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ABSTRACT

In this work, we show that scattered acoustic vortices generated by metasurfaces with chiral symmetry present broadband
unusual properties in the far-field. These metasurfaces are designed to encode the holographic field of an acoustical vortex,
resulting in structures with spiral geometry. In the near field, phase dislocations with tuned topological charge emerge when
the scattered waves interference destructively along the axis of the spiral metasurface. In the far field, metasurfaces based
on holographic vortices inhibit specular reflections because all scattered waves also interfere destructively in the normal
direction. In addition, the scattering function in the far field is unusually uniform because the reflected waves diverge spherically
from the holographic focal point. In this way, by triggering vorticity, energy can be evenly reflected in all directions except to
the normal. As a consequence, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98
in experiments) and a mean normalized diffusion coefficient of 0.73 (0.76 in experiments) over a 4 octave frequency band.
The singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation of broadband,
diffuse and non-specular scattering. These three exceptional features make spiral metasurfaces extraordinary candidates for
controlling acoustic scattering and generating diffuse sound reflections in several applications and branches of wave physics as
underwater acoustics, biomedical ultrasound, particle manipulation devices or room acoustics.

1 Introduction
The control of the acoustic scattering is at the origin of a wide range of practical applications, from architectural to underwater
acoustics. In the last years, locally-reacting flat-surfaces composed of subwavelength resonators, i.e., metasurfaces, have been
actively developed and offer a wide range of possibilities for manipulating reflected wavefronts1–3. Metasurfaces allow the
simultaneous control of the phase and amplitude of the reflected field4. Negative refracting metasurfaces5, scattering-free5

refractive devices6, non-specular reflecting surfaces7, subwavelength focusing8, beamforming devices9, 10, cloaking11 or
broadband and perfect sound absorbers using subwavelength panels12–15 have been reported.

Nowadays, research on acoustic metasurfaces is very active. However, the use of locally resonant structures to control
sound diffusion in room acoustics dates back to the late 70’s, when arrangements of quarter-wavelength resonators, called
phase-grating diffusers, were introduced by M. Schröeder to generate diffuse reflections16. These acoustic devices have found10

practical applications in room acoustics and are widely used in many broadcast studios, modern auditoria, music recording,
control, and rehearsal rooms17. The scattering pattern of a panel is essentially driven in the far field by the Fourier transform
of its spatially-dependent reflection coefficient. In this way, reflecting screens based on number theory sequences with flat
spatial Fourier transform were proposed to generate diffuse reflections. These sequences can be bipolar, binary18, ternary and
quadriphase19 or quadratic-residue types17. Sequences also exist, whose first component of the spatial Fourier transform is equal15

to zero. These sequences are of interest because the specular reflection vanishes in this situation, as it does in primitive root or
index sequence diffusers17. However, the performance of these traditional non-specular sound diffusers is limited because this
effect only occurs at the design frequency and multiples of it, with exception to critical frequencies. Recently, metamaterials
were proposed to reduce the thickness of Schröeder diffusers by using Helmholtz resonators instead of quarter-wavelength
resonators20 or slow-sound metasurfaces with deep-subwavelength resonators21, 22.20

In this work, we study the scattering properties of spiral metasurfaces based on holographic acoustic vortices and make
use of them to design broadband and non-specular sound diffusing surfaces. Acoustic vortices are wave fields containing
phase singularities23, the rotation phase of which is exp(ilφ), with φ the azimuthal angle and l the topological charge of the
vortex. Vortex beams have found applications in the rotation of objects24–28, the trapping and manipulation of particles29–33 or
in acoustic communication systems for transmitting coded information34. Several approaches have been proposed to generate25



acoustic vortex beams, including active sources35, 36 or passive structures such as helicoidal surfaces35, 37, locally-resonant
metamaterials38–41, acoustic delay lines42, or acoustic holograms43–45. Vortices can also be generated using Archimedean spiral
gratings46–48, or Fresnel spiral gratings to produce sharply focused vortex beams49. However, the acoustic scattering by spiral
structures has not been explored previously.

Vortex beams present a null in the far field because the phase singularity of a vortex beam inhibits the propagation of waves30

along the axial direction. In this way, reflecting surfaces based on vortices only present off-axis reflections. In addition, these
spiral metasurfaces can spread uniformly the energy over the entire angular spectrum by focusing (or defocusing) a vortex in
the near field, thus, allowing the design of ultra-broadband acoustic diffusers with simultaneous high diffusion performance and
non-specular reflections.
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Figure 1. (a) Scheme of the proposed spiral-shaped sound diffusing metasurface. (b) Geometry of the panel for the focusing
configuration. (c) Spiral metasurface for the focusing configuration and its geometry. (d) Spiral metasurface designed for the
defocusing configuration using a virtual image of a vortex and its geometry.

