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Institut d’Acoustique–Graduate School (IA-GS), CNRS, Le Mans Université, Avenue
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L. M. Garćıa-Raffi
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Abstract. We theoretically, numerically and experimentally report the localization

of an acoustic wave at the interface between two one-dimensional hyperuniform

materials of different geometrical representations. These materials suppress the

acoustic scattering in the long wavelength regime, being rather disordered and

degenerate, while possessing a wide band gap. In this work, these hyperuniform

materials are made of an air-filled acoustic waveguide with rigid diaphragms acting as

scatterers. A wide band gap and the emergence of the edge modes provide promising

applications in wave control devices.

1. Introduction

Localized edge modes occurring at the connection between two materials yielding

in different topological phases have long attracted attention due to their potential

applications for robust transport of different types of waves. The eigenfrequencies of

such boundary modes lie inside the band gap flanked by allowed bands. Translational
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symmetry is of crucial importance for both the existence of the band gaps and the

introduction of bulk topological invariants of the system. In this regard, the topological

properties are traditionally attributed to ordered materials. The emergence of the

boundary modes is governed by the bulk-boundary correspondence, which is a relation

between the eigenstates of the system within the bulk spectrum and the number of the

supported interface modes. These modes are topologically protected, i.e., they are stable

against adiabatic chiral symmetry preserving perturbations if the band gap remains open

[22, 8]. The topological state of the system can be controlled by the gap closing and

reopening, which is driven by the geometrical parameters.

One of the most established and common one-dimensional (1D) systems to describe

topological edge states is the Su-Schrieffer-Heeger (SSH) model [27]. This model is

widely used to predict and investigate the localized boundary modes in binary waveguide

arrays [6], diatomic chains of plasmonic particles [16], dielectric microwave resonators

[24], spins [11], etc. Topology has recently enriched the fields of acoustics and mechanics

by introducing various classical analogs of quantum and electronic effects, such as Dirac

cone dispersion, quantum Hall and spin Hall effects [17, 21, 33]. Periodic acoustic

structures have been shown to undergo a topological phase transition accompanied by

the emergence of the edge localized modes by means of varying the geometry of the

sample [31, 7, 23, 10, 15, 20]. In particular, the variation of the lengths of the unit cell

components has been shown to affect the topological properties of the second [31] and

higher order gaps [20] in one-dimensional systems.

Meanwhile, topologically nontrivial states have been achieved not only in periodic

structures. Topological edge modes have been observed in quasiperiodic structures [2],

coupled resonator smartly patterned systems [3] and even in amorphous systems with

randomly distributed particles [1, 9].

Lately, hyperuniform materials have emerged as promising candidates for the wave

control, exhibiting transparency for a set of wavevectors in the long wavelength limit.

Hyperuniform structures stand apart from conventional media exhibiting the properties

of liquids (amorphous) and crystals (periodic) simultaneously – suppressing large scale

density fluctuations. They are statistically isotropic with no long-range order [30, 29, 5].

They were found to possess wide isotropic bandgaps both in photonic [19],[18] and

phononic [13] systems, in spite of being highly disordered and degenerate. These

materials thus offer remarkable capabilities for engineering waveguiding devices. The

band gap formation is attributed to the interplay of the hyperuniformity and the

reminiscences of crystallinity always present due to the constraints imposed on the

system [12]. Since the band gap closing and reopening can be achieved by varying the

geometric parameters of the hyperuniform material similarly to the periodic systems,

the crucial changes in the bulk eigenstates can be undergone.

