactly constant, the quasi-equal intense
back scattering independent of the angle of incidence is still remarkable.

5. Conclusions

Heterogeneous materials formed by a set of scatterers embedded in a host mate-
rial with tailored properties are a useful tool for the control and manipulation of
acoustic, electromagnetic and matter waves. In this work, we present a methodol-
ogy based on prescribing the scattering properties of the system in the reciprocal
space, i.e., prescribing its structure factor, to later obtain the spacial distribution
of scatterers with the corresponding scattering properties. The developed method-
ology was applied to construct stealth and equiluminous materials. We notice here
that the distribution of scatterers obtained by the optimization procedure are ro-
bust to slight variations of the position of scatterers, which could be of crucial
importance if experiments are performed. In the optimizations performed in this
work there are two important features to take into account: the domain ⇤ in which
the system is optimized and the number of particles N of the system. The greater
the domain ⇤, the bigger the number of constraints imposed in the reciprocal space
and then the optimization problem becomes di�cult to solve due to the huge de-
grees of freedom needed to obtain the optimal solution. The number of scatterers
N also impacts the global scattering of the system. In fact, as the number of scat-
terers in the square region of side L increases, the mean density of the system does
and, as a consequence, the scattering intensity increases. This explains that the
optimal results for the stealth material presents less scatterers than the case for
the equiluminous one.
The scattered intensity was first obtained from the structure factor based on their

proportionality in the weak scattering approximation. The results were validated
using the multiple scattering approach that accounts for all the scattering orders.
The scattered intensity patterns obtained by these two approaches are in excellent
agreement having similar angular distributions. First we have designed a stealth
system that exhibits broadband back-scattering suppression independently of the
incidence directions, having zero structure factor in the given frequency range and
as a consequence, a close to zero scattered intensity. Second, we have designed an
equiluminous system that provides broadband di↵usion independently of the inci-
dent direction, having non zero constant structure factor in the desired range of
frequencies. Although the scattered intensity is not exactly the same at di↵erent
scattering angles (we have a discrete distribution of scatterers), the scattering pat-
tern is still quasi-intense and is smoother inside the target frequency range than
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outside it. The proposed methodology has proved itself as a convenient tool to de-
sign and characterize disordered many-body systems with preassigned scattering
properties.
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Appendix A. Multiple Scattering Theory

We consider that the N cylinders of radius Ri are located at ~ri with i = 1, ..., N to
form the distribution in the x� y plane. The system is excited by a plane wave of
the form p0(~r) = eıkx with a temporal dependence of the type e�ı!t. The scattered
wave by the i-cylinder can be written as

ps(~r,~ri) =
X

n

Ai
nHn(k|~r � ~ri|)eın✓(~r�~ri) , (A1)

where Hn is the n-th order Hankel function of first type. The total field incident to
i-th cylinder piin(~r) is a superposition of the direct contribution from the incident
wave p0(~r) and the scattererd waves from all the other scatterers

piin(~r) = p0(~r) +
NX

j=1,j 6=i

ps(~r,~rj). (A2)

This incident wave on the i-th cylinder can be expressed as follows

piin(~r) =
X

n

Bi
nJn(k|~r � ~ri|)eın✓~r�~ri , (A3)
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where Jn is the n-th order Bessel function of first type. We now express the scattered
field by the i-th cylinder in the vicinity of the j-th cylinder. To do so, we use the
Gra↵’s theorem:

ps(~r,~rj) =
X

n

Cj,i
n Jn(k|~r � ~ri|)eın✓~r�~ri , (A4)

8|~r � ~ri| 2 [Rj , |~rj � ~ri|�Ri[, (A5)

with

Cj,i
n =

X

l

Aj
lHl�n(k|~ri � ~rj |)eı(l�n)✓~ri�~rj . (A6)

The incident plane wave is then represented in the i-th cylinder coordinate sys-
tem, via

p0(~r) = eıkx = eıkxjeık|~r�~rj | cos (✓~r�~rj ). (A7)

At this stage, we use the Jacobi-Anger expansion to expand the term
eık|~r�~rj | cos (✓~r�~rj ) upon Bessel functions:

eık|~r�~rj | cos (✓~r�~rj ) =
X

n

ınJn(k|~r � ~rj |)eı✓~r�~rj . (A8)