2 Results35

2.1 Holographic-vortex metasurfaces
The proposed metasurface is sketched in Figs. 1 (a,b). The structure consists of a circular flat panel of radius a and thickness L
and has N wells of spiral shape. Each well is indexed by n = 1,2,3, ...,N and is of constant depth dn. We propose two different
structures: one that focuses a vortex in the near field on top of it, as shown in Figs. 1 (c), and another that virtually focuses a
vortex behind it, as shown in Fig. 1 (d).40
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The field pattern generated by a spherically focused vortex source located at a distance z = F on the metasurface plane
z = 0 can be approximated in cylindrical coordinates r = r(φ ,r,z) by a hyperbolic phase profile as50

p(φ ,r) =
−ip0

k
√

r2 +F2
exp
(

ik
√

r2 +F2
)

exp(ilφ), (1)

where F is the focal distance, k = ω/c0 is the wavenumber, ω is the angular frequency, c0 is the sound speed, and p0 is a
constant. The time convention in this work is exp(−iωt). If a surface is set to radiate a time-reversed (or complex conjugate in
the frequency domain) version of this field, a diffraction-limited vortex converging at the focal point z = F will be observed,
because of the time-invariance of the acoustic equations. On the one hand, in the case of a real focal point when F > 0 a
diffraction-limited focused vortex beam is generated, as sketched in Fig. 1 (c). On the other hand, when F < 0 the resulting45

field diverges spherically from the metasurface and defocusing is observed as shown in Fig. 1 (d) with a virtual focal point.
Note that no phase-conjugation is needed in Eq. (1) in the defocusing case, because the holographic field already captured the
diverging wavefront. Therefore, defocusing should present inverse phase curvature and inverse topological charge.

In order to design a metasurface with such phase profile, we follow a two step procedure. The first step consists in spatially
discretizing the metasurface with a geometry compatible with the phase profile of Eq. (1). This can be done by the expansion of
the binary Fresnel-spiral zone plates49 for the case of the N phase zones and l0 arms. The boundary between the n−1 and n-th
phase zone is then given by the following expression

rn,m(φ) =

√[
F +λ0

(
l0φ

2π
+

n
N
+m

)]2

−F2, (2)

where n = 0, . . . ,N−1 is the index of each wall, 0 < φ < 2π is the azimuthal coordinate, λ0 = c0/ f0 is the design wavelength
with f0 the design frequency, l0 represents the topological charge at the design frequency, and m = 0,1, . . . , l0−1 is the index50

of each arm.
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Figure 2. (a) Scheme of the proposed spiral-shaped sound diffusing metasurface. (b) Geometry of the panel for the focusing
configuration. (c) Spiral metasurface for the focusing configuration and its geometry. (d) Spiral metasurface designed for the
defocusing configuration using a virtual image of a vortex and its geometry.

On the one hand, the focusing metasurface synthesizes a wavefront converging towards the focal point. Figure 2 (a) shows
the phase given by Eq. (1), while Fig. 2 (b) shows its corresponding phase zones for, e.g., N = 16 zones. The white lines in
Fig. 2 (b) correspond to the polar curves given by Eq. (2). It can be observed that each polar curve fits to the boundary between
adjacent phase zones. Indeed, Fresnel-spirals49 are the exact zone plates for focused vortices. In Fig. 2 (c) the hyperbolic phase55

distribution given by Eq. (1) is compared with the exact phase-conjugated projection of a monopole source located at the focus.
Note that both phase distributions agree, while a parabolic approximation fails to describe the exact focusing phase for highly
focused metasurfaces. On the other hand, the phase distribution for a defocused metasurface is shown in Fig. 2 (d). Because
this metasurface should synthesize a field diverging away from the virtual focus, phase conjugation is applied, resulting in the

3/15



inversion of the phase and the topological charge, as shown also in Fig. 2 (e) for the phase zones. Note that the curvature of the60

phase profile along the radial coordinate for the defocusing metasurface is inverted as compared with the focusing case, see
Fig. 2 (f).

