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Institut d’Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université,
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Porous materials and metamaterials play a key role in sound absorbing and insu-

lation solutions in acoustics. With the growing interest in additive manufacturing

techniques, recent work has focused on the printing of porous and resonant structures

for acoustic purposes. Usual metaporous surfaces/interfaces are generally built by

periodically inserting resonant elements in an existing porous layer. This complex

manufacturing process can be significantly simplified by using additive manufacturing

techniques, which also eases the design and optimisation of the metaporous surface.

In this work, the acoustic properties of the metaporous surface are controlled by sim-

ple geometric parameters defining both the anisotropic porous layer and the shapes

of the resonators. Hence, we focus on optimising split-ring resonators embedded in a

micro-treillis porous layer, which are built in a single part using additive manufactur-

ing techniques. A finite-element method together with the Bloch wave decomposition

provides a numerical model used to predict the reflection and absorption coefficients

under normal incidence. The geometric parameters of the anisotropic metaporous

surface are then optimised by non-linear minimisation techniques to maximise acous-

tic absorption. An optimal metaporous surface is 3D printed by fused-deposition

modeling and its acoustic properties are measured in an impedance tube. The mea-

surements are in good agreement with the predicted optimal broadband absorption

coefficient. This work demonstrates the benefits of additive manufacturing for de-

signing metaporous acoustic surfaces.

PACS numbers: 61.43.Gt, 81.05.Rm, 46.40.Ff, 52.38.Dx, 43.20.Gp

a)Theo.Cavalieri@gmail.com; https://tcaval.vercel.app
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I. INTRODUCTION

Porous materials are commonly used in the context of noise reduction, particularly for

sound absorption over wide frequency ranges1,2. When rigidly backed, porous layers pro-

vide their strongest absorption for frequencies higher than that of the so-called quarter-

wavelength resonance and perfect absorption is obtained when critical coupling occurs3.

Although efficient for broadband absorption, the use of homogeneous porous layers implies

bulky and heavy structures to cope with practical applications. The absorption efficiency

of porous layers can be improved at lower frequencies by grading the layer4, or by exploit-

ing the anisotropy of the material for diffuse-field absorption5, but they still do not display

deep-subwavelength properties.

Deep-subwavelength properties are on the contrary the specific features of metamaterials

or metasurfaces6–11. Nevertheless, deep-subwavelength perfect absorption of metamaterials

is usually narrow band, because of the high quality factor of resonators at low frequencies.

Detuned resonators12,13 are thus used to widen the absorption efficiency of metasurfaces,

but they usually do not display absorption as broadband as porous layers.

Metaporous surfaces thus appear as an excellent compromise between the broadband

efficiency of porous layer and the deep-subwavelength features of metasurfaces14. They

consist in periodically embedding possibly resonant inclusions in a porous layer. Their ab-

sorbing properties rely on a complex balance between the thermal and viscous losses in

the porous layer and in the resonant elements, the resonances of the inclusions15,16, and

trapped modes14,17 that confine the energy between the inclusions and the rigid backing,

and extension of the Wood anomaly to periodic layers14. Although the resonances of the

inclusion lead to the enhancement of the porous layer absorption (irrespective of the fre-

quency range), perfect absorption is limited to the viscous regime, except if the resonator is

directly connected to the surrounding medium, i.e., the air half space16. Initially proposed

for transmission problems18–20, metaporous surfaces are particularly efficient for subwave-

length broadband absorption in reflection problems and have thus seen an increasing interest

these last years21–23. They have been studied extensively and coupled with other resonant

elements24 or combined with poroelastic layers, thus enabling the use of elastic resonators25.

Nevertheless, the manufacturing of metaporous surfaces is still tedious and requires inserting

resonant elements in porous layer in which the volume of the resonator has been previously
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removed. The porous material should also be available, thus its properties are subjected to

constraints and cannot be freely chosen.

Over the past decade, rapid additive manufacturing methods have made significant ad-

vances and complex structures can now be printed with ever finer levels of accuracy. In this

article, we optimise a metaporous surface that is then manufactured by fused-deposition

modelling (FDM). The complete metasurface (i.e. the porous layer with the embedded

resonators) is described by a small number of geometric parameters and numerically mod-

elled by a finite-element method (FEM). Fine-tuning both the micro-geometry of the porous

layer and the macro-geometry of the resonant inclusions can lead to an optimal design that

provides high levels of acoustic absorption over a chosen frequency range. While the macro-

geometry of the metaporous surface is directly optimised, the micro-geometry of the porous

layer is optimised via effective acoustic properties calculated using the two-scale asymptotic

homogenisation theory26–28 applied to the representative unit-cell. The optimisation itself is

performed using the downhill simplex method with a cost function that relies on the FEM

model29,30. The porous layer in which the inclusions are embedded is composed of a trans-

verse isotropic porous material, which prevents the use of multiple-scattering theory (MST),

as proposed initially18.