In this work, we theoretically and numerically predict and experimentally observe

the wave localization at the interface between two hyperuniform materials both

possessing a band gap in similar ranges of frequencies. This counter-intuitive result

shows the possibility of localizing waves in a controlled manner between two disordered
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systems due to the reminiscence of periodicity in the hyperuniform materials. To

obtain a hyperuniform structure, we utilize the optimization procedure described in

Ref. [25]. The extracted hyperuniform point distribution is used to manufacture a 1D

hyperuniform material made of an air-filled waveguide of circular cross-section in which

the hyperuniform distribution of rigid diaphragms is embedded. Wave propagation

is numerically analyzed and experimentally validated showing good agreement. By

changing the geometry of the diaphragms, the band gap closing and reopening is

achieved and two complementary configurations at the opposite sides of the band gap

closing are obtained. These two systems are then connected to analyze the possible

localization of the acoustic wave at the interfaces between these two hyperuniform media.

We also revisit the periodic counterpart of the localized edge states in periodic media

from a theoretical and experimental points of view.

2. Hyperuniform materials

Consider a 1D distribution of N identical scatterers located at positions xj which form

a unit cell of size L that is periodically repeated along the x-coordinate. The reciprocal

counterpart of this complex lattice is given by the reciprocal lattice vector G = 2πm/L,

m ∈ Z. In case of negligible interactions between the scatterers, such systems can be

described by the structure factor S(G)

S(G) =
1

N

∣∣∣∣∣
N∑
j=1

eiGxj

∣∣∣∣∣
2

. (1)

The system is hyperuniform if the long-range density fluctuations are suppressed leading

to vanishing structure factor S(|G| < K) = 0 in the vicinity of the origin of the reciprocal

space with K = 2πn/L, n ∈ N. The hyperuniform patterns are also characterized by

the parameter χ, which defines a relative number of the independent reciprocal lattice

vectors lying in the region |G| < K. For 1D systems, χ = n/N . When χ ≥ 0.5,

the pattern becomes crystalline, because crystal becomes the only way to meet the

requirement of minimum value of the structure factor [12]. In the limit χ → 0, the

configurations are disordered and represent an ideal gas, since there is no constraint

anymore on the reciprocal lattice vectors [30]. In the intermediate regime, 0 < χ < 0.5

the configurations are disordered, although they still display some hints of crystallinity,

such as reminiscences of the Bragg peaks [12] leading to isotropic gaps in the transmission

spectrum. Thus, the introduction of χ as an order measure illustrates that states of

matter exist between crystals and ideal gases with counter-intuitive physical properties.

To design the hyperuniform pattern, we use an optimization procedure, which

looks for the positions of point scatterers xj that minimize the structure factor for

a target region |G| < K as described in Ref. [25]. The algorithm provides a certain

configuration starting from a random distribution satisfying the constraint that the

particles cannot overlap (|xi − xj| ≥ l with l being the size of the particle), so that the
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Figure 1. (a) Schematic view of the experimental setup, (b), (d) longitudinal section

of the positive and negative periodic waveguides respectively, (c), (e) longitudinal

section of the positive and negative hyperuniform waveguides respectively. The dark

blue regions correspond to the diaphragms and the light blue regions correspond to

the empty spaces inside the waveguide.

aposteriori experimental validation should be performed. The objective functions to be

simultaneously minimized are the structure factor

φ(x1, ...xN) =
∑
|G|<K

S(G), (2)

and the standard deviation function

σ =

√√√√√ 1

N − 1

∑
|G|<K

∣∣∣∣∣∣S(G)− 1

N

∑
|G|<K

S(G)

∣∣∣∣∣∣
2

. (3)

We focus on the single unit supercell of the hyperuniform sample with χ = 0.2

to ensure a high degree of disorder in the structure. Studying a single unit supercell

is sufficient to represent a hyperuniform material in 1D systems. With such moderate

value of χ, the area of suppressed structure factor (f ≤ 680 Hz) is small and the material

is closer to a disordered material than to a periodic one. Nevertheless, the constraint on

the minimum distance between the scatterers introduces a short-range correlation and

leads to the reminiscences of crystallinity of the system, which will be discussed in the

following sections.