The second step consists in assigning to each phase zone the phase values given by Eq. (1). In fact, the focusing metasurface
corresponds to the case with exp(ilφ ), while for the defocusing case to exp(−ilφ ). In this work, each phase zone is made
of a quarter-wavelength resonator, the thickness of which is limited by the rigid walls located at rn [Eq. (2)]. Therefore, the
metasurface is made of spiral-shaped wells acting as quarter-wavelength resonators. The control of the value of the phase in
each well can be fixed by its depth, dn. In fact, the reflection coefficient at normal incidence of each well in the metasurface is
given by Rn = (Z0− iZ̄n cotkndn)/(Z0 + iZ̄n cotkndn), where kn and Z̄n are respectively the complex and frequency dependent
wavenumber and the acoustic impedance of the n-th well accounting for the viscothermal losses51, and Z0 is the impedance of
the surrounding medium (see more details in section Methods). The depths dn and d′n of the n-th well, for the focusing and
defocusing panels respectively, are set accordingly to

dn =
nλ0

2N
and d′n =

(N−n+1)λ0

2N
, (3)

to produce a reflection coefficient whose phase follows the distribution given by Eq. (1). In Eq. (3), the design wavelength
λ0 = 2L is associated to the lowest cut-off frequency of the structure and f0 = cn/2L, where cn is the sound speed inside the
well.65

The Rayleigh-Sommerfeld equation and the Fourier-Fraunhofer approximation (see more details in section Methods) are
used to theoretically evaluate the scattered field in the near field and in the far field, respectively. The structure is thus designed
by fixing the lowest working frequency, ( f0) the focal distance (F), the number of slits (N), the panel radius (a) and the
topological charge at the design frequency (l0). In this work, spiral metasurfaces composed of N = 16 wells, with l0 = 1, f0 = 2
kHz, |F | = λ0/4 = 4.3 cm, and a = 22.5 cm are designed to be efficient in air. The total thickness of the structure is thus70

L = 8.5 cm.

2.2 Near-field vortex focusing and defocusing
We start by analyzing the scattered field in the near field. If a lossless medium is considered, Zn = Z0, kn = k, the reflection
coefficient of the n-th well is given by Rn = exp(ikdn) and a complete phase change is produced along the N wells at the design
frequency. For a normal-incidence plane wave the reflection coefficient along the surface matches the holographic field given by75

Eq. (1). The resulting scattered field at the design frequency (2 kHz) is shown in Fig. 3 (a1) for the real focusing case (F > 0).
The spiral metasurface generates a scattered field that focuses at the focal spot. The field vanishes at the centre of the structure
because of the destructive interference of the scattered waves by the spiral geometry. The phase of the field in the cross-sectional
plane at a height of z = 2a is shown in Fig. 3 (a2). A phase dislocation along the axis, which corresponds to a vortex of
topological charge l = 1, is clearly visible. As the focusing spot is very close to the surface (4.3 cm), the wavefront quickly80

diverges and the magnitude of the field is thus highly uniform after a very short distance, z = 45 cm, as shown in Fig. 3 (a3),
except at the location of the phase dislocation, where the magnitude of the field vanishes due to destructive interferences.

Interestingly, complete phase loops are achieved at frequencies that are integer multiples of the design frequency, f = m f0
along N/m wells, because the reflection coefficient of quarter-wavelength resonators presents a linear phase. The scattered field
at three times the design frequency, i.e., f = 3 f0 (6 kHz), is shown in Fig. 3 (b1). It presents a focal spot at z = F , and focuses85

sharply, because diffraction effects are weaker for f > f0. The corresponding scattered field phase in the cross-sectional plane
is shown in Fig. 3 (b2). A phase dislocation is also visible at the centre, but this time the phase performs 3 complete loops
along an azimuthal turn, i.e., the topological charge of the scattered vortex is l = f/ f0. This relation is fulfilled at multiples of
the design frequency for frequencies 0 < f/ f0 ≤ N/2, and l = f/ f0−N/2 for frequencies in the range N/2 > f/ f0 > N. This
phenomenon is relevant for spiral metasurfaces because vortices in the normal directio appear periodically in frequency up to90

f = N f0. Note that as the topological charge of the scattered vortex increases, so does the hollow area of the field, as shown e.g.
in Fig. 3 (b3). In addition, as quarter-wavelength resonators are impedance matched to the air when the walls between the wells
are thin, the structure also scatters vortices at non-integer multiples of the design frequency, see Supplementary material for a
deeper analysis. Therefore, these structures present a broadband response.

The scattered field of the virtual defocusing case (F < 0) is shown in Figs. 3 (c1-c3). The field near the structure does not95

focus on a single spot but rather diverges away from the structure. Along the axis of the metasurface, the field also vanishes due
to destructive interference and the phase dislocation shows a topological charge of l =− f/ f0. Note the topological charge
phase has the opposite sign to the focusing case, because it occurs in the holographic field used for the design, Eq. (1).