The present article is organised as follows: we first introduce the studied geometry and

the manufacturing techniques in Sec. II. We then describe the solution procedures and the

numerical methods used to model and optimise the metaporous surfaces in Sec. III. In Sec.

IV the validation procedure with experimental techniques is presented. Finally, multiple

numerical and experimental results are presented and compared in Sec. V. Internal acoustic

fields are also provided to give more physical insight into the role of the anisotropy of the

porous material in the resonator coupling. Additionally, detailed validation procedures of

the numerical solutions are given in Appendix A.

II. METAPOROUS SURFACE

In this section, we introduce the metaporous surface and its geometry. The additive

manufacturing technique used to produce the samples is then presented.
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A. Description of the configuration

The design of the metaporous surface is illustrated in Fig. 1. It consists in acoustically

rigid 2D split-ring resonators (SRR) periodically embedded in a transverse isotropic porous

material. Several split-rings are embedded in the porous layer so as to form a super-cell. The

whole medium is described in a two-dimensional Cartesian coordinate systemR = (O, e1, e2)

with position vector x = (x1, x2) ∈ R2. The metaporous surface has a thickness L2 = 25 mm

in the normal direction e2 and is of infinite extent in the transverse direction e1. The resonant

inclusions are placed periodically within the porous layer, with a regular spacing along e1.

The periodic medium is described by its lattice constant (or periodicity) L1 = 84 mm.

This corresponds to twice the transverse dimension of the impedance tube used for the

experimental validation presented in Sec. IV.
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Figure 1. (Color online) Schematic of the split-ring resonators embedded in anisotropic porous

material. In green is the air, in blue is the porous material Ωe with transverse isotropic properties,

set between interfaces Γ0 and ΓL, with periodic conditions on Γ±.

As shown in Fig. 1, four resonators are embedded within the porous material, which

make up the periodic layer. The unit cell of this periodic medium is composed of two

pairs of distinct resonators, and displays a reflection symmetry with respect to the vertical

plane ΓS along e2. Therefore, we will only focus on one half of the unit cell presented in

Fig. 1. Each resonator j ∈ J1, 2K is described by the following geometric parameters: the

inner and outer radii R
(j)
in and R

(j)
out respectively, the depth h(j) (or center position along
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e2), the horizontal position `(j) = (2j − 1)L1/8 and finally both aperture and rotation

angles, respectively ψ
(j)
a and ψ

(j)
r . In this work, the domains will be denoted as follows: the

porous material is Ωe, the jth rigid resonator is Ω
(j)
r , the cavity of the jth resonator is Ω

(j)
c ,

and the neck of the jth resonator is Ω
(j)
n . The metaporous surface is then considered as

Ω :=
{

x = (x1, x2) | x ∈ Ωe

⋃
j

(
Ω

(j)
c ∪ Ω

(j)
n ∪ Ω

(j)
r

)}
.

B. Manufacturing techniques

Recent manufacturing techniques have been employed to build porous materials31,32. Such

materials can exhibit anisotropic properties, which can play in our favour when looking for

optimal structures. In order to manufacture such metasurfaces, we employ a fused-deposition

modelling (FDM) technique. It consists in the deposition of molten polylactic acid (PLA),

in the form of thin filaments. The raw material initially comes in the form of a solid wire of

diameter 1.75 mm. It is then heated to approximately 473 K within the nozzle, and deposited

in thinner filaments of 0.4 mm in diameter. The structure is built layer after layer, which

makes it possible to embed a rigid inclusion in the anisotropic porous material. To do so,

the geometry of the optimal structure is first described in the standard tessellation language

(STL). It is then translated in series of computer numerical control (CNC) instructions,

known as G-code. This operation is readily performed by slicing softwares. The geometry

of the porous material is controlled by the filling fraction F of the micro-trellis, which is

a common infill pattern in slicing procedures. With a fixed filament diameter, the filling

fraction is controlled by the lattice constant of the micro-trellis. The micro-trellis directly

provides transverse isotropic properties, which can thus be tuned by changing the value of

F .
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Figure 2. (Color online) (a) Photography of printing machine in operation. (b,c,d,e) Samples of

the resonant porous structures. The red arrow in (e) represents the direction of incidence of the

acoustic wave.

As seen in Fig. 2(a) the sample is placed on the heatbed under the nozzle. The cavities

and necks of the resonators embedded in the porous layer can be seen in detail in Fig.