3. Experimental setup

The setup utilized in this work is made of a main waveguide of radius R in which

diaphragms with inner radius r < R act as the scatterers of the system. N diaphragms

located at the specific positions provided by the optimization procedure will constitute

the whole system (see Appendix A for the exact positions). A scheme of the setup is

shown in Fig. 1. The dimensions are chosen to satisfy the single mode propagation

regime in the frequency range of interest, i.e., the range of frequencies analyzed in the
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setup are always smaller than the cutoff frequency of the waveguide. The radius of

the waveguide is R = 1.5 cm and its length is L = 1 m. The hyperuniform material

supercell is optimized considering N = 20 scatterers. The radii of the diaphragms are

chosen identical r = R/2 in order to open the band gap of the hyperuniform material. A

plexiglass tube and PVC diaphragms were used in the experiments. Both materials are

considered acoustically rigid due to their large impedance mismatch with respect to that

of the air. A loudspeaker was used to generate a plane wave at one end of the plexiglass

tube and a single microphone was used to measure the amplitude of the pressure field

at the desired locations. At the opposite end of the tube, an anechoic termination with

less than 5% of reflection amplitude in the analyzed frequency range was used.

In this work, we consider either a periodic or a hyperuniform distributions of

scatterers represented by two configurations residing in different states. We introduce

the variable radii r′(t) = R/2(1 + t), R′(t) = R(1 − t/2) and the parameter t ∈ [0, 1]

for the simulation of the band gap closing and reopening. Two complementary

configurations referred to as the positive and the negative configurations are obtained

by varying t from 0 to 1 (see Figs. 1(c),(e)). They stay at different states, i.e., the

positive configuration stays on the left of the band gap closing with t < 0.5 while the

negative one stays on the right of the band gap closing with t > 0.5.

In practice, the positive configuration is realized by locating the diaphragms of

length l = 1.5 cm at the scatterers positions of the hyperuniform point pattern, while

the negative configuration is realized by locating the different diaphragms between the

scatterers positions. These two configurations with t = 0 and t = 1 are used in the

experiments.

The same concept is applied to the periodic system. The positive and the

negative periodic waveguides with 5 inserted diaphragms are considered. Two types

of diaphragms were fabricated – the first type of lengths l2 = 1.5 cm and the second

type of lengths l2 = 3.5 cm – for the construction of the periodic waveguides. The size

of the constituent unit cell in both configurations is fixed to d = l1 + l2 = 5 cm. In this

way, the two configurations are complementary to each other (see Figs. 1(b),(d)). The

periodic structure made of the diaphragms of length l2 = 1.5 cm is referred to as positive

configuration, while that made of the diaphragms of length l2 = 3.5 cm is referred to as

the negative configuration.

4. Revising the localized modes in 1D periodic systems

4.1. Characteristics of 1D periodic materials

A 1D crystalline scatterers distribution is implemented by periodically embedding

diaphragms of radii r = R/2 and length l2 acting as scatterers in an air-filled waveguide

of radius R (Fig. 2(a)). Only plane acoustic waves are assumed to propagate.

The pressure p and the acoustic flow u at 2 points (initial i and final f) along the
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waveguide are related via the transfer matrix T(
pi
ui

)
= T

(
pf
uf

)
, (4)

where T is the product of all the intermediate transfer matrices along the i→ f path

T =
N∏
j=1

Tj. (5)

The transfer matrix of a waveguide or a diaphragm of the length lj, cross section Sj and

reduced impedance Zj = ρc/Sj is

Tj =

(
cos(klj) ıZj sin(klj)
ı
Zj

sin(klj) cos(klj)

)
, (6)

where k is a wavenumber and the e−iωt time harmonic dependence is assumed. The flow

in the final point is obtained from Eq. (4)

uf = Vi,fpf +Wi,fpi, (7)

where Vi,f = −T11

T12
, Wi,f = 1

T12
. Considering the acoustic flows from the points (m + 1)

and (m− 1) into the point m, we obtain

(Vm−1,m + Vm+1,m)pm = −Wm−1,mpm−1 −Wm+1,mpm+1. (8)

The opposite signs of flows coming from opposite directions (from the points m+ 1 and

m− 1) into the point m have been accounted for.