2.3 Far-field vortex scattering
A focusing spiral metasurface was designed (F = λ0/4) and manufactured using a selective laser sintering 3D printer. The100

walls are assumed to be perfectly rigid (see more details in the Section Sample). The scattered field by the structure was
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Figure 3. (a1) Scattered field for the focusing metasurface in the near field at the design frequency f = f0. (a2) Phase and (a3)
magnitude of the scattered field in the transversal plane z = 2a. (b1) Scattered field for the focusing metasurface in the near
field at frequency f = 3 f0. (b2) Phase and (b3) magnitude of the scattered field in the transversal plane z = 2a. (c1) Scattered
field for the defocusing metasurface in the near field at the design frequency f = f0. (c2) Corresponding phase and (c3)
magnitude in the transversal plane z = 2a. (d1) Scattered field for the defocusing metasurface in the near field at frequency
f = 3 f0. (d2) Corresponding phase and (d3) magnitude in the transversal plane z = 2a.

measured following the ISO-17497 procedure. In the far field, the resulting polar curves are shown in Fig. 4. The scattered
field by a circular reflector of the same dimensions is shown for comparison on the polar plots in Figs. 4(a3,b3,c3,d3). At the
design frequency, Figs. 4(a1-a3), the polar distribution of the scattered waves is uniform when compared to that of the reference
reflector, and a reasonable agreement between theoretical and experimental responses is observed. However, all scattered waves105

interfere destructively in the specular direction (θ = 0) in the far field because a vortex is generated in the near field. Therefore,
metasurfaces based on holographic vortices inhibit specular reflections because the field presents a phase dislocation in these
directions. In addition, the scattering function for all other angles is uniform in the far field, since the waves diverge spherically
from the focal point.

The scattered field at frequencies 6 kHz (l = 3), 10 kHz (l = 5) and 16 kHz (l = 8) is depicted in Figs. 4(b1-b3), (c1-c3)110

and (d1-d3), respectively. The amplitude of the scattered field decreases over a wider range of near-normal angles as the
frequency increases. This behavior is expected, because vortices of high topological charge present wider nulls, and the range of
angles with reduced amplitude is wider in the far field. A time-domain representation of the scattered field using a pulse-burst
excitation of frequencies l f0 with l = 1,2, . . . ,8 is given in the supplementary videos. The experimental data in the time domain
agrees with the theory after inverse Fourier transformation. In each video, it can be identified the scattered field pattern with a115

vortex of integer topological charge.

2.4 Broadband sound diffusion by holographic vortices
To quantify the performance of the metasurface, the correlation-scattering coefficient, σ( f ), is calculated as usual in room
acoustics and sound diffusers design17. This coefficient measures the decorrelation between the scattered field by the structure
and that by a flat panel of the same dimensions. Thus, a 0 value of σ( f ) indicates that the reflection is specular while a120

1 value indicates that the scattered energy spreads in all directions other than specular. The retrieved frequency-dependent
correlation-scattering coefficient is shown in Fig. 5 (a). A good agreement is found between theoretical predictions for the
focusing and defocusing devices as in the far field both systems present similar scattering field. The experimental results for

5/15



Theory(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

2 kHz

2 kHz

Experiment

Theory

6 kHz

6 kHz

Experiment

Theory

10 kHz

10 kHz

Experiment

Theory

dB

dB

16 kHz

16 kHz

Experiment

0 dB-10-20-30
-90

-75

-60

-45

-30
-15 0 15

30

45

60

75

0 dB-10-20-30
-90

-75

-60

-45

-30
-15 0 15

30

45

60

75

0 dB-10-20-30
-90

-75

-60

-45

-30
-15 0 15

30

45

60

75

0 dB-10-20-30
-90

-75

-60

-45

-30
-15 0 15

30

45

60

75

16 kHz2 kHz 6 kHz 10 kHz(a3) (b3) (c3) (d3)

µ

Á

µ

Á

µ

Á

µ

Á

µ

Á

µ

Á

µ

Á

µ

Á

µ µ µ µ

Figure 4. Scattering in the far field at 2 kHz obtained (a1) theoretically and (a2) experimentally. (a3) Polar scattering at 2 kHz
obtained experimentally (markers), theoretically (continuous line) and theoretical scattering of a flat panel of same dimensions.
(b1-b3) Corresponding scattering in the near field at 6 kHz, (c1-c3) at 10 kHz and (d1-d3) at 16 kHz.

the focusing device validate this behavior. We observe that the absence of specular reflection makes the correlation-scattering
coefficient being almost unitary at frequencies that are multiples of the design frequency because vortices of integer charge125

are then generated. However, the structure also efficiently scatters vortices at other frequencies (see Supplementary material),
because it is composed of quarter-wavelength resonators. Therefore, the correlation-scattering coefficient remains close to unity
over the entire design frequency band (σ( f )> 0.9 for f0 < f < N f0). The correlation-scattering coefficient takes a mean value
of 0.98 (0.99 in theory) over the frequency range from 2 kHz to 16 kHz.