2(b-e). In order to print the solid resonators, the filling fraction is set to F = 1. The

metaporous super-cell is manufactured using the printer Raise3D Pro2. As the structure is

build layer-by-layer, the actual manufactured geometry differs slightly from the theoretical

geometry shown in Fig. 1. Optical microscopy is employed to provide qualitative analysis

of the additive manufacturing defects.
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Figure 3. Optical microscopy images of (a) top-view the porous micro-structure, (b) the split-ring

resonator and (c) side view of the SRR neck.

In Fig. 3(a) we observe the porous micro-trellis made of orthogonal filaments, with

lattice constant 1 mm. The porous material itself presents some defects, mainly the filament

striction and surface roughness, which have been studied in previous works31. A cross-

sectional view of one of the SRRs is shown in Fig. 3(b), where we can observe surface

roughness in the cavity of the resonator, linked to the layer-by-layer manufacturing process.

This induced roughness was found to strongly affect the thermal and viscous losses when

of dimension comparable to the spacing between adjacent surfaces33. A close-up image of

the SRR neck is shown in Fig. 3(c), illustrating the limits of FDM when dealing with parts

of small dimensions. The combination of these discrepancies has an impact on the overall

acoustic behaviour of the metaporous surface.

III. MODELLING AND OPTIMISATION

In order to optimise the metaporous surface, we need a predictive model for its acoustic

properties. This is done using a finite-element method combined with the Bloch wave

decomposition. The porous material is described as an equivalent fluid to account for viscous

and thermal dissipation phenomena. The optimal geometric parameters are identified using

a non-linear constrained minimisation of the reflection coefficient.
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A. Equivalent fluid model

The porous structure itself can be decomposed into two domains, Ωs and Ωf the solid

and fluid phases, respectively. Hence, we denote Ωe ≡ Ωf ∪ Ωs the total domain of the

equivalent fluid, the open porosity of this two-phase medium is φ = |Ωf |/|Ωf ∪Ωs| = 1−F .

As the propagation medium consists in a periodic arrangement of a micro-geometric unit

cell, the proposed structure can be studied under scale separation26–28. At the microscopic

scale (i.e. the scale of the micro-geometric unit cell), the rheology of the fluid phase is

driven by thermo-acoustic and visco-inertial phenomena. Under a sufficiently large scale

separation factor, the macroscopic effective properties of the medium can be described by

homogenisation of the local fields. The Johnson–Champoux–Allard–Lafarge (JCAL) model

gives an approximation for both thermal and viscous solutions34.

More recent works on additive manufacturing and sound propagation in graded porous

layers have used the same description4,35,36. The aforementioned model relies on multi-

ple parameters, which estimate the dynamic thermal and viscous permeabilities from an

asymptotic description. Three of them are scalars [φ; Λ′; Θ0] and related to thermal ef-

fects, respectively the open porosity, the thermal characteristic length and the thermostatic

permeability. Three others are direction-dependent [τ∞jj ; Λj;K
0
jj] and related to viscous ef-

fects, respectively the high-frequency limit of tortuosity, the characteristic viscous length

and the viscostatic permeability in the direction ej. Although the transport parameters can

be estimated by FEM problems at the scale of the unit cell36,37, it has been shown that

manufacturing defects play an important role in the measured effective properties31,33. In

order to account for the internal geometrical defects, we rely on databases obtained from

inverse characterisation techniques4,38. Thus, the JCAL parameters are obtained by fitting

experimental results with respect to the filling fraction F .

B. Finite-Element Model

We consider acoustic wave propagation under ambient conditions and in the linear har-

monic regime, using the time convention e−iωt. In the frequency domain, the homogeneous

anisotropic Helmholtz equation in the two-dimensional Cartesian coordinate system is given
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by

B∇ · ([H]∇p) + ω2p = 0 , (1)

with excess acoustic pressure p and angular frequency ω. The effective bulk modulus of the

equivalent fluid is denoted B, and [H] = [ρ]−1 is the inverse mass density tensor. These

properties encapsulate the thermo-acoustic and visco-inertial properties of the equivalent

fluid, and are complex and frequency-dependent functions.
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Figure 4. (Color online) Schematic of the finite-element model. The porous material is shown

in blue, the air in green, the PML in yellow, the slits in red, and the rigid SRR in white. The

interfaces are shown in dashdotted lines and the probing line-segment in dashed black line.

