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Abstract. As building blocks of acoustic metamaterials, resonant scatterers have

demonstrated their ability to modulate the effective fluid parameters, which

subsequently possess extreme properties such as negative bulk modulus or negative

mass density. Promising applications have been shown such as extraordinary

absorption, focusing, and abnormal refraction for instance. However, acoustic waves

can be further controled in Willis materials by harnessing the coupling parameters.

In this work, we derive the closed forms of the effective parameters from the transfer

matrix in three asymmetric and reciprocal one-dimensional resonant configurations

and exhibit the differences in terms of coupling coefficients. The way in which Willis

coupling occurs in spatially asymmetric unit cells is highlighted. In addition, the

analysis shows the absence of odd Willis coupling for reciprocal configurations. These

effective parameters are validated against experimental and numerical results in the

three configurations. This article paves the way of a novel physical understanding and

engineering use of Willis acoustic materials.

1. Introduction

Since the seminal work of Willis in the 80’s [1], the eponymous materials have received

an increasing attention, because of their analogy with bi-isotropic electromagnetic

metamaterials [2]. The Willis coupling parameters couple the potential and kinetic

energy in the acoustic conservation relations, therefore enhancing the ability to control

waves in metamaterials compared to other materials that do not exhibit such coupling.

These parameters have thus been employed to design PT symmetric [3], wave front

shaping [4, 5], or non-reciprocal [6] systems. Willis coupling arises from chiral
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inhomogeneities [7], asymmetric inhomogeneities, nonlocal effects, and nonreciprocal

biases [8]. Although most of the works to date have focused on the experimental evidence

[4, 9, 10], physical origins [11], calculation [12, 13, 14], and enhancement [15] of Willis

coupling, only a few have focused on deriving a closed form of these parameters. The

present article aims at filling this gap and therefore at easing its physical understanding

and engineering use. Effectively, it turns out that various systems rely on asymmetric

meta-atoms for perfect absorption in transmission problem [16], non-Hermicity of the

acoustic waves [17], PT symmetry [18], or more generally most of the double negative

one-dimensional devices [19, 20, 11].

We focus on three resonant, asymmetric, and reciprocal one-dimensional unit cells

and derive closed forms of the corresponding Willis coupling parameters, exhibiting

different forms depending on the nature of the asymmetry. By analyzing these Willis

parameters, we show that Willis coupling in resonant systems arises from first order

Taylor expansion originating differently from multilayer systems [21, 13, 22] and exhibit

the dipolar feature of the coupling via arm terms. In addition, the reciprocity condition

directly provides even coupling and vanishing odd coupling [11], thus inducing doubt

on the existence of odd coupling in one-dimensional reciprocal acoustic systems. While

even Willis coupling parameters appear with opposite sign in the propagation matrix,

odd Willis coupling appear with identical sign in the propagation matrix for reciprocal

structures.

The article is organized as follows. The general procedure for the derivation of the

effective parameters is detailed in Section 2. It relies on the Padé’s approximation of

the total transfer matrix, which links the state vectors at both sides of a unit cell. The

procedure is applied in Section 3 to three different resonant asymmetric and reciprocal

one-dimensional unit cells. While the first two unit cells are composed of detuned

resonators either in parallel or in series of a duct, the third one combines resonators in

parallel and in series in the duct, see Fig. 1. Two of these unit cells have already been

studied as Willis materials [11, 9], but the closed forms of the coupling parameters have

not been provided. The derived forms clearly unveil dipolar feature of Willis coupling,

as well as the differences between resonant and non-resonant asymmetries and nature of

the resonant asymmetry. The effective parameters are validated against experimental

and numerical (derived from [13]) results for each unit cell in Section 4. The order

of Taylor expansion required to correctly model an asymmetric resonant unit cell is

questionned. Finally, concluding remarks and perspectives are provided. Additional

information are also given in appendices.

2. Derivation of the Willis coupling parameters

We consider a one-dimensional asymmetric and reciprocal material composed of the

periodic repetition of a unit cell of length d. The pressure and particle velocity

(alternatively the flow in a duct) form a state vector WT =< p,V >, where T is

the transpose operator. This state vector satisfies the following matrix equation which
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directly arises from the mass conservation and constitutive law:

d

dx
W = AW. (1)

Assuming an implicit time dependence e−iωt, the matrix A reads as

A = iω

[
χ ρ

1/K −χ

]
, (2)

for Willis type materials, where ρ, K and χ are respectively the density, bulk modulus

and Willis coupling parameter. Please note that a usual isotropic and symmetric

effective fluid implies χ = 0. The state vectors at both sides of the unit cell, W(d)

and W(0), are thus linked by

W(d) = exp (Ad) W(0) = TW(0), (3)

where the term exp (Ad) is the matrix exponential of Ad also known as the transfer

matrix T. Among the different ways of evaluating the matrix exponential [23] is

the Padé’s approximation. The transfer matrix T is thus approximated in the long

wavelength regime, i.e., when the wavelength λ is much larger than the period d, by

T = exp (Ad) ∼ (I−Ad/2)−1 (I + Ad/2) , (4)

where I is the identity matrix. Assuming the transfer matrix T between the state vectors

at both sides of the unit cell being known, Eq. (4) can be inverted and the expression

of the constitutive matrix A becomes

A ∼ d/2 (T + I)−1 (T− I) . (5)