A second important parameter to quantify the performance of the acoustic structure is the diffusion coefficient, δ ( f ),130

which is widely used in practical applications such as in room acoustics17. This coefficient measures the uniformity of the
scattering. When all the energy is reflected in a single direction (not necessarily the specular one), δ ( f ) = 0, while δ ( f ) = 1
when there is no preferred direction of reflection and the scattering function is uniform. Note that small panels also generate
diffuse reflections due to diffraction by their bounds. The magnitude of the diffusion coefficient is thus normalized by that of a
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6 kHz, 10 kHz, and 16 kHz. (b) Normalized diffusion coefficient (δn) as a function of the frequency.
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perfect reflector of the same dimensions, namely the normalized diffusion coefficient δn( f ). Figure 5 (b) shows the normalized135

diffusion coefficient calculated theoretically for the focusing and defocusing metasurfaces, and measured experimentally. This
coefficient presents a peak at the design frequency of amplitude δ ( f0)≈ 0.95 theoretically and δ ( f0)≈ 0.85 experimentally.
This high value arises from the fact that the holographic vortex generates spherically diverging waves. However, the value of
the normalized diffusion coefficient cannot reach unity, because there is a lack of scattering in the normal incidence. As the
topological charge of the scattered vortex increases with frequency a wider range of angles close to normal direction presents140

reduced scattering. Therefore, the response is less uniform and the value of the normalized diffusion coefficient decreases with
frequency. Note that peaks do not appear at frequencies that are an integer multiple of the design frequency, because at these
frequencies the structure scatters multiple vortices at different angles, leading to a uniform scattering pattern. The normalized
diffusion coefficient takes a mean value of 0.76 (0.73 in theory) over the frequency range from 2 kHz to 16 kHz.

2.5 Topological charge of the scattered vortices145

Finally, we show the relation between the phase of the scattered field along the azimuthal coordinate and the topological charge
of the vortex. Figure 6 shows the phase measured experimentally (markers) and theoretically (lines) at different frequencies.
Note phase was normalized and unwrapped. It can be observed that the scattered field by the spiral metasurface presents a
phase which roughly varies linearly along the azimuthal coordinate. The slope corresponds with the topological charge, i.e.,
arg(ps(φ)) = f/ f0φ . A detailed picture is shown in the corresponding maps at the right of Fig. 6, measured experimentally150

over a spherical surface of radius of 80 cm, and obtained theoretically. For low topological charges, e.g., f/ f0 < 4, the phase
dislocation is clearly visible at the centre. As the width of the silent area increases with frequency (or topological charge),
it becomes hard to detect the dislocation at the centre for higher frequencies. However, at grazing angles, where energy is
scattered, it is visible in all maps that the phase of the scattered field rotates a number of times equal to the value of the
theoretical topological charge. The process continues up to f = f0N/2. At this frequency, the phase along the surface of155

the structure is a binary spiral of N arms (see Supplementary material). Therefore, a vortex of topological charge l = N is
scattered46, 49. In our case, this was set to f = f0N/2 = 16 kHz, covering the whole audible spectrum. For higher frequencies,
the topological charge of the scattered vortex is given by l = N− f/ f0, up to f = N f0. At this frequency, the phase along the
structure is constant. Therefore, the metasurface acts as a flat reflecting surface. This case is the analogous behavior of the
well-known critical frequencies of quadratic-residue diffusers17. In the present design, this critical frequency appears at f = 32160

kHz, far away from the audible regime.
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2.6 Oblique incidence
When the indent field is tilted with an oblique direction given by an angle θI with respect to the normal and an azimuthal angle
of φI , the scattering is being affected by two main factors. First, the transverse wavenumber is given by k⊥ = k sinθI , so the
axial wavenumber inside each well decreases due to the conservation of the transverse component of the wavevector at the
boundary, k2

z = k2
s −k2

⊥, with ks the wavenumber inside the well. Therefore, the effective wavelength increases to λz ≈ λ/cosθI .
As the impedance of each well is then Zn =−iZs cot(kzdn), the quarter-wavelength resonance frequency is shifted up and the
reflection coefficient along the surface becomes angle-dependent R(x0,y0,φI ,θI). Second, the incident field along the surface
presents a sinusoidal pattern given by pi(x0,y0) = p0 exp(−i[kx0x0 + ky0y0]), where kx0 = k⊥ cosφI and ky0 = k⊥ sinφI . Then,
the scattered pressure at the surface is given by pr = pi R. Therefore, as the far-field scattering is essentially a Fourier transform
of the reflected field at the surface we obtain