In the domain Ω0, we define an impinging plane wave in the form of

pinc(x, ω) = |A|eiϕ0eik·x , (2)

with the wavevector k = {k1, k2}T where the superscript T denotes the transposition. We

have k1 = k0 sin(θ) and k2 = k0 cos(θ), with k0 = ω/c0 the wavenumber in free field, c0

the speed of sound, and θ the angle of incidence with respect to e1. For simplicity, we set

the amplitude |A| = 1 and the phase offset ϕ0 = 0. As the metaporous surface is rigidly

backed, the normal particle velocity at the interface Γ0 must be zero, so v · n|Γ0 = 0 where

v is the vector of acoustic particle velocity. On the interface ΓL between the porous layer

and the ambient air, the excess pressure p and the normal velocity v2 are continuous. The
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periodicity of the acoustic field along e1 is enforced between the interfaces Γ+ and Γ− by

writing  p|Γ+ = p|Γ−eikB·xB

v · n|Γ+ = v · n|Γ−eikB·xB

(3)

where the vector for Bloch periodicity is kB = {k0 sin(θ), 0}T and xB = x|Γ+ − x|Γ− . The

Sommerfeld radiation condition39,40 is given by

lim
x2→+∞

x
1/2
2

(
∂

∂x2

− ik0

)
ps(x2) = 0 , (4)

so that the scattered pressure ps vanishes far from the interface ΓL. This is implemented

under the form of a perfectly matched layer (PML)41. In the domains Ω
(j)
n , we model

the thermal and viscous losses in the necks of the resonators. The necks are seen as slits of

dimension d(j) = 2R
(j)
in sin

(
ψ

(j)
a /2

)
, a chord on the jth circle of inner radiusR

(j)
in and aperture

angle ψ
(j)
a , see Fig. 1. Assuming d(j) � λ in the slits, the acoustic wave propagation is

described by effective parameters, namely the mass density ρn and characteristic impedance

Zn which are both complex-valued and frequency-dependent42. The air and PML domains

Ω0 and Ωpml are meshed using quadrilateral elements while the porous layer, the necks

and cavities are meshed with triangular elements. In order to capture finer details of the

geometry, we use a total of 20× 103 elements so that no element is larger than a fifth of the

smallest dimension.

C. Numerical estimation of reflection and absorption coefficients

The scattered pressure field emerging from the interaction with the metaporous surface

is quantified by its reflection coefficient. The following procedure enables the calculation of

the reflection coefficient from a Bloch wave decomposition. As the scattered pressure field

is periodic along the direction x1, it is expressed as a sum of Bloch waves:

ps(x, ω) = |A|eiϕ0

∑
q∈Q

Rqe
ik(q)·x , (5)

where the Bloch wave number q is an integer belonging to Q = J−Q,QK ⊂ Z. The compo-

nents of the wavevector k(q) are given along both directions and for each value of q by

k(q) =


k1 + 2πq/L1[
k2

0 −
(
k

(q)
1

)2
]1/2

 . (6)
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The coefficient Rq corresponds to the reflection coefficient of the qth Bloch wave. The

scattered pressure field that emerges is numerically calculated at every point of the domain

Ω0. The pressure field is then recorded on the line L shown in Fig. 4 and defined by

x2 = L2 + Lair/2 and 0 < x1 < L1. The Bloch modes satisfy the following orthogonality

relation ∀(q, q′) ∈ Q2: ∫
L

e
i

(
k
(q)
1 −k

(q′)
1

)
x1

dx1 = |L|δq,q′ , (7)

where δq,q′ is the Kronecker delta and |L| = L1. The reflection coefficient of the qth Bloch

wave is given by

Rq =
1

|L|e
−ik

(q)
2 x2(L)

∫
L
ps(x, ω)e−ik

(q)
1 x1dx1 , (8)

and the modulus of the total reflection coefficient reads

|R(ω)|2 =
∑
q∈Q
|Rq|2Re

(
k

(q)
2

)
/k2 . (9)

The acoustic absorption coefficient, which represents the fraction of energy dissipated within

the metaporous surface, is given by

α(ω) = 1− |R(ω)|2 ∈ R . (10)

D. Optimisation routines

In order to optimise the geometric parameters of the metaporous surface, a constrained

non-linear minimisation routine is employed. We use the Nelder–Mead (or downhill simplex)

method29,30 to look for the optimal design. From an initial set of geometric parameters P0,

the method takes a series of steps to minimise a cost function. The scheme stops when

the convergence is reached (with respect to absolute tolerances), or when the maximum

number of iterations is attained. The necks of the SRRs are chosen to be in opposite

directions along e2 with ψ
(1)
r = 0 rad and ψ

(2)
r = π rad. Also, the center position h(j) of each

resonator on the vertical axis e2 is dependent on the resonator’s outer radius. In order to

easily manipulate this geometric constraint, we introduce the relative depth h̄(j), such as

h(j) = R
(j)
out + h̄(j)(L2 − 2R

(j)
out). The vector of parameters to be optimised is written

P :=
{
F , ψ(1)

a , ψ(2)
a , R

(1)
in , R

(2)
in , R

(1)
out, R

(2)
out, h̄

(1), h̄(2)
}T

⊂ R9 , (11)
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the bounds of which are described by P±:

F ∈ ]0, 1[ ,

ψ
(j)
a ∈ [0, π/2] ,

R
(j)
in ∈ [1× 10−3,max(L1/8, L2/2)] ,

R
(j)
out ∈ [1× 10−3,max(L1/8, L2/2)] ,

h̄(j) ∈ [0.1, 0.9] .

(12)

Moreover, some constraints are imposed over the geometric parameters, in order to satisfy

the overall topology of the system shown in Fig. 1. The constraints are established as the

outer perimeter of the resonator is contained in Ωe, and the wall thickness of the resonators

must be greater than 800 microns. This translates into
∀j = J1, 2K ,

R
(j)
out −R(j)

in ≥ 8× 10−4 ,

R
(j)
out ≤ min(L1/8, L2/2) .

(13)

The acoustic absorption coefficient is maximised within a certain frequency range, when the

cost function gets closer to zero. In order to do so, we define a cost function that translates

how far the current vector of parameters is from the optimal value α = 1. The cost function

is the arithmetic average of the absorption within the frequency range:

J(P) := 1− 1

Nf

Nf∑
i=1

α(fi) ∈ ]0, 1[ , (14)

with Nf the number of frequencies. The minimisation procedure requires an initial guess,

which is chosen by setting the vector P0 with random parameters, following the uniform

distribution P(i)
0 := U

(
P(i)
− ,P(i)

+

)
. In this work, we focus on the frequency range between

fmin = 1000 Hz and fmax = 4000 Hz, with Nf = 10.

IV. EXPERIMENTAL SETUP

As shown in Fig. 1 the unit cell of the periodic system is symmetric, hence the structure

behaves as if half the unit cell was bounded by rigid walls (acting as perfect mirrors) when

excited by an plane wave at normal incidence43. Thus, the Bloch modes on the total unit

cell are identical to those within rigid boundaries assuming one half of the symmetric unit

13



cell is placed in an impedance tube. In this section, we describe the experimental setup

where the proposed metaporous surface is rigidly backed in an impedance tube. We give

details on the collecting and processing of experimental data used to retrieve the absorption

coefficient.

A. Impedance tube measurement

The waveguide has a square cross-sectional area of 42×42 mm2 and is made of aluminum.

The cut-off frequency of the first transverse mode is thus fc = c0/0.084 ≈ 4060 Hz. A

copper plug is backing the metaporous surface at position x2 = −L2 ensuring the Neumann

boundary condition.

The pressure field is evaluated at N = 11 non-equidistant points located along x2. We use

a GRAS 46BD 1/4” CCP Pressure Standard Microphone Set, together with the conditioner

GRAS Power Module Type 12AQ. The microphone is moved along the e2 axis, driven by

the stepping motor Nanotec TYPE 4H8618M1408, and controlled using CHARLYROBOT

F4350 CERNEX.

Robot x
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Γ0ΓL

L2

Π−

Π+

GPIB

R
S

-2
3
2 s

o
u
t

s i
n

AnalyserPC

Ω0

Figure 5. (Color online) Schematic of the experimental setup.

The frequency range is spanned linearly with the emission of Nf = 200 monochromatic

plane waves. The pressure field is averaged over M = 29 = 512 periods, where the period is

T = 2π/ω. We use the analyser Stanford SRS MODEL SR785 for the input electrical signal,

which is finally transformed into a plane wave acoustic field by a loudspeaker. Since the rod
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used to move the microphone is at the end of the tube, the source is positioned to the side

as shown in Fig. 5. This change is not of predominant importance as only low-frequency

plane-waves are considered, below the cut-off frequency of the tube.

B. Data processing

For frequencies below the cut-off frequency fc, the pressure at point j and angular fre-

quency ω is the sum of the forward and backward plane waves:

pj(ω) = Π+(ω)eik0x
(j)
2 + Π−(ω)e−ik0x

(j)
2 , (15)

where Π± are the complex amplitudes of the forward and backward propagating waves. The

measurements at the different points j can be combined in matrix form:

p1

p2

...

pN


=


eik0x

(1)
2 e−ik0x

(1)
2

eik0x
(2)
2 e−ik0x

(2)
2

...
...

eik0x
(N)
2 e−ik0x

(N)
2


 Π+(ω)

Π−(ω)

⇔ p = [E]Π . (16)

The complex amplitudes Π+(ω) and Π−(ω) can be retrieved by inverting the system of Eq.