The Padé’s approximation is of particular interest compared to other approximations

such as the Taylor’s expansion (see Appendix A), because it allows us to account for

the reciprocity of the material [24]. This material property imposes det (T) = 1, i.e.,

t11t22 − t12t21 = 1, where tij are the elements of the matrix T. Accounting for the

reciprocity, Eq. (5) can be rewritten in the form

A ∼ 2

d (2 + t11 + t22)

[
t11 − t22 2t12

2t21 t22 − t11

]
, (6)

from which we immediately see that the diagonal terms are of opposite signs and we

can identify

χ =
−2i (t11 − t22)

ωd (2 + t11 + t22)
, ρ =

−4it12

ωd (2 + t11 + t22)
,

and
1

K
=

−4it21

ωd (2 + t11 + t22)
,

(7)

by comparison with Eq. (2). Density, bulk modulus and Willis coupling parameter can

then be directly calculated via the elements of the transfer matrix that links the state

vectors at both sides of the unit cell. Please note that the odd Willis coupling introduced

in Ref. [11] is completely canceled from Eq. (6) only because of the reciprocal condition

and that only even coupling remains. The effective parameters that are derived following

this procedure are indicated by a subscript e in the following.
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3. Explicit effective parameters of Willis materials composed of resonant

elements

The total transfer matrix T is evaluated thanks to the knowledge of different elementary

transfer matrices that are presented in Appendix B. A circular duct of radius r and

length d much smaller than the wavelength is considered. Only plane waves propagate

in this duct, i.e., the frequencies are lower than that of the first cut-off of the duct and

possible evanescent coupling between the unit cell elements is neglected. The reduced

density and bulk modulus (or alternatively the wavenumber and reduced impedance) in

the duct are ρ̄ and K̄ (or alternatively k̄ = k and Z̄). Three asymmetric and reciprocal

unit cells are considered and are represented in Fig. 1: i) when the duct is loaded

by two detuned Helmholtz resonators (HR) located at different positions (Fig. 1(a))

of impedances Z̄
(j)
HR, j = 1, 2, ii) when two detuned plates are clamped in the duct

(Fig. 1(b)) of impedances Z̄
(j)
p , j = 1, 2, and iii) when the duct is loaded by a HR and a

plate is clamped in it at a different position (Fig. 1(c)). Each resonant element possesses

its own local dynamics which is assumed different from that of the duct, i.e., co-dynamic

regime is assumed [25]. This is an important difference with respect to a laminated two-

material unit cell for example, for which it is clear that a second order Taylor expansion

of the total matrix elements in Eq. (7) is required to exhibit Willis coupling terms as

demonstrated in Appendix C. The order of the resonant element impedances becomes

unclear notably around the resonance as explained in Appendix B. Nevertheless, 1/Z̄HR
(Lorentzian function) and Z̄p (inverse of a Lorentzian function) are assumed to vary like

O ((kd)2) to ensure reciprocity of the configuration in the considered frequency range,

see for example the discussion of Appendix D in the presence of a single HR. Note that

this relies more on a frequency analysis rather than on a purely kd analysis.

3.1. Unit cell composed of a duct loaded by two detuned Helmholtz resonators

We first consider a unit cell of length d composed of a straight circular duct loaded

by two detuned HR of respective reduced impedances Z̄
(1)
HR and Z̄

(2)
HR, assumed to be

point-like resonators, and located at l(1) and l(1) + l(2) such that d = l(1) + l(2) + l(3),

as represented Fig. 1(a). Both inverse impedances 1

Z̄
(1)
HR

and 1

Z̄
(2)
HR

are assumed to be

O ((kd)2) terms. This configuration is formally that considered in Ref. [3], where the

loading quarter-wavelength resonators are replaced by HR. The total transfer matrix

reads as

W (d) = TW (0) = Tl(3)THR(2)Tl(2)THR(1)Tl(1)W (0) , (8)

where the transfer matrices accounting for the propagation along each length and for

the loading HR are given in Eqs. (B.1) and (B.2). Assuming kd << λ, in such a way

that kl(1) = ζ(1)kd, kl(2) = ζ(2)kd, and kl(3) = ζ(3)kd, with ζ(j) = l(j)/d, j = 1, 2, 3, are
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(a) (c)(b)(a)

Figure 1. (Color online) Pictures of the three studied Willis unit cells: (a) a straight

duct loaded by two detuned HR located at different positions, (b) a straight duct with

two detuned plates clampled in it, and (c) a straight duct loaded by a HR and with a

plate clamped in it at a different position. A sketch of the configuration is provided

below each picture.

also much smaller than the wavelength, and making use of Eq. (7) leads to

χe =
ρ̄

2d

(
l(3) + l(2) − l(1)

Z
(1)
HR

+
l(3) − l(1) − l(2)

Z
(2)
HR

)
+O

(
(kd)3

)
,

ρe = ρ̄+O
(
(kd)3

)
,

1

Ke

=
1

K̄
+

1

d

(
− i

ωZ̄
(1)
HR

− i

ωZ̄
(2)
HR

)
+O

(
(kd)3

)
.

(9)

To get a grip on these equations, we compare them to those in the presence of a single

HR presented in Appendix D. The Willis coupling term appears as the sum of the two

Willis coupling terms arising from each HR. Each of them clearly exhibits a momentum

introduced by the resonator as testified by the moment arm term l(3) + l(2) − l(1) for

the first HR and the moment arm term l(3) − l(1) − l(2) for the second HR. The Willis

coupling parameter vanishes when the symmetry is introduced, for example, when the

two HR are identical and when l(3) = l(1). It appears in the form of an effective density

divided by the impedance of the HR. The density term, second line of Eq.(9), is not

the subject of any specific remark and simply reads as the effective density in the duct.