Let us refer to the junctions with a large radius part at the right as the A-junctions

and those with a large radius part at the left as the B-junctions (Fig. 2(b)). If l1 = l2 = l,

Eq. (8) takes the form of a pair of Su-Schrieffer-Heeger (SSH) equations

εAn = κ2Bn−1 + κ1Bn, (9)

εBn = κ2An+1 + κ1An,

where An, Bn represent the pressures at the corresponding junctions, ε = cos(kl),

κ1 = R2

r2+R2 , and κ2 = r2

r2+R2 . The junctions are now identified to the particles in a dimer

chain of the original SSH model with a unit cell [AB]. According to the expressions of

the coupling coefficients κ1,2, the parts of the tube with radii R and r correspond to the

strong and weak couplings between the particles. Thus, the region between the junctions

An and Bn of a waveguide plays the role of the unit cell and the region between the

junctions Bn and An+1 plays the role of the connection between the unit cells. Another

unit cell can be chosen, as that depicted in Fig. 2(c), which would lead to the same

system of equation but with interchanged coupling coefficients κ1 and κ2.

The dispersion relation of the SSH system exhibits a gap ∆ε = |κ1 − κ2|. When

κ1 = κ2 the gap closes and the eigenstates of the system with arbitrarily small

eigenvalues are allowed propagating modes. The condition κ1 = κ2 corresponds to

R = r, i.e., the empty tube. If the system is finite (n = 1, . . . , N), it may support

zero-eigenvalue states. Assuming ε = 0 in Eq. (9), the solution becomes
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Figure 2. (a) Scheme of a 1-D waveguide of radius R with diaphragms of radius r

and length l2, (b), (c) corresponding SSH-like chains of point particles of type A and

B with different choices of a unit cell [AB].

(
An

Bn

)
= (−1)n−1

(
κ1
κ2

)n−1
(

A1

0

)
, (10)(

An

Bn

)
= (−1)n−1

(
κ2
κ1

)n−1
(

0

B1

)
. (11)

Having an eigenfrequency inside the band gap, the solutions should be localized

at the sites A1 and BN . This requirement is fulfilled if the inter-cell coupling κ2 is

stronger than the intra-cell one κ1. Otherwise, the solutions are delocalized and should

be disregarded. The localized edge states are topologically protected. They remain

present under the adiabatic modifications of the parameters (continuous modifications

preserving the chiral symmetry inherent to this system [4] and the open band gap). The

case κ2 > κ1 is qualified as topological, while the opposite one is trivial.

Now, we consider the waveguide with different lengths of the diaphragms and the

empty spaces (l1 6= l2). The system is thus described by modified equations. However,

the chiral symmetry is preserved and the system presents the features similar to those

of the SSH model in terms of the band structure and emergence of interface states.

The localized edge states appear not only at the edges of the chain, but also at the

interface between the two phases – the trivial and topological ones. There are two ways

to connect two finite structures of different topological phases – via weak (Fig. 3(a)) or

strong (Fig. 3(b)) coupling [6]. The former is a monomer defect and the later is a trimer

defect, represented by a particle A and particles ABA written in red in Figs. 3(a),(b)

respectively. When l1 = l2 a monomer defect supports a localized mode with a maximum

amplitude at the defect particle A, while the trimer defect supports a localized mode

with a node at the defect center B [6, 10]. When l1 6= l2 the similar behaviour of the

interface modes is expected.
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Figure 3. (a) a monomer and (b) a trimer defects between two periodic waveguides

and the corresponding SSH-like particle chains.

4.2. Observation of the localized interface modes in periodic systems

We consider a 1D crystalline scatterers distribution with l1 6= l2. In Fig. 4(a), we plot the

dispersion relation of the positive (red dots) and the negative (blue dots) configurations.