(16),

Π = ˜[E]p . (17)

As the system is of dimension dim [E] = 2 × N , its pseudo-inverse is computed using the

generalised Moore–Penrose inverse44,45. It is based on the singular value decomposition

(SVD)30 so that ˜[E] = V[S]−1U?, where [S] is the matrix of singular values, [U ] and [V ]

the left- and right-singular vectors respectively. The superscripts ? and ˜ denote the complex

conjugation and pseudo-inverse respectively. The complex reflection coefficient is obtained

from the ratio of the two complex amplitudes:

R(ω) = Π+/Π− ∈ C , (18)

and the absorption coefficient is given by Eq. (10).

V. RESULTS AND DISCUSSIONS

In this section, results are presented in terms of absorption, comparing numerical predic-

tions with experimental data. Moreover, the internal acoustic fields for the pressure p and
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particle velocity v are discussed based on the FEM simulations.

A. Maximised broadband absorption

We optimise the aforementioned macro- and micro-geometries, as defined by Eq. (11),

so as to maximise the acoustic absorption between fmin and fmax. The predicted and mea-

sured acoustic absorption of the optimal metaporous surface are given in Fig. 6(c). For

comparison, we also show the absorption results for two other cases: first, the porous ma-

terial alone in the absence of inclusion, and a case where the SRRs are replaced by rigid

circular inclusions (non-resonant). These configurations are investigated numerically and

experimentally in Fig. 6(a) and Fig. 6(b) respectively. The geometric parameters of the

optimised metaporous surface are given in Tab. I.
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Figure 6. Measured and predicted absorption coefficients. (a) Porous material alone, (b) porous

material with circular inclusions, (c) porous material with SRR.

Looking at Fig. 6(a,b), the experimental results and simulated predictions are in very

good agreement. We notice small discrepancies which can emerge from a combination of

distinct phenomena in Fig. 6(c). The viscous and thermal losses inside the SRR cavities are

16



not accounted for in the numerical simulations, and as discussed in Sec. II the manufacturing

process induces defects to the micro-structure of the porous material and to the geometry of

the resonators. When the physics of the system is driven at the local scale (in the presence

of SRR), it is very sensitive to small manufacturing defects. This is the reason why the

discrepancies are much more visible in Fig. 6(c) for the SRR, than in Fig. 6(a,b) for the

porous layer and the non-resonant inclusions.

F ψ
(1)
a (deg) ψ

(2)
a (deg) R

(1)
in (mm) R

(2)
in (mm) R

(1)
out (mm) R

(2)
out (mm) h̄(1) h̄(2)

0.40 33 10 5.3 6.1 6.1 6.9 0.35 0.21

Table I. Geometric parameters of the optimised metaporous surface.

Experimentally the system with non-resonant circular inclusions reaches quasi-perfect

absorption α ≈ 0.985 at the frequency f = (2100 ± 20) Hz in Fig. 6(b). This absorption

peak reveals the presence of a trapped mode that confines the acoustic energy between

the rigid backing and the periodic inclusions. For the SRR configuration in Fig. 6(c),

three distinct peaks of absorption are observed. Over the frequency range of optimisation,

we experimentally reach a mean absorption of αavg ≈ 0.82, with quasi-perfect absorption

α ≥ 0.999 at f = (1720± 20) Hz. This corresponds to a sub-wavelength regime as L ≈ λ/8.

To gain more insight into the physical mechanisms responsible for these three peaks, it is

useful to analyse the corresponding fields of acoustic pressure and particle velocity provided

by the FEM model and presented in Fig. 7.

B. Internal fields and couplings

When excited at normal incidence and in the absence of inclusion, the transverse particle

velocity v1 is zero. In this case, only the properties in the normal direction e2 of the equivalent

fluid are contributing to the acoustic behaviour of the homogeneous porous layer. In our

case, the periodic inclusions introduce resonances and trapped modes that couple the velocity

field in both its normal and transverse directions. The FEM provides the complete solution

to the anisotropic Helmholtz equation within the metaporous surface and one can retrieve

the internal fields. We use these fields to better understand the behaviour of the metaporous

surface illustrated in Fig. 6. More precisely, we focus on the first peaks at f1 = (1700±50) Hz
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and f3 = (3400 ± 50) Hz which correspond to the resonances of the SRRs. The peak at

f2 = (2850 ± 50) Hz is the trapped mode which increases the energy located between

the inclusions and the rigid backing. From the results in the aforementioned Fig. 6, the

absolute scattered pressure |ps| is minimised in Ω0 at those frequencies (since the reflection

is minimised). Along with the pressure field, the normal and transverse components of the

acoustic particle velocity shown in Fig. 7 exhibit the couplings introduced by the SRRs.
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Figure 7. (Color online) Internal fields for acoustic pressure (a,d,g), transverse (b,e,h) and normal