The bulk modulus is the sum of the contribution of the effective properties of the duct

in the absence of the loading resonators, i.e., 1/K̄, and of each HR, i.e., −i/dωZ̄
(j)
HR,

j = 1, 2. The presence of the HR causes the effective bulk modulus to become negative

for frequencies around their resonances [26, 27]. All in all, the effective parameters

appear as the sum of those of each elements, i.e., those of each segments and those of

the HR, without any particular coupling. When a subperiodicity can be introduced,
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i.e., when the two HR are identical and when l2 = d/2, the effective parameters reduce

to those of a unit cell of length d/2 consisting in a single, possibly uncentered, HR with

Willis parameter exhibting a moment arm term equal to l(3) − l(1).

3.2. Unit cell composed of a duct with detuned clamped plates

We now consider a unit cell of length d, as depicted in Fig. 1(b), composed of a straight

circular duct in which two detuned plates, assumed to be point-like resonators, of

respective reduced impedances Z̄
(1)
p and Z̄

(2)
p are clamped at l(1) and l(1) + l(2) such that

d = l(1) + l(2) + l(3). The clamped plates (CP) simply replace the HR when compared to

the previous configuration, but this time the impedances are in series instead of being

in parallel. This configuration is formally that considered in Ref. [9]. The total transfer

matrix reads as

W (d) = TW (0) = Tl(3)Tp(2)Tl(2)Tp(1)Tl(1)W (0) , (10)

where the transfer matrices accounting for the propagation along each length and for the

CP are given in Eqs. (B.1) and (B.4). Proceeding similarly as in the previous section,

Eq. (7) together with the second order Taylor expansion of the total transfer matrix

elements provides

χe =
1

2dK̄

(
Zp(1)

(
l(1) − l(2) − l(3)

)
+

Zp(2)
(
l(1) + l(2) − l(3)

))
+O

(
(kd)3

)
,

ρe = ρ̄+
1

d

(
−

iZp(1)

ω
−

iZp(2)

ω

)
+O

(
(kd)3

)
,

1

Ke

=
1

K̄
+O

(
(kd)3

)
.

(11)

The Willis coupling term appears as the sum of the Willis terms associated with each

plate (see Appendix D). The momentum seems opposite to that imposed by the HR

with an arm term l(1) − l(2) − l(3) for the first CP and an arm term l(1) + l(2) − l(3) for

the second CP. It appears in the form of an effective compressibility multiplied by the

impedance of the plate. Again, this term vanishes when the symmetry is introduced as

for example, when the two CP are identical and l(3) = l(1). The density is the sum of

the contribution of the effective density of the duct in the absence of the CP, i.e., ρ̄,

and of each CP, i.e., −iZp(j)/dω, j = 1, 2. The presence of the clamped plates causes

the density to be negative for frequencies lower than their resonances [28]. Finally, the

effective bulk modulus is that in the absence of the clamped plate and is thus not the

subject of any specific remark. The effective parameters again appear as the sum of

those of each elements, i.e., those of each segments and those of the CP, without any

particular coupling. When a plane of symmetry can be introduced, i.e., when the two

CP are identical and when l2 = d/2, the effective parameters reduce to those of a unit

cell of length d/2 consisting in a single, possibly uncentered, CP with Willis parameter

exhibting a moment arm term equal to l(1) − l(3).
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3.3. Unit cell composed of a duct with a clamped plate and loaded by a detuned

Helmholtz resonator

We finally consider a unit cell of length d composed of a straight circular duct in which a

plate, assumed to be a point-like resonator, of reduced impedance Z̄p is clamped at l(1).

The duct is in addition loaded by a HR, also assumed to be a point-like resonator, of

reduced impedance Z̄HR and located at l(1) + l(2) such that d = l(1) + l(2) + l(3). A picture

of the configuration is shown in Fig. 1(c). In other words, the first HR is replaced by a

CP compared to the configuration studied in Section 3.1 or the second CP is replaced by

a HR compared to the configuration studied in Section 3.2. Beyond the expected double

negative effective property [29], this asymmetric configuration combines impedances in

series and in parallel and is similar to that studied in Ref. [11]. The total transfer

matrix reads as

W (d) = TW (0) = Tl(3)THRTl(2)TpTl(1)W (0) , (12)

where the transfer matrices accounting for the propagation along each length, for the

CP, and for the HR are given in Eqs. (B.1), (B.4), and (B.2) respectively. Again, Eq. (7)

together with the second order Taylor expansion of the total transfer matrix elements

provides

χe =
1

2d

(
ρ̄

ZHR

(
l(3) − l(1) − l(2)

)
+

Zp
K̄

(
l(1) − l(2) − l(3)

)
+

iZp
ωZHR

)
+O

(
(kd)3

)
,

ρe = ρ̄− iZp
dω

+O
(
(kd)3

)
,

1

Ke

=
1

K̄
− i

dωZHR
+O

(
(kd)3

)
.

(13)

Contrary to the configurations studied in both previous sections, the Willis coupling

term is not only the sum of the Willis terms associated with the presence of the CP and

of the HR (see Appendix D), but also exhibits a coupling between the CP and the HR

thanks to the term iZp/2dωZHR. Note that the moment arms are introduced by the first

two terms, that related to the presence of the CP and that related to the presence HR,

while the coupling term does not present moment arm term. In addition, the Willis

coupling parameter never seems to vanish, because the configuration is structurally

asymmetric. The density is the sum of the contribution of the effective density of the

duct in the absence of the CP and of the HR, and of the CP, i.e., −iZp/dω. In a similar

way, the bulk modulus is the sum of the contribution of the effective bulk modulus of

the duct in the absence of the CP and of the HR, and of the HR, i.e., −i/dωZHR. Note

that obviously no symmetry plane can be introduced for this configuration.