Therefore, we end with

p0(~r) =
X

n

Si
nJn(k|~r � ~rj |)eı✓~r�~rj , (A9)

where

Si
n = ıneıkxj . (A10)

The factor eıkxj plays the role of a complex amplitude which depends on the hori-
zontal projection of the position of the j-th scatterer, xj .
Now that we have expressed all the acoustic fields involved in the problem in the

vicinity of the i-th cylinder, we can obtain the following system of equations:

Bi
n = Si

n +
NX

j=1,j 6=i

X

l

Aj
lHl�n(k|~ri � ~rj |)eı(l�n)✓~ri�~rj . (A11)

At this stage, the Sn are known, but both Bn and Al are unknown. The rigid
boundary condition provides another equation relating them. At the interface of
the i-th cylinder, we have

1

⇢0

@pext
@r

����
r=Ri

= 0, (A12)

giving rise to

Bi
n = �H0

n(kRi)

J0n(kRi)
Ai

n ⌘ �inAi
n, (A13)
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where the primes represent derivative. Therefore the amplitudes of the scattered
and the incident fields on the i-th cylinder can be related by means of �in.
Finally the system of equations can be written as follows,

�inA
i
n �

NX

j=1,j 6=i

X

l

Gj,i
n,lA

j
l = Si

n, (A14)

where

Gj,i
n,l = Hl�n(k|~ri � ~rj |)eı(l�n)✓~ri�~rj for i 6= j. (A15)

This system of equations is solved for every frequency by truncating the infinite
sums. A good estimation for this truncation is given by Barber and Hill [68]

l = n = floor
⇣
kRmax + 4.05(kRmax)

1/3
⌘
+ 10, (A16)

with Rmax = max(Ri). Other recipes for this truncation can be found in Refs.
[69, 70]. Once the system is solved, the coe�cients Ai

n are known and the total
pressure can be obtained from

p(~r) = eır cos ✓ +
NX

i=1

X

n

Aj
nHn(k|~r � ~rj |)eın✓(~r�~rj) . (A17)

A.1. Scattering cross section

From the previous equations, the expression of the scattering cross section of an
array of scatterers can be obtained. The scattered pressure field by a distribution
of scatterers can be written as

ps(~r) =
NX

i=1

X

n

Aj
nHn(k|~r � ~rj |)eın✓(~r�~rj) . (A18)

In the far field, we have

Hn(k|~r � ~rj |) '

s
k

ı2⇡|~r|(�ı)neık|~r|e�ık|~rj | cos (✓�✓~ri ), (A19)

considering that |~r � ~rj | ' |~r| � |~ri| cos (✓ � ✓~ri). The far-field scattered pressure
expression is also

pfs = S(✓,!)

r
k

ı2⇡r
eıkr, r ! 1, (A20)

with the far-field scattered amplitude

S(✓,!) =
2

k

NX

i=1

e�ık|~ri| cos (✓�✓~ri )
X

n

(�i)nAi
ne

ın✓. (A21)
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Figure A1. Scattering cross sections for cylinders with radius [1/130, 1/120, 1/110, 1/100, 1/90, 1/80,

1/70, 1/60]. As the radius increases the scattering cross section increases also. The wide line corresponds

to the scattering cross section of the cylinders analyzed in this work.

The scattering cross section is thus written as

� = �2Re(S(0,!)) = �4

k
Re

NX

i=1

e�ıkx~ri

X

n

(�i)nAi
n. (A22)

A.2. Weak scattering approximation

Strictly speaking the Born approximation implies that the interaction between
the scatterers is negligible, in other words, the term ps(~r,~rj) = 0 in Eq. (A2),
i.e., the incident wave on the i-th cylinder is only the incident wave without any
contribution of the other scatterers in the structure. In this work, we will consider
that |ps(~r,~rj)| << |p0(~r)| 8j. For a single scatterer, the scattering cross section, is
defined as

� =
1

|p0|2

Z
|ps|2ds =

I
d�

d⌦
d⌦, (A23)

where the integral runs over a closed surface enclosing the scatterer. This could
be used to evaluate the intensity of the scattered field by a single element. Figure
A1 shows the scattering cross section for scatterers with radius [1/130, 1/120,
1/110, 1/100, 1/90, 1/80, 1/70, 1/60]. We have chosen a configuration for which
the scattering cross section is less than 0.015 in the range of frequencies analyzed
in the work, meaning that the scattering is thus 1.5% of the incident wave, so the
weak scattering approximation is valid.
In this work we have used the following conditions N⇡R2

0
/L2  0.3, and

kR0  0.3 for the filling fraction and the radius of the scatterer with respect to the
wavelength respectively. These conditions are in the weak scattering approach.