(c,f,i) particle velocity. Top row (a,b,c) shows the fields for the Mode 1 at f = 1650 Hz, middle

row (d,e,f) shows the fields at Mode 2, with f = 2850 Hz and bottom row (g,h,i) shows the fields

at Mode 3, f = 3400 Hz. The colorbar on the bottom-left corner relates the pressure fields (a,d,g)

while the colormap on the bottom-right corner is attributed to velocity fields (b,c,e,f,h,i). The

latter is intentionally saturated as the lower bound is limited to three orders of magnitude below

the maximal value of the field.

Regarding the mode at f1, we see in Fig. 7(a) that the largest values of pressure are

confined within Ω
(2)
c , which correspond to the resonance of this SRR at that particular

frequency. This resonance induces a strong particle velocity in the neck Ω
(2)
n of the resonator,

as shown in Fig. 7(b). At frequency f2, the excess pressure is trapped between the rigid

backing at Γ0 and the rigid SRR Ω
(1)
r . This trapped mode is clearly visible on the pressure
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field in Fig. 7(d) as the strong values of pressure indicates the presence of this localised

mode. For the mode at frequency f3, we observe large values of pressure within the SRR

cavity Ω
(1)
c in Fig. 7(g). Again, the high values of normal particle velocity in Fig. 7(h)

highlight this resonance phenomena at frequency f3.

Although the metaporous surface is excited by a monochromatic plane wave at normal

incidence, the resonators introduce a strong coupling in the porous domain Ωe between

the normal and transverse directions. The Figs. 7(b,c,e,f,h,i) show the decimal logarithm

of normal and transverse velocity fields within the metaporous surface. We notice that

both transverse and normal velocity fields are of the same orders of magnitude, between

10−4 m.s−1 and 10−1 m.s−1. Thus, the normal and transverse properties of the equivalent

fluid, which are encapsulated in the mass density tensor [ρ], are both contributing to the

overall acoustic behaviour of the metaporous surface.

VI. CONCLUSIONS

Porous materials and metamaterials are commonly used in acoustics, for absorption and

insulation purposes. In this work, we propose an optimal design of resonant metaporous

surface for acoustic absorption purposes. The proposed solution consists in the periodic

embedding of multiple split-ring resonators in a transverse isotropic porous layer. By tuning

the macro-geometry of rigid resonators as well as the micro-geometry of the porous medium,

we maximise the absorption in the frequency range between 1 and 4 kHz. The metaporous

surface provides strong broadband absorption capabilities and subwavelength quasi-perfect

absorption.

The numerical simulations based on FEM provide a predictive model for the reflection

and absorption coefficients. This predictive model is used in the cost function for the minimi-

sation algorithm, whose goal is to maximise the absorption in a target range of frequencies.

Experiments have been conducted in an impedance tube with a square cross section.

They provide a validation of the numerical model, as the experimental data are in good

agreement with the simulated results. Additive manufacturing techniques have proved their

ability to build resonant metaporous surfaces.

The present work demonstrates the capabilities of metaporous surfaces for absorbing

sound waves, and highlights the use of additive manufacturing for such acoustic treatments.
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While the design and manufacturing of materials incorporating inclusions is usually tedious,

the solutions presented here are fabricated in a single stage. In addition to offering a solution

that is easy and quick to implement, this first prototype was developed at low cost, although

this is slightly higher than for conventional porous materials.

Several points of this work provide perspectives for future work. Accounting for the

oblique incidences would make it possible to obtain optimal structures for applications in

diffuse acoustic fields, which however requires particular attention to the experimental val-

idation. Finally, the optimisation of the shape and number of inclusions could offer more

possibilities regarding the compromise between structural dimensions and frequency range

of absorption.

APPENDIX A: VALIDATION OF THE NUMERICAL MODEL

The FEM model is compared to two other approaches in order to validate the simulation

results when considering anisotropic porous materials and in presence of inclusions.

A. Transfer matrix method

The acoustic wave propagation in a homogeneous porous medium can be derived using

the well known transfer matrix method (TMM)46. Using the state-vector formalism, applied

to the acoustic pressure and the normal component of velocity we introduce W = {p, v2}T .