4. Experimental validation of the effective parameters and discussion

All experiments are conducted in a duct of radius r = 2.5 cm, see Figs. 1(a-c). The

experimental set-up consists of a 4 microphone measurement system with a pair of
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microphones upstream and a second pair of microphones downstream of the sample.

The microphones that compose each pair are separated by a distance of 2.5 cm. A

stept signal from 100 Hz to 1000 Hz with a step of 1 Hz is delivered by a loudspeaker

at one end of the duct and an anechoic termination is mounted at the opposite end.

Temperature, humidity and athmospheric pressure are recorded for each experiment.

The transfer function between the loudspeaker and each microphone is recorded by a NI

USB-4431 acquisition card driven by the INTAC software. Each sample is measured in

both direct and reverse orientations in order to form an overdetermined system based

on the scattering matrix [30, 3] as explained in Appendix E to solve for T , R+, and

R−, i.e., the transmission, the direct orientation reflection, and the reverse orientation

reflection coefficients. These coefficients are also calculated by the Transfer Matrix

Method (TMM) using the total transfer matrix relying on the elementary matrices

and the Pade’s approximation of transfer matrix relying on the evaluated effective

parameters (I−Aed/2)−1 (I + Aed/2), Eq. (4),

R+ =
t11 − t12/Z̄ + Z̄t21 − t22

t11 − t12/Z̄ − Z̄t21 + t22

, R− =
−t11 − t12/Z̄ + Z̄t21 + t22

t11 − t12/Z̄ − Z̄t21 + t22

,

T =
2

t11 − t12/Z̄ − Z̄t21 + t22

,
(14)

where Z̄ is the reduced impedance of the surrounding medium. From the measured direct

and inverse orientation reflection and transmission coefficients, the effective parameters

are reconstructed following the procedure described in Appendix F. The effective

properties can also be directly evaluated from the total transfer matrix as explained

in Appendix G, which appears as a numerical version of the procedure described in Ref.

[13].

Figures 2(a-e-i) depict respectively the absolute values of the two reflection and

transmission coefficients, calculated by the TMM with the total transfer matrix and

by the Pade’s approximation using the effective properties derived in Section 3 for the

three configurations considered in the present article. A single unit cell is measured

for each configuration. This measurement is entirely sufficient, because one-dimensional

structures are assumed. The first configuration (see Fig. 1(a)) consists in two detuned

HR, the dimensions of the cavities and necks of which are l
(1)
c = 8 cm, l

(2)
c = 4.2 cm

and r
(1)
c = r

(2)
c = 2.15 cm, and l

(1)
n = l

(2)
n = 2 cm and r

(2)
n = r

(1)
n = 3 mm, separated by

a distance l(2) = 5 cm. The resonant frequencies of both HR are thus f
(1)
HR ≈ 165 Hz

and f
(2)
HR ≈ 230 Hz. The two remaining dimensions l(1) and l(3) are chosen identical,

i.e., l(1) = l(3) = 1 cm, such that d = 7 cm. The second configuration (see Fig.

1(b)) consists in two CP separated by a distance l(2) = 5 cm +
(
h

(1)
p + h

(2)
p

)
/2. The

first CP is a plastic shim plate of thickness h
(1)
p = 254 µm and material properties

ρ
(1)
p = 1400 kg.m−3, ν

(1)
p = 0.41, and E

(1)
p = 4.6 (1− 0.03i) GPa already used in Ref.

[31]. The second CP is a poroelastic plate of thickness h
(2)
p = 3.1 mm and material

properties ρ
(2)
p = 40+380i/

√
ω kg.m−1, ν

(2)
p = 0.1, and E

(2)
p = 470−0.007iω kPa already

used in Ref. [32]. The resonant frequencies of both CP are thus f
(1)
p ≈ 380 Hz and
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Figure 2. (Color online) (a-e-i) |R+| (blue curve), |R−| (magenta curve), and |T |
(red curve) as calculated with TMM with the total transfer matrix (dashed line), with

the effective parameters (solid line), and as measured experimentally (markers), for a

unit cell that is composed of a straight duct loaded by two detuned HR - with two

detuned plates clamped in it - with a plate clamped in it and loaded by a detuned

HR. Subfigures (b-f-j), (c-g-k) and (d-h-l) depict respectively the real (blue curve)

and imaginary (red curve) of the corresponding Willis coupling parameter, normalized

density, and normalized bulk modulus. Subfigures (m-n) depict both the real and

imaginary parts of the normalized dispersion relation for a unit cell composed of a

straight duct with a plate clamped in it and loaded by a detuned HR. The grey regions

highlight the frequency band where the real parts of both the effective density and

bulk modulus are negative.

f
(2)
p ≈ 255 Hz and the two remaining dimensions l(1) and l(3) are chosen almost identical,

i.e., l(1) = 5 mm+h
(1)
p /2 and l(3) = 5 mm+h

(2)
p /2, such that d = 6 cm+h

(1)
p +h

(2)
p . The

last configuration (see Fig. 1(c)) is composed of the poroelastic plate and a loading HR,

the cavity and neck dimensions of which are lc = 5 cm and rc = 2.15 cm, and ln = 2 cm

and rn = 2 mm, separated by a distance l(2) = 5 cm+hp/2. The resonance frequency of

the CP is still fp = 255 Hz and that of the HR is fHR = 140 Hz and the two remaining

dimensions l(1) and l(3) are again chosen almost identical, i.e., l(1) = 1 cm + hp/2 and
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l(3) = 1 cm, such that d = 7 cm+hp. The lengths of the unit cells are thus much smaller

than the wavelengths over the frequency range considered in each configuration. The

necks were manufactured by Fused Deposition Modeling to fit in an initial radius of 1 cm.