ps(φ ,θ ,φI ,θI) =−i
k

2π

exp(ikr)
r

∫
S0

p0R(x0,y0,φI ,θI)exp(−i[(kx− kx0)x0 +(ky− ky0)y0])dx0dy0. (4)
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Figure 7. (a1-d1) Far field scattering at incidence angles θi = 30◦,45◦,60◦ and 70◦ at f = f0, and (a2-d2) at f = f0/cos(θ).
(e) Correlation scattering coefficient and (f) normalized diffusion coefficient as a function of the incidence angle. (g)
Random-incidence correlation scattering coefficient and (h) random-incidence normalized diffusion coefficient.
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Note that the product pi R in the spatial domain becomes a convolution in the spatial-frequency domain. This results in a shift
of scattering pattern in the k-space by a wavevector k∆ = k(cosφI sinθI k̂x + sinφI sinθI k̂y), therefore, the scattered pattern in
the far-field becomes tilted.165

The two effects, the k-space shift and the resonance-frequency shifting, does not change the main behaviour of the
metasurface. Figure 7 shows the results for oblique incidence. First, Figs. 7 (a1-d1) we show the scattering for θI =
30,45,60,75◦, at frequencies f = f0, φI = 0, and for F > 0. The far-field distribution at f = f0 and low incidence angles shows
a tilted and uniform pattern because wells can produce some phase shift of the reflected field. However, as the incidence angle
is increased the resonance of the wells is shifted up. Therefore, at the design frequency and under very high oblique incidence,170

the reflection coefficient resembles the one of a rigid circular panel resulting in a poor diffusion performance.
Only when the f = f0/cos(θI) all the wells resonate according to the design and the reflection coefficient along the surface

matches the holographic field of a (de)focused vortex. Therefore, as show by Figs. 7 (a2-d2), we recover in the far field a
tilted version of the scattered vortex due to the k-space shift. Note in the specular direction (marked by blue arrows) the field
vanish due to destructive interference. Under oblique incidence the structure also scatters vortices but at frequencies given by175

f = l f0/cos(θI) with topological charges given by l = 1,2, . . . ,N/2 for l ≤ N/2 and l = N−1,N−2, . . . ,0 for l > N/2.
The correlation-scattering coefficient and the normalized diffusion coefficient are shown in Figs. 7 (e,f), respectively. First,

for frequencies f > f0/cosθI one can see that the structure still show a correlation-scattering coefficient close to the unity.
This is a consequence of the previous results, in this frequency range, energy is not reflected in a specular way as the structure
scatters vortices. The diffusion coefficient is more affected by the incidence angle because under oblique incidence and higher180

frequency vortices are scattered in a narrow angular range, compare Figs. 7 (a2) with (d2). This results in a less omni-directional
response and, consequently, the diffusion coefficient decreases. To show the overall performance for oblique incidence we
calculate a figure of merit, namely the random-incidence correlation-scattering and random-incidence diffusion-coefficients (see
methods section), where it is assumed that the probability of incidence is higher at θI = π/4, as occurs in diffuse sound field.
Both coefficients, shown in Figs. 7 (g,h), describe the performance of the structure under random incidence. Even under oblique185

incidence, we can see that the spiral metasurface presents a high value of both coefficients. Finally, note that the decrease in
diffusing performance studied here should be a common feature of all locally-resonant metasurfaces and diffusers based on
quarter-wavelength resonators.

3 Conclusions
In this work, we have shown that scattered acoustic vortices present remarkable radiation properties in the far field. We have190

designed broadband spiral metasurfaces to generate holographic vortices. The destructive interference of the scattered waves
along the axis of the spiral metasurface generates a phase dislocation with tuned topological charge in the near field. In the far
field, all scattered waves at the specular direction also interfere destructively. Therefore, metasurfaces based on holographic
vortices inhibit specular reflections because the field presents a phase dislocation in this direction. In addition, the scattering
function in the far field is particularly uniform because the waves diverge spherically from the focal point. Moreover, under195

oblique incidence the present metasurface preserves the ability to scatter vortices, but at frequencies higher than the design.
Therefore, the scattering patterns of spiral metasurfaces are very uniform and non-specular.