Appendix B. Structure factor

Let us consider the scattering of an acoustic beam of wavelength � by the distribu-
tion of N scatterers. We assume that the scattering is weak, so that the amplitude
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of the incident beam is higher than the amplitude of the scattering waves; absorp-
tion, refraction and higher order scattering can be neglected (kinematic di↵raction).
The direction of any scattered wave is defined by its scattering vector ~G = ~ks� ~k0,
where ~ks and ~k0 = k0(cos ✓i, sin ✓i) are the scattered and incident beam wavevec-
tors with ✓i the incidence angle. For elastic scattering, |~ks| = |~k0| = |~k| = 2⇡/� and
then G = | ~G| = 4⇡

� sin(✓). The amplitude and phase of this scattered wave is the

vectorial sum of the scattered waves by all the scatterers  s(~q) =
PN

i=1
fie�ı ~G~ri ,

with fi the atomic structure factor. The scattered intensity reads as

I( ~G) =  s( ~G). ⇤
s( ~G)

=
NX

j=1

fje
�i ~G~rj ⇥

NX

k=1

fke
i ~G~rk

=
NX

j=1

NX

k=1

fjfke
�ı ~G(~rj�~rk). (B1)

The structure factor, S( ~G), is then defined as this intensity normalized by
1/
PN

j=1
f2

j

S( ~G) =
1

NX

j=1

f2

j

NX

j=1

NX

k=1

fjfke
�ı ~G(~rj�~rk). (B2)

If all the scatterers are identical, then

I( ~G) = f2

NX

j=1

NX

k=1

e�ı ~G(~rj�~rk), (B3)

so

S( ~G) =
1

N

NX

j=1

NX

k=1

e�ı ~G(~rj�~rk) =
1

N

������

NX

j=1

eı
~G~rj

������

2

. (B4)

Therefore, the structure factor S( ~G) is proportional to the intensity of scattered
field by a configuration of N scatterers. It is worth noting here that the structure
factor can be also related to the scattering cross section as follows

d�

d⌦
= f2

NX

j=1

NX

k=1

e�ı ~G(~rj�~rk) = f2NS( ~G), (B5)

where � is the total cross-section and ⌦ is the solid angle.
Note that the von Laue condition [65, 71] for the periodic systems implies that

the constructive interferences will occur if the di↵erence between the incident and
reflected wavevector is a vector of the reciprocal lattice. Therefore the Bragg scat-

tering condition reads as |~k| = | ~G|
2 sin ✓ . In the 1D case (✓ = ⇡/2), the wavevectors
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are collinear and then, |~k| = | ~G|/2.

Appendix C. Stealthiness, �

� is called the stealthiness and encodes the correlation of hyperuniform
materials[14, 26, 27]. � is the ratio between the number of independent vectors
in the constrained domain in which S( ~G) = 0 in the reciprocal space and the
number of degrees of freedom in real space,

� =
# constrained ~G

d(N � 1)
' # constrained ~G

dN
. (C1)

The right hand side considers the limit N >> 1. In free space, a medium made
of N particles, presents dN degrees of freedom in d-dimensions. We focus in the
case d = 2. The values and expression of � obviously depends on the chosen shape
of the constrained domain. In this work we consider S(| ~G|  K2) = 0, i.e., ~G are
constrained in a circumference of radiusK2 centered at the origin. It is worth noting
here that the structure factor has the following property S( ~G) = S(� ~G). Therefore
the number of constrained ~G in a circumference of radius K2 is 1

2
⇡(K2L/2⇡)2, so

� ' K2

2
L2

16⇡N
. (C2)

In this case, � takes positive values, and the values � ! 0 and � ! ⇡/4 (when
K2 = 2⇡

p
N/L) lead, respectively, to Poisson distributions and perfect crystal

lattices. Therefore the control of � has been shown as an elegant and e�cient way
to control the correlated disorder of the generated point pattern.
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