The acoustic fields satisfy the following differential system of equations

∂x2W − iω

 0 H−1
22

B−1
eq 0

W = 0 , (19)

with Beq the equivalent bulk modulus, possibly accounting for out-of-plane rotations and

oblique incidence. H22 is the apparent inverse mass density in the normal direction35,36.

As the normal particle velocity v2 is imposed to be zero on the interface Γ0, we have the

boundary condition W|Γ0 = {p, 0}T . The state vector can then be calculated using matrix

exponentials:  1 +R

(R− 1)/Z


ΓL

= [M ]

 p(0)

0


Γ0

, (20)
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with Z = (ρ0c0)/ sin(θ) and [M ] the matricant47,48. From the differential system of equa-

tions, the reflection coefficient is obtained as

R =

(
M11

M21

Z + 1

)
/

(
M11

M21

Z − 1

)
, (21)

and the absorption coefficient is α = 1 − |R|2. The JCAL parameters of the homogeneous

isotropic porous material are given in Tab. II.

φ Θ0[×10−8m2] τ∞1 τ∞2 Λ1[×10−4m] Λ2[×10−4m] Λp[×10−4m] K0
1 [×10−9m2] K0

2 [×10−8m2]

0.800 2.538 1.139 1.864 2.758 3.710 3.799 4.669 1.812

Table II. JCAL parameters of the homogeneous transverse isotropic porous material in the direc-

tions e1 and e2.

For this case of numerical validation, we consider a porous layer of thickness L2 = 25 mm.

The results in Fig. 8 show the comparison of FEM and TMM results for different angles of

incidence.
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Figure 8. (Color online) Comparison of FEM and TMM results, for angles of incidence θ = π/2

(a), θ = π/3 (b), θ = π/4 (c), and θ = π/6 (d).
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The results are in excellent agreement, showing that both methods can be used to describe

the propagation of waves in an homogeneous and anisotropic porous material.

B. Multiple scattering theory

In the particular case where the porous layer is isotropic and the inclusions are cylindrical,

the multiple scattering theory (MST) provides an analytical description of the acoustic

fields. As this theory is not the centrepiece of this work, it is only briefly presented in

this appendix for validation purposes. The total acoustic field is a superposition of the

undisturbed (meaning incident, in absence of inclusions) and scattered fields49. The scattered

field emerges from the collective effect produced by the interactions of the undisturbed field

with every obstacle. In response to the undisturbed acoustic excitation, every obstacle

contributes to the global scattered field. For every obstacle, a local description of the

scattered field in polar coordinates system leads to cylindrical wave functions, i.e. Bessel

and Hankel functions. The Bloch wave decomposition provides a solution for the total field

as previously explained in Sec. III. In order to compare the FEM results to the MST

solutions, we consider a simple geometry shown in Fig. 9.

L2

L1

2rL1/2

L2/2
Ωj,0 Ωj,1Ωj,−1

Figure 9. (Color online) Geometry of a one-dimensional periodic lattice with a cylindrical inclusion

embedded in an isotropic homogeneous porous material.

The geometric parameters of the periodic array are L1 = 42 mm, L2 = 25 mm and

r = 9 mm. The JCAL parameters of the homogeneous isotropic porous material are given

in Tab. III.
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Figure 10. (Color online) Comparison of FEM and MST results, for angles of incidence θ = π/2

(a), θ = π/3 (b), θ = π/4 (c), and θ = π/6 (d).

φ Θ0[×10−9m2] τ∞ Λ[×10−4m] Λ′[×10−4m] K0[×10−9m2]

0.800 8.353 1.218 2.172 3.568 3.089

Table III. JCAL parameters of the homogeneous isotropic porous material.

The results in Fig. 8 show the comparison of FEM and MST results for different angles

of incidence. The results provided by the FEM and the MST are in excellent agreement,

thus demonstrating the Wood anomaly at high frequencies, in Fig. 10(c,d).
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ABBREVIATIONS

– by order of appearance:

FDM Fused deposition modeling

FEM Finite element method

SRR Split-ring resonator

PLA Polylactic acid

STL Standard tessellation language

CNC Computer numerical control

JCAL Johnson-Champoux-Allard-Lafarge

PML Perfectly matched layer

SVD Singular value decomposition

TMM Transfer matrix method

MST Multiple scattering theory
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6N. Jiménez, W. Huang, V. Romero-Garćıa, V. Pagneux, and J.-P. Groby, “Ultra-thin

metamaterial for perfect and quasi-omnidirectional sound absorption,” Applied Physics

Letters 109, 121902 (2016), https://doi.org/10.1063/1.4962328.
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