The necks also present some rugosity inherent to this rapid manufacturing technique,

which can influence the viscothermal losses in these resonator narrow elements [33].

The configurations were designed to present a reflection coefficient that vanishes at a

specific frequency while the reflection coefficient of the reverse sample is different from

zero at this frequency. The calculated coefficients are found in very good agrement

with the experiments, which therefore valid the derived effective properties and prove

the asymmetry of the acoustic response of each configuration. Some discrepancies are

visible, notably for the third configuration at very low frequencies. These discrepancies

are attributed to measurement complexity at low frequencies and to possible evanescent

coupling between the resonant elements that is not accounted for in our modeling. At

high frequency, the calculated transmission coefficient based on the effective parameters

starts to deviate from its value for the second configuration because the scale separation

is not ensured anymore and the Pade’s approximation is not valid anymore, see Fig. 2(e).

In addition, slight shifts between the coefficients calculated with the total transfer matrix

and with the effective parameters can also be notice at low frequencies and around the

resonances, see Fig. 2(e) and (j). These discrepencies are attributed to the assumption

we made on the dependency of the resonant element impedances, that are supposed to

vary like kd. Around the resonances, this assumption is not fully valid and the effective

properties would require additional terms to be Taylor expanded to the second order.

The normalized effective properties, i.e., χeS, ρ̄e/ρ̄, and KeS/γP0, are respectively

depicted in Figs. 2(b-f-j), (c-g-k), and (d-h-l) for each configuration. The numerical

and experimental effective properties match those evaluated in Section 3. Generally

speaking, the real parts of the effective densities (CP) and bulk moduli (HR) are negative

in stop bands and follow regular trends [26, 27, 28, 29]. Some discrepancies are visible

for the third configuration again due to the fact that the phenomenon are encountered

at very low frequencies, but also to the assumption made on the order of the resonant

element impedances. The amplitude of the Willis parameter is usually much smaller

than the other ones, partially due to the fact that this parameter is only normalized by

the cross-sectional area of the main duct S, in the absence of a normalization value for

this parameter. Note that χeS vanishes away from the resonances in case of detuned

HR, while it tends to infinity at low frequency when a plate is involved, see Figs. 2(f,j).

A similar remark is made concerning the effective density ρ̄e/ρ̄. This is due to the

presence of the term Z̄p in both χe and ρe, Eqs. (11) and (13), which varies like 1/ω at

low frequencies. This also blurs the required order of Taylor expansion to derive these

effective parameters even away from the resonances in case of unit cells involving plates

as it can be seen in Figs. 2(e) and 2(i). This divergence is nevertheless physical, because

a plate should be a rigid wall at low frequency. Note that to reach the request accuracy

too near to resonance, non-local effective medium are probably requested, which are

outside the scope of the current paper. The dispersion relation is also plotted for the
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configuration comprising a straight duct with a CP and loaded by a detuned HR in

Figs. 2(m-n). The grey areas highlight the frequency range where the real parts of both

the effective density and bulk modulus are negative. The viscothermal losses and Willis

coupling induce a slight shift in the negative index part. The dispersion relation for the

other two configurations (not shown here) are found in good agreement.

5. Conclusion

We derive closed forms of the effective properties of Willis materials thanks to a Pade’s

approximation of the total transfer matrix linking the state vectors at both sides of

an asymmetric and reciprocal one-dimensional unit cell. We primarily show that the

reciprocal condition leads to the unique existence of the even Willis coupling. Similarly

to the case of laminated structures, which are usually in nonresonant acoustic structures,

second order Taylor expansion of the transfer matrix elements is sufficient to exhibit

Willis coupling parameters. Nevertheless, this result relies on a strong assumption on the

resonant element behavior and its veracity is questionned around the resonance. Higher

order Taylor expansion of the full transfer matrix terms involving the resonant elements

may therefore be more suitable. The dipolar feature of the Willis coupling is clearly

evidenced, because the coupling parameter presents moment arm terms. This also links

Willis material to higher order strain gradient theories [34]. We also evidenced different

types of coupling terms due to the asymmetry, either absent when the unit cell consists

in detuned identical type resonators or due to a physical asymmetry when the unit

cell involves different types of resonators. Beyond the derivation of these closed-forms,

we also show that various asymmetric structures can be modeled as Willis materials.

Each effective parameter (effective density, effective bulk modulus, and effective Willis

coupling parameter) is validated against experimental and numerical results, showing

the robustness of the derivation method. This work paves the way for the engineering use

of Willis materials, from perfect absorption devices in transmission problems, to double

negative structures, but also to metaporous materials and liquid foams [35, 36, 37].
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Appendix A. Padé’s approximation versus Taylor’s expansion

In the long-wavelength regime, the first order Taylor’s expansion of the transfer matrix

reads as

T = exp (Ad) ∼ I + Ad, (A.1)

which can be inverted to provide

A ∼ 1

d
(T− I)

∼ 1

d

[
t11 − 1 t12

t21 t22 − 1

]
.

