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EXISTENCE OF SOLUTIONS FOR A SYSTEM INVOLVING THE

(2,Q)-LAPLACIAN OPERATOR IN A BOUNDED DOMAIN

LAURE CARDOULIS*

Abstract. In this paper we study the existence of a non trivial weak solution

for a system involving the Laplacian operator and the q-Laplacian operator in
a bounded domain Ω of RN with sufficiently smooth boundary.

1. Introduction

We consider in this paper the following system for i = 1, · · · ,m,{
−∆ui −∆qui + wi|ui|q−2ui +

∑m
j=1 aijuj = gi(., u1, · · · , um) in Ω,

ui = 0 on ∂Ω.
(S, q, g)

where Ω is a bounded domain with sufficiently smooth boudary, Ω ⊂ RN .
We recall that the q-Laplacian operator is defined by ∆qφ = div(|∇φ|q−2∇φ) and
we suppose q > 2 in the whole paper. We study the existence of a weak non-trivial
solution u = (u1, · · · , um) ∈W for the system (S, q, g) where the variational space

is W = (W 1,q
0 (Ω))m, W 1,q

0 (Ω) being the usual Sobolev space endowed with the

norm ‖φ‖1,q0 (Ω) = (
∫

Ω
|∇φ|q)1/q. We also denote H = (W 1,2

0 (Ω))m and ‖.‖W , ‖.‖H ,
the norms on W and H (‖u‖W = (

∑m
i=1 ‖ui‖

q

W 1,q
0 (Ω)

)1/q).

We assume throughout all the paper that the bounded functions aij , wi (for
i, j = 1, · · · ,m) satisfy the following hypothesis

Assumption 1.1. i): aij , wi ∈ L∞(Ω), aii ≥ 0, wi ≥ 0 a. e. on Ω.
ii): The matrix A = (aij) is symmetric and satisfies tξAξ ≥ 0 for all tξ =

(ξ1, · · · , ξm) ∈ Rm.

Note that the above Assumption 1.1ii) is satisfied when the matrix A is a positive
definite one. Introduce now the following functionals for u = (u1, · · · , um) ∈W

H1(u) =

m∑
i=1

∫
Ω

(|∇ui|2 + aiiu
2
i +

m∑
j=1,i6=j

aijujui), (1.1)

and

H2(u) =

m∑
i=1

∫
Ω

(|∇ui|q + wi|ui|q). (1.2)

Since A is symmetric then H1(u) =
∑m
i=1

∫
Ω

(|∇ui|2 + aiiu
2
i + 2

∑m
j=1,i<j aijujui).

Note that (H1(u))1/2 and (H2(u))1/q define norms on H and W equivalent to the
norms ‖.‖H and ‖.‖W respectively.
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We consider different cases for the functions gi : in the second section we deal with
gi(., u1, · · · , um) := hi ∈ W−1,q′(Ω) the dual space of W 1,q

0 (Ω) with 1
q + 1

q′ = 1.

In the third section, we define gi(., u1, · · · , um) := mi|ui|q−2ui where the func-
tions mi are bounded and indefinite. In the fourth section we consider the case
gi(., u1, · · · , um) := λfi|ui|γ−2ui where the functions fi are still bounded and un-
definite, λ is a positive real parameter and the coefficient γ satisfies some hypotheses
in which γ < q.

In each of the precedent cases, the system (S, q, g) will be rewritten under a
variational form with I(u) an adapted Euler functional defined in W and the exis-
tence of weak solutions for the system (S, q, g) will be equivalent to the existence
of critical points for this functional I. In the second and third sections, we will
mimimize the Euler functional I using either standard arguments (cf. Theorem
I.1.2 in [18]) or the Moutain-Pass Theorem. In the third section, we will use the
principal eigenvalue λ1,q,ρ of the q-Laplacian operator associated with a weight ρ
whereas in the fourth section we will define a characteristic value λ+

1 (see (4.7)).

Equations and systems with the p-Laplacian have been widely studied for the
existence of solutions or the maximum and antimaximum principles (see for ex-
amples [3, 9, 10, 11, 12, 13], see also [14] for the fibering procedure). These last
few years, equations with the (p,q)-Laplacian have been studied (see for examples
[4, 6, 15, 19, 21] in a bounded domain and [5] in RN ). Authors study the exis-
tence of solutions (sometimes the sign of these solutions and generalized eigenvalue
problems) mainly by minimization of the energy functional either by standard ar-
guments or the mountain-pass geometry, also by using the method of sub- and
super-solutions. The case of the (2,q)-Laplacian arises in quantum physics (see
[2]). A few systems with two equations have been studied (see for example [16] for
a system with two equations, one with the p-Laplacian and the other one with the
q-Laplacian ; see also [20] for a system of two equations with the (p,q)-Laplacian
with critical nonlinearities) but as far as we know, there is no system with m equa-
tions for the (2,q)-Laplacian studied yet.

This paper is organised as follows: in section 2, we use standard arguments for
minimizing the functional I when we consider the case where gi(., u1, · · · , um) :=

hi ∈ W−1,q′(Ω). In section 3 (in the case of gi(., u1, · · · , um) := mi|ui|q−2ui and
q < 2∗ where 2∗ = 2N

N−2 if N > 2 and 2∗ =∞ if N ≤ 2), first we recall some results
of the existence of the principal eigenvalue for the q-Laplacian operator associated
with a bounded weight (and the existence of a positive eigenfunction associated
with). Then we use the Mountain-Pass Theorem in order to get the existence of a
non-trivial solution for our system. Finally in section 4 (when gi(., u1, · · · , um) :=
λfi|ui|γ−2ui with 2 < γ < q and γ < 2∗ where 2∗ = 2N

N−2 if N > 2 and 2∗ = ∞
if N ≤ 2), first we follow a method introduced by Cherfils-Il’Yasov in [7] for one
equation involving the (p-q)-Laplacian operator to define a characteristic value λ+

1 .
Then we get the existence of a non-trivial solution by means of global minimization
of the Euler functional.



EXISTENCE OF SOLUTIONS FOR A SYSTEM INVOLVING THE (2,Q)-LAPLACIAN 3

2. First case: gi(., u1, · · · , um) := hi ∈W−1,q′(Ω)

In this case the system (S, q, g) is rewritten under the following form{
−∆ui −∆qui + wi|ui|q−2ui +

∑m
j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,
(2.1)

with hi ∈ W−1,q′(Ω) for each i = 1, · · · ,m. Recall that −∆q may be seen acting

from W