In particular, the designed metasurface presents a mean correlation-scattering coefficient of 0.99 (0.98 in the experiment)
and a mean normalized diffusion coefficient of a 0.73 (0.76 in the experiment), over a frequency band covering from 2 kHz to
20 kHz. In this way, the singular features of the resulting metasurfaces with chiral geometry allow the simultaneous generation200

of broadband, diffuse and non-specular scattering. These three exceptional features, as demonstrated by the outstanding values
of their correlation-scattering coefficient and normalized diffusion coefficient, make spiral metasurfaces excellent candidates to
generate diffuse sound reflections in practical applications of wave physics as underwater acoustics, biomedical ultrasound or
room acoustics.
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Methods
Reflection coefficient of a locally-reacting metasurface accounting for thermoviscous losses
Thermoviscous processes activate losses in the wells when they are narrow due to non-slip boundary conditions at their rigid
walls. The thermal and viscous boundary layers introduce dispersion and attenuation, that are modelled using complex and
frequency dependent parameters, i.e., density, ρ(ω), and bulk modulus, K(ω). For narrow slits of width hn = rn− rn−1−hw,
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where hw is the width of the walls between the wells, and assuming that only plane waves propagate inside them, the effective
parameters are given by51:

ρn(ω) = ρ0

1−
tanh

(
hn
2 Gρ(ω)

)
hn
2 Gρ(ω)

−1

, (5)

Kn(ω) = K0

1+(γ−1)
tanh

(
hn
2 Gκ(ω)

)
hn
2 Gκ(ω)

−1

, (6)

with Gρ(ω) =
√

iωρ0/η and GK(ω) =
√

iωPrρ0/η , and where γ is the ratio of the specific heats, P0 is the atmospheric305

pressure, Pr is the Prandtl number, η is the dynamic viscosity, and ρ0 and K0 = γP0 the density and bulk modulus of the
surrounding and saturating fluid respectively. Considering that this fluid is the air medium, we used the parameters ρ0 = 1.213
kg m−3, Pr = 0.71, γ = 1.4, P0 = 101325 Pa and η = 1.839 10−5 kg m−1s−1.

Using the complex density and bulk modulus, we can obtain the corresponding wavenumber and acoustic impedance in
each well as

kn(ω) = ω

√
ρn(ω)

Kn(ω)
, (7)

Zn(ω) =
√

ρn(ω)Kn(ω). (8)

Finally, the spatially dependent reflection coefficient of the locally reacting metasurface is given by

R(ω,r0) =
Z0− iZ̄n cotkndn

Z0 + iZ̄n cotkndn
(9)

where Z̄n = Znhn/(hn +hw). The width, so the impedance and wavenumber, and depth of each well are calculated as a function
of the position in the metasurface plane As Zn = Zn(ω,r0) and kn = kn(ω,r0), the reflection coefficient is spatially dependent.310

Near field calculation
The acoustic field at a point r scattered by the metasurface located at r0 at the surface S0 is approximated by the Rayleigh-
Sommerfeld integral and it reads as

ps(r) =−i
k

2π

∫
S0

p0(r0)R(r0)exp(ik |r− r0|)
|r− r0|

dS0, (10)

where p0(r0) is the incident pressure field, R(r0) is the spatially-dependent reflection coefficient of the locally-reacting surface,
and k = ω/c0 is the wavenumber in air at an angular frequency ω , and c0 =

√
γP0/ρ0 is the sound speed.

Far field calculation
In the far field, and in spherical coordinates, r = r(φ ,θ ,r), using the convention 0 < φ < 2π for the azimuth and 0 < θ < π for
the elevation, the distance between any point and the plane of the metasurface is approximated by

|r− r0| ≈ r. (11)

A second-order Taylor expansion gives

|r− r0| ≈ r− x
r

x0−
y
r

y0 ≈ r− cosφ sinθx0− sinφ sinθy0. (12)

Introducing the approximations given by Eq. (11) and Eq. (12) in the denominator and in the phase term of the numerator of
Eq. (10), respectively, we get the Fraunhofer-Fourier approximation of the scattered field

ps(φ ,θ) =−i
k

2π

exp(ikr)
r

∫
S0

p0(x0,y0)R(x0,y0)exp(−i(kxx0 + kyy0))dx0dy0, (13)

where the transversal components of the wavevector are given by

kx = k cosφ sinθ , (14)
ky = k sinφ sinθ . (15)

Note Eq. (13) is essentially a two-dimensional spatial Fourier transform of the reflected field and can be calculated efficiently315

using fast-Fourier transforms. In addition, the spherical-divergence factor exp(ikr)/r is usually dropped as it does not contribute
to the directivity of the scattering in the azimuthal and elevation planes.
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Measurement procedure
Measurements were performed in an anechoic environment following the recommendation of the standardized procedures
described in Ref.52. Acoustic signals were acquired by a calibrated 1/4-inch pressure-field microphone (G.R.A.S. Holte,320