(A.2)

This expression does not ensure the reciprocity of the material and the diagonal terms

are not opposite each other. Taylor’s expansion, at least of first order, is not a sufficiently

robust tool to derive effective parameters, when compared to Padé’s approximation.

Appendix B. Elementary transfer matrices

This section details the different elementary transfer matrices that are used to evaluate

the total transfer matrix T.

Appendix B.1. Propagation in a duct of length l

The elementary matrix Tl that connects the state vectors at two locations separated

from a length l in a straight duct of section S reads as

W(l) = TlW(0) = exp (Al) W(0) =

 cos (kl) iZ̄ sin (kl)
i sin (kl)

Z̄
cos (kl)

W(0),(B.1)

where k = ω/c = ω/
√
K̄/ρ̄ is the wavenumber, K̄ = K/S, ρ̄ = ρ/S and Z̄ =

√
K̄ρ̄ are

respectively the reduced bulk modulus, density and impedance.

Appendix B.2. Impedance in parallel

A flow split at a position s associated with the continuity of pressure is modeled by an

impedance ZHR in parallel leading to an elementary matrix THR

W(s) = THRW(s) =

[
1 0

1/Z̄HR 1

]
W(s). (B.2)

In particular, the impedance of a side branch HR to a duct of radius r, assumed to be

a point-like resonator, is [38]

Z̄HR =
−iZ̄n

(
1− kn Z̄n

Z̄c
δ tan (kclc)− Z̄n

Z̄c
tan (knln) tan (kclc)

)
tan (knln)− kn Z̄n

Z̄c
δ tan (knln) tan (kclc) + Z̄n

Z̄c
tan (kclc)

, (B.3)
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where kn and Z̄n are respectively the wavenumber and reduced impedance of the neck,

kc and Z̄c are respectively the wavenumber and reduced impedance of the cavity, and

δ = 0.82(1−1.35rn/rc+0.31(rn/rc)
3)rn+0.82(1−0.235rn/r−1.32(rn/r)

2+1.54(rn/r)
3−

0.86(rn/r)
4)rn is the correction length, with rn and rc the radius of the neck and of the

cavity respectively.

In the absence of losses and correction length, the latter impedance reduces to

Z̄HR = −iZ (1− k2lnSclc/Sn) /k (Snln + Sclc) at low frequencies, from which it follows

that 1/Z̄HR varies like ω when ω → 0, but like a Lorentzian around the resonance

frequency.

Appendix B.3. Impedance in series

A pressure drop at a position s associated with the continuity of the normal velocity

(or flow) is modeled by an impedance Zp in series leading to an elementary matrix Tp

W(s) = TpW(s) =

[
1 Z̄p
0 1

]
W(s). (B.4)

In particular, the impedance of a hp-thick plate clamped in a circular duct of radius r

and section S, assumed to be a point-like resonator, is [39]

Z̄p =
−iωρphp

S

I1 (kpr) J0 (kpr)− I0 (kpr) J1 (kpr)

I1 (kpr) J2 (kpr) + I2 (kpr) J1 (kpr)
, (B.5)

where In and Jn are respectively the modified and regular Bessel functions of first kind

and order n, and ρp and kp are respectively the density and wavenumber of the plate.

The wavenumber is k4
p = ω2ρphp/Dp, where Dp = Eph

3
p/12

(
1− ν2

p

)
is the bending

stiffness, with Ep and νp the Young’s modulus and Poisson’s ratio of the plate material

respectively. Note that poroelastic and viscoelastic plates can be modeled with a

complex and frequency dependent Young’s modulus and/or density.

The plate impedance reduces to Z̄p = −iω192ρphp
(
1/ (kpr)

4 − 5/384
)
/S at low

frequencies, from which it follows that Z̄p varies like 1/ω when ω → 0 because a plate

tends to a rigid wall (Z̄p →∞) at low frequency, like the inverse of a Lorentzian around

the resonance frequency, and like ω otherwise.

Appendix B.4. Viscothermal losses

Circular ducts are considered all along this article. The boundaries give rise to

viscothermal losses from viscous and thermal skin depths. Assuming that only plane

waves propagate in a cicular duct of radius r, the effective complex and frequency
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dependent density and bulk modulus read as [40]

ρ = ρ0

1− 2

r
√

iωρ0/η

J1

(
r
√

iωρ0/η
)

J0

(
r
√

iωρ0/η
)
−1

,

K = γP0

1 +
2 (γ − 1)

r
√

iPrωρ0/η

J1

(
r
√

iPrωρ0/η
)

J0

(
r
√

iPrωρ0/η
)
−1

,

(B.6)

where ρ0, γ, η, and Pr are respectively the density, specific heat ratio, dynamic density

and Prandtl number of the saturating fluid, and P0 the atmospheric pressure. The

reduced density and bulk modulus can then be straightforwardly evaluated by ρ̄ = ρ/S

and K̄ = K/S, with S = πr2.

Appendix C. Derivation of the Willis parameters in the case of a laminated

two-material unit cell

We assume a unit cell of length d composed of a material M (1) of density ρ(1) and bulk

modulus K(1) and of length l(1) and a material M (2) of density ρ(2) and bulk modulus

K(2) and of length l(2) = d − l(1). The state vectors at both sides of the unit cell are

thus related by the total transfer matrix composed of the multiplication of the transfer

matrix modeling the propagation in the material M (1) over the length l(1) and that in

the material M (2) over the length l(2)

W (d) = TW (0) = Tl(2)Tl(1)W (0) , (C.1)

where the expression of Tl(2) and of Tl(1) are given Eq. (B.1). Assuming kd << λ, in

such a way that k(1)l(1) = ζ(1)kd and k(2)l(2) = ζ(2)kd, with ζ(j) = l(j)/d, j = 1, 2, are

also much smaller than the wavelength and making use of Eq. (7) leads to

χe = 0 +O
(
(kd)2

)
, ρe =

1

d

(
l(2)ρ(2) + l(1)ρ(1)

)
+O

(
(kd)2

)
,

and
1

Ke

=
1

d

(
l(2)

K(2)
+

l(1)

K(1)

)
+O

(
(kd)2

)
,

(C.2)

if we only Taylor expand the elements of the transfer matrix to the first order. In the

opposite, it leads to

χe =
iωl(1)l(2)

2d

(
ρ(2)

K(1)
− ρ(1)

K(2)

)
+O

(
(kd)3

)
,

ρe =
1

d

(
l(2)ρ(2) + l(1)ρ(1)

)
+O

(
(kd)3

)
,

1

Ke

=
1

d

(
l(2)

K(2)
+

l(1)

K(1)

)
+O

(
(kd)3

)
,

(C.3)

if we Taylor expand the elements of the transfer matrix to the second order. Of particular

interest is the fact that the eigenvalues of Ae, i.e., the wavevectors, are identical for both

orders of expansion (assuming respectively first and second order expansion) and equal

to ke = ± iω√
Ke/ρe

, while the eigenvectors exhibit Z±
e = Ke(ke ± χe) at the second order
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against Z±
e = Keke at the first order. In the lossless case, the Willis coupling parameter

is purely imaginary.

Appendix D. Derivation of the Willis parameters in case of a unit cell

presenting a single resonator

This section is motivated by nonlocal aspects of the Willis coupling and the fact that

structures are often bounded in practice. Moreover, it helps in a better understanding

of coupling terms that arise in case of more complex asymmetric unit cells.

Appendix D.1. Derivation of the Willis parameters in case of a unit cell presenting a

single Helmholtz resonator

We consider a unit cell composed of a straight duct of length d and radius r loaded by

a HR of reduced impedance Z̄HR and located at l(1) such that d = l(1) + l(2). The total

transfer matrix reads as

W (d) = TW (0) = Tl(2)THRTl(1)W (0) , (D.1)

where the transfer matrix accounting for the propagation along each length and the

HR are provided in Eqs. (B.1) and (B.2). Assuming kd << λ, in such a way that

kl(1) = ζ(1)kd and kl(2) = ζ(2)kd, with ζ(j) = l(j)/d, j = 1, 2, are also much smaller than

the wavelength, but also that 1/Z̄HR is a O ((kd)2) term (because it varies like ω at low

frequencies), and making use of Eq. (7) leads to

χe =
1

2d

(
ρ̄(2)l(2) − ρ̄(1)l(1)

ZHR
+ iωl(2)l(1)

(
ρ̄(2)

K̄(1)
− ρ̄(1)

K̄(2)

))
+O

(
(kd)3

)
=

ρ̄

2d

l(2) − l(1)

ZHR
+O

(
(kd)3

)
,

ρe =
1

d

(
ρ̄(1)l(1) + ρ̄(2)l(2)

)
+O

(
(kd)3

)
,

= ρ̄+O
(
(kd)3

)
,

1

Ke

=
1

d

(
l(1)

K̄(1)
+

l(2)

K̄(2)
− i

ωZ̄HR

)
+O

(
(kd)3

)
.

=
1

K̄
− i

ωZ̄HRd
+O

(
(kd)3

)
.

(D.2)

At first glance, the effective parameters appear as the sum of those of a laminated two-

material unit cell, Eqs. (C.3) and additional terms related to the presence of the HR.

The main tube is identical along the segments 1 and 2, thus K̄(1) = K̄(2) and ρ̄(1) = ρ̄(2)

making the Willis parameter associated with the two materials to collapse. The effective

bulk modulus and density then read as those proposed in [26, 27]. The presence of the

HR affects the bulk modulus, which can become negative around the HR resonance. The

Willis parameter only accounts the possible phase shift, when a material is bounded by

bounds that do not coincide with the natural unit cell bounds, i.e., when the HR cannot

be centered in the unit cell. Please note that the Willis parameter simply vanishes when

l(1) = l(2) = d/2. Nevertheless, the term l(2) − l(1) translates a momentum within the
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unit cell. While ρe and 1/Ke are also O ((kd)2) terms, χe is a O ((kd)3) term, when

1/Z̄HR is assumed to be a O ((kd)2) term.

To prove that 1/Z̄HR should be a O ((kd)2) term (at least in the low frequency), we

adopt a reductio ad absurdum. Let us assume a centered HR (i.e., the Willis parameter

vanishes) and that 1/Z̄HR is a O (kd) term for example. The Eqs. (D.2) are thus

derived from a first order Taylor expansion of the elements of the total transfer matrix.

Under these assumptions, det (T) ≈ 1− iωρ̄d/Z̄HR +O ((kd)2) 6= 1 does not satisfy the

reciprocity condition. Thus, 1/Z̄HR is assumed to be a O ((kd)2) term. Note that this

relies more on a frequency analysis rather than on a kd analysis. We will therefore use

the power of ω instead of the power of kd to express the order of Taylor expansion in

the following.