If R and r are continuously interchanged, the band gap closes and reopens (see the inset

in Fig. 4(a), where the lower and upper edge bands of the band gap of the different

configurations at dk = π are represented). The transmission coefficients of these

finite configurations are plotted in Figs. 4(b) and (c). The region with transmission

suppression corresponds to the position of the band gap predicted by the dispersion

relation. The equidistant peaks outside the band gap are attributed to the Fabry-Perot

resonances of a finite waveguide.

Since the connection of two materials in different topological phases supports a

localized interface mode in the SSH model, we expect the same behavior in our periodic

structures. In order to analyze the effect of the localized modes in the dispersion

relation, we have to consider a new supercell made of the combination of a positive

and a negative supercells in which the defect is in the middle, as it is usually done in the

literature ([6, 23]). Thus we consider a supercell consisting of the connection of a positive

and a negative supercells with 5 periods in each, being enough distance to avoid the

coupling between the localized modes due to the periodicity of the supercell. Indeed,

two localized modes inside a band gap with a flat dispersion, corresponding to two

types of connection between the waveguides – weak and strong ones – are encountered

in the dispersion diagram depicted in Fig. 5(a). The weak connection supports a lower

frequency mode, with a symmetric pressure profile relative to the connection point. The

strong connection maintains a higher frequency mode with an antisymmetric profile. In

Fig. 5(b), we plot the normalized pressure amplitudes at the connection between the two

waveguides coupled in the two described ways: red (blue) lines and symbols correspond

to the strong (weak) connection supporting an antisymmetric (a symmetric) mode.

In the insets of Fig. 5(b), we plot the pressure field distributions (the real parts) of

the interface modes showing the symmetry of each interface mode. The experimental

measurements are shown as circles and appear to be in a good agreement with the

predictions. The black lines represent the expected interface modes frequencies from

the dispersion diagram that match the experimental peaks.

Surface modes at the interface between two materials of surface impedances Z1
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Figure 4. (a) Dispersion diagram of a periodic waveguide in positive (red dotted line)

and negative (blue dotted line) configurations, the band gap closing and reopening is

shown on the inset, (b),(c) transmission coefficients of the positive and negative cases

respectively. The solid lines correspond to the calculations and the circles correspond

to the experimental results.

and Z2 appear as the poles of the reflection coefficient R12 = Z1−Z2

Z1+Z2
. For photonic

[14] and phononic [32, 20] crystals, Z1,2 are related to the topological invariants of the

corresponding materials. The equality

Z1 + Z2 = 0, (12)

is thus a condition for the emergence of the topologically protected interface states.

Different signs of the surface impedances indicate that the two connected materials reside

in different topological phases. The surface impedance of the material can be obtained

by measuring the reflection coefficient at its interface with air Z1,2 = Z0
1+R1,2

1−R1,2
, where Z0

is the impedance of air. Thus, the equation Eq. (12) reduces to the requirement[32, 20]

<(R1R2) = 1, (13)

=(R1R2) = 0.

Figure 5(c) illustrates the product of the reflection coefficients from the single

positive and negative waveguides RpRn at the ends, which form a strong (read line)

and a weak (blue line) connections. The frequencies satisfying Eq. (13) perfectly match

the frequencies of the localized modes identified in the dispersion diagram (black dotted

lines). Thus, the red and blue regions on the inset in Fig. 4(a) correspond to different

topological phases.
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Figure 5. (a) Dispersion diagram of connected positive and negative periodic

waveguides, (b) normalized pressure amplitude at the connection between the positive

and negative waveguides measured with respect to the amplitude inside an empty tube

p0. The red line corresponds to the strong connection and the blue line corresponds

to the weak connection. The circles represent the experimental results. The insets

represent pressure distributions in the corresponding modes, (c) Re(RpRn) (solid lines)