Denmark) with a preamplifier (Type 26TC, G.R.A.S. Holte, Denmark) and signal conditioning module (12AQ, G.R.A.S. Holte,
Denmark). The sample was placed on a turntable (LT360, Linerx Systems). Automated measurements were performed along
a uniform grid in spherical coordinates, as shown in Fig. 8, using 32 measurement points in the azimuthal direction from
0 < φ < 2π (∆φ = 11.25 deg) and 16 measurement points in the elevational direction from 0 < θ < π/2 (∆θ = 6 deg), at a
distance of r = 1 m from the center of the spiral metasurface. The turntable was surrounded by absorbing foam to avoid spurious325

reflections. The acoustic source was centered and located at a distance r = 2.5 m above of the metasurface. A pseudo-random
binary signal (maximum-length sequence) was used for the excitation. The system exhibited a flat response over a bandwidth
ranging from 20 Hz to 20 kHz (±3 dB).

r

Á

µ

Absorbing  foam

Anechoic chamber

Microphone

Turntable

Figure 8. Manufactured spiral metasurface and measurement setup.

Sample fabrication
The spiral metasurface was 3D printed by using the sPro 230 printer (3D Systems, SC, USA). The material used for the spiral330

metasurface was Polyamide 12 DuraForm HST Composite (PA12 HST). The density and sound velocity of this material are
respectively 1200 kg/m3 and 2200 m/s. With these properties, the acoustic impedance of the material is more than 6000 times
bigger than that of the air, thus it can be considered acoustically rigid. It is worth noting here that, as the far field of the focusing
and defocusing metasurfaces are very similar, their diffusion is basically the same for the two cases. Thus, in this work we have
3D printed the metasurface for the focusing configuration (see Fig. 8) without any loss of generality.335

Diffusion coefficient
The calculation of the diffusion coefficient follows the standardized procedures described in Ref.52. The acquired waveforms
were deconvolved and impulse response were obtained. Temporal windowing was applied to eliminate the direct field and the
spectrum at each location, P(ω), was calculated using fast-Fourier transforms. The diffusion coefficient, δ (ω), is given by

δ (ω) =

(
M
∑

m=1
|P(ω)|

)2

−
M
∑

m=1
|P(ω)|2

(M−1)
M
∑

m=1
|P(ω)|2

, (16)
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were M = 512 is the total number of measurements and m is the index of each measurement. In order to compensate the
non-uniformity of the grid in spherical coordinates, the following modification52 is used

δ (ω) =

(
M
∑

m=1
Am |P(ω)|

)2

−
M
∑

m=1
Am |P(ω)|2(

M
∑

m=1
Am−1

)
M
∑

m=1
Am |P(ω)|2

, (17)

where

Am =



sin
(

∆φ

2

)
, for θm = 0,

2sin(θm)sin
(

∆θ

2

)
, for 0 < θm < π/2,

4π

∆φ
sin
(

∆θ

4

)2

, for θm = π/2.

(18)

The scattered field was measured for both the metasurface and a circular flat reflector, and the corresponding diffusion
coefficients were calculated. Finally, the normalized diffusion coefficient, δn(ω), was obtained as

δn(ω) =
δs(ω)−δr(ω)

1−δr(ω)
, (19)

where δs(ω) and δr are the diffusion coefficient of the spiral metasurface and the circular reflector, respectively. This coefficient
measures the uniformity of the scattering.

Correlation-scattering coefficient
Finally, the correlation-scattering coefficient σ(ω) was calculated using the measured scattering as17.

σ(ω) = 1−

∣∣∣∣ M
∑

m=1
P(ω)P∗r (ω)

∣∣∣∣2
M
∑

m=1
|P(ω)|2

M
∑

m=1
|Pr(ω)|2

, (20)

where P(ω) and Pr(ω) are scattering of the spiral metasurface and the flat circular reflector for the m-th grid point, and (∗) is340

the complex conjugate. This coefficient measures the correlation between the scattering of the structure and that of a flat panel
of same dimensions.

Random-incidence coefficients
To obtain a figure of merit under oblique incidence, we calculate the random-incidence coefficients as

δn,random(ω) =
∫

π/2

θI=0
δn(ω,θI)sin(2θI)dθI , σrandom(ω) =

∫
π/2

θI=0
σ(ω,θI)sin(2θI)dθI , (21)

in analogy to the random-incidence absorption coefficient17, where δn(ω,θI) and σ(ω,θI) are the normalized diffusion and
correlation scattering coefficients, respectively. Note in this case the reference flat circular reflector should also be calculated345

under oblique incidence.
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