Appendix D.2. Derivation of the Willis parameters in the case of a unit cell presenting

a single clamped plate

We consider a unit cell composed of a straight duct of length d and radius r in which

a plate of reduced impedance Z̄p is clamped at l(1) such that d = l(1) + l(2). The total

transfer matrix reads as

W (d) = TW (0) = Tl(2)TpTl(1)W (0) , (D.3)

where the transfer matrix accounting for the propagation along each length and the

CP are provided in Eqs. (B.1) and (B.4). Assuming kd << λ, in such a way that

kl(1) = ζ(1)kd and kl(2) = ζ(2)kd, again with ζ(j) = l(j)/d, j = 1, 2, are also much smaller

than the wavelength, but also that Z̄p is a O ((kd)2) term (because it varies like ω at

low frequencies), and making use of Eq. (7) leads to

χe =
Z̄p
2d

l(1) − l(2)

K̄
+O

(
(kd)3

)
,

ρe = ρ̄− iZ̄p
ωd

+O
(
(kd)3

)
,

1

Ke

=
1

K̄
+O

(
(kd)3

)
.

(D.4)

The effective bulk modulus and density read as those proposed in [28]. The presence

of the CP affects the density, which can become negative around the resonance. The

Willis parameter only accounts the possible phase shift, when a material is bounded by

bounds that do not coincide with the natural unit cell bounds, i.e., when the CP cannot

be centered in the unit cell. Please note that the Willis parameter simply vanishes when

l(1) = l(2) = d/2. Nevertheless, the term l(1)−l(2) translates a momentum within the unit

cell. Note that the fact that the main tube is identical along the 1 and 2 segments has

already been accounted for and that an analysis similar to that performed in Appendix

D.1 can be carried out to prove that Z̄p should be assumed to be a O ((kd)2) term.

Nevertheless, this assumption is even more tedious than that made in the case of the

Helmholtz resonator, because Z̄p physically diverges at very low frequency.
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Appendix E. Measurement of the direct and reverse orientation reflection

and transmission coefficients

Let us label the upstream and downstream 1/4 in Grass microphones 1, 2, 3, and 4 from

the loudspeaker to the anechoic end. The pressure pj is thus recorded at location xj, the

first interface of the structure is located at xs and the structure is of length d. A method

based on the scattering matrix is prefered, because anechoic termination is never fully

anechoic and thus back propagating waves are always present due to reflection at the

end of duct [30]. The ingoing i and outgoing o waves at the interfaces of the samples

(vanishing phase is imposed at these interfaces) can thus be reconstructed to form the

first set of equations{
pou = R+piu + Tpid,

pod = Tpiu +R−pid.
(E.1)

Turning the sample over and repeating the procedure (second set of measurements are

mark with ’), gives another set of equations{
po
′
u = R−pi

′
u + Tpi

′

d ,

po
′

d = Tpi
′
u +R+pi

′

d .
(E.2)

These two sets of equations form an overdetermined system to solve for R+, R−, and T .

Appendix F. Recovery procedure of the effective parameters from the

measured reflection and transmission coefficients

The two state vectors at both sides of the sample are related by

W(d) = exp (Ad) W(0)

= Vdiag
(

eΣ±d
)

V−1W(0),
(F.1)

where diag is the diagonal matrix, Σ± are the eigenvalues of A and V the corresponding

eigenvector matrix. For a Willis material, the constitutive matrix of which is given in

Eq. (2), Σ± = ±iω
√
χ2 + ρ/K = ±iωσ,

V =
1√
2

[
K (χ+ σ) K (χ− σ)

1 1

]
, and

V−1 =
1√
2

[
1/Kσ (σ − χ) /σ

−1/Kσ (σ + χ) /σ

]
.

(F.2)

Introducing R+, R−, and T in the state vectors Eq. (F.1) leads to 2 systems of equations 1 +R+

−1 +R+

Z

 = exp (Ad)

 T
−T
Z

 , and T
T

Z

 = exp (Ad)

 1 +R−

1−R−

Z

 .
(F.3)
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Introducing r± = (Z + Z±) / (Z − Z±), where Z± = K (σ ± χ), the reflection

coefficients at the interface between a semi-infinite background medium (of impedance

Z) and the Willis material in the direct and reverse orientations, these equations can

be inverted to yield

r+ =
− (R−R+ + 1− T 2)±

√
(R−R+ + 1− T 2)2 − 4R−R+

2R+
,

r− =
− (R−R+ + 1− T 2)±

√
(R−R+ + 1− T 2)2 − 4R−R+

2R− ,

e−iωσd =
T

R+r− + 1
=

T

R−r+ + 1
=
R+ + r+

Tr+
=
R− + r−

Tr−
.

(F.4)

The sign of the first two equations are chosen to satisfy the passivity condition and χe,

ρe, and Ke are subsequently evaluated. These equations are slightly different from those

given in [9] and extend the method proposed in [41, 42], which was already used in [43].

Appendix G. Direct numerical calculation of the effective properties from

the total transfer matrix

Once the total transfer matrix T is calculated, it is directly assimilated to exp Anum
e d.

From Eq. (F.1), it is clear that the eigvenvectors of T and Anum
e are identical and that

the exponential of the eigenvalues of Anum
e d are the eigenvalues of T. Following the idea

of [13], we immediately end up with

Anum
e =

1

d
Vdiag

(
log
(
Λ±))V−1, (G.1)

where Λ± are the eigenvalues of T and V the associated eigenvector matrix. The three

quantities χnume , ρnume , and Knum
e are subsequently evaluated.
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