and Im(RpRn) (dotted lines) as functions of frequency for strong (red) and weak(blue)

connection of two periodic waveguides. Black dotted lines correspond to the expected

frequencies from the dispersion diagram.
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Figure 6. (a) positive and (b) negative waveguides designed upon a hyperuniform

scatterers distribution, (c),(d) dispersion diagram and the transmission coefficient of

a positive waveguide, (e) closing of the band gap of a hyperuniform material with the

variation of the waveguide and diaphragms radii, the red region corresponds to the

positive waveguide, the blue region corresponds to the negative one, (f), (g) dispersion

diagram and the transmission coefficient of a negative waveguide, (h),(i) pressure

profiles in the edge modes of single positive and negative waveguides for Dirichlet

and Neumann boundary conditions.

5. Properties of the hyperuniform materials: Closing and reopening band

gap

5.1. Characteristics of the 1D Hyperuniform materials

We first analyze both the dispersion relation and the transmission through the system.

Figure 6(a) shows the distribution of scatterers in the designed positive hyperuniform

material and Fig. 6(c) depicts its dispersion relation. Several flat eigenmodes, attributed

to the modes localized inside the waveguide due to the disordered distribution of

scatterers, are located in the band gap. These modes present a very low dispersion

with small group velocity. The presence of the viscothermal losses in the system

dramatically impacts them [28]. This results in a very low transmission coefficient

over a broad frequency range, as shown in Fig. 6(d). This remarkable transmission

dip is much wider than that of a periodic waveguide studied in the 4. The peaks in

the transmission coefficients in the low frequency propagative regime are attributed to

Fabry-Perot resonances (see Appendix B).

We now focus on the blue region highlighted in the dispersion diagram in Fig. 6(c).

It corresponds to the gap between the 20th and 21st modes, where a periodic structure

consisting of 20 unit cells possesses a band gap due to the folding of the Brillouin zone.
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Thus, we expect to observe some reminiscence of the periodicity in this region. The

width of this band gap is defined by the ratio of the radius of the diaphragm over that

of the waveguide, as it can be seen from the Fig. 6(e), where the lower and upper edge

of the band gap at Lk = 0 represented by the blue area in Fig. 6(c) are depicted. The

positive and the negative configurations are shown in Figs. 6(a),(b) respectively. The

dispersion diagram and the transmission spectrum of the negative configuration shown

in Figs. 6(f),(g) respectively are similar to those of the positive one. The band gap we

are interested in, shown by the blue region, lies in the same frequency range as for the

positive configuration.

5.2. Observation of the localized edge states in hyperuniform materials

We have revised the features of periodic structures as well as theoretically and

experimentally shown in Sec. 4 the excitation of edge modes by using periodic

distribution of scatterers in our setup. In this work, although we study a disordered

system, periodicity related features still remain. Thus, we expect to observe the

reminiscences of the topologically protected states at the interface between a positive

and a negative hyperuniform materials. To do that we proceed as in the periodic case

by considering a supercell made of the connection of a positive and a negative supercells

allowing us to analize the effect of the localized modes in the dispersion relation.

Both positive and negative waveguides under consideration possess localized edge

modes with frequencies inside the band-gap. Their profiles are shown in Figs. 6(h),(i) for

the two types of boundary condition – Dirichlet (p=0) and Neumann (v=0) respectively.

The positive and negative waveguides can be connected in two ways – either by

means of the ends of a larger radius (referred to as the strong connection), or by means of

the ends of a smaller radius (referred to as the weak connection). We notice the localized

interface modes inside the band gap, as shown in the dispersion relation in Fig. 7(a). The

mode profiles are shown on the insets of Fig. 7(b) next to the corresponding normalized

pressure amplitudes measured at the connection. The numerical prediction (continuous

line) and the experimental results (symbols) are in good agreement. The reminiscences

of the symmetric and antisymmetric behavior of Re(p) of the field of these modes, which

is inherent in the periodic case, are visible. The frequencies of the interface modes are

in good agreement with the predictions of the dispersion relation.

We evaluated numerically the reflection coefficients of the single positive (Rp) and

negative (Rn) hyperuniform materials at their right and left ends, in order to account

for both types of connections, considering a single unit supercell. Due to the fact that

we are in the band gap region, that we are considering a 1D system, and that at this

particular frequency the reflection coefficient is maximal, the recovered impedance is

that of the semi-infinite medium. The scattering coefficients are obtained from the

pressure evaluated at two points upstream and downstream the material[26]. The

real and imaginary parts of RpRn are shown in Fig. 7(c) in solid and dotted lines

respectively. The frequencies, where the Eq. (13) is satisfied, perfectly match those of



Localized interface modes in one-dimensional hyperuniform acoustic materials 13

0

0.5

1

1.5

2

2.5

3

3.5

4

F
re

q
u
en

cy
 (

k
H

z)

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

0 1 2 3

(a) (b)

Lk |p | / | |p
0

0 10.5

2.7 2.75 2.8 2.85 2.95 3 3.05 3.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2.9

R
p
R

n

Frequency (kHz)

3.15

(с)

Figure 7. (a) dispersion diagram of connected positive and negative hyperuniform

waveguides, (b) normalized pressure amplitude at the connection between the positive

and negative waveguides measured with respect to the amplitude inside the empty tube

p0. The red line corresponds to the strong connection and the blue line corresponds

to the weak one, the circles represent the experimental results, (c) Re(RpRn) (solid

lines) and Im(RpRn) (dotted lines) for strong (red) and weak(blue) connection. Black

dotted lines correspond to the expected frequencies from the dispersion diagram.

the localized modes in the dispersion diagram (vertical black dotted lines). Thus, the

red and blue regions in Fig. 6(e) correspond to the reminiscences of different topological

phases inherent to periodic structures.
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6. Conclussion

In this work we have implemented a previously developed approach [25] to engineer a 1D

hyperuniform material, which possesses extremely broad band transmission suppression.

The system was analyzed numerically and experimentally and consists in a waveguide

with rigid diaphragms embedded in. Interchanging the locations of the diaphragms

and the empty spaces, we reach a transition point, which resembles the topological

phase transition occurring in the periodic systems. Despite the system is disordered,

connecting two waveguides yielding on opposite sides from this point leads to an

emergence of localized interface modes. Their profiles are similar to those of the periodic

waveguides. Thus, we observe the reminiscences of non-trivial topological behavior of

periodic structures in the disordered system.
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waveguide.

Appendix A. Diaphragms positions in a hyperuniform waveguide

Positions of the left edges of the diaphragms in the positive hyperuniform configuration

are as follows: [0 0.020 0.077 0.147 0.178 0.225 0.286 0.343 0.369 0.440 0.477 0.540 0.574

0.644 0.673 0.734 0.793 0.820 0.892 0.922] (m).

Appendix B. Low-frequency Fabry-Perot resonances

We have performed a calculation of the transmission coefficient T of the lossless positive

hyperuniform material, which is shown in the Fig. B1 together with the dispersion

diagram. The low-frequency peaks are equidistant and every following peak provides

a pressure profile with an additional node as compared to the previous one (the right

panel of the figure). These are the properties of the Fabry-Perot resonances. In addition,

from the dispersion diagram one can calculate the velocity of approximately 260.7 m/s.

Inserting this value into the condition of the Fabry-Perot resonances Lk = nπ one

obtains a resonance frequency difference of approximately 130.35 Hz, which equals to

the distance between the low-frequency peaks. As the speed of sound reduces with

the increase of frequency due to the dispersion, the higher-frequency peaks are farther

apart. The modes corresponding to the peaks (f) and (h) are attenuated because of

their location inside a band gap. The higher-order modes (i) and (j) are localized inside

the waveguide and have a rather small velocity corresponding to the localized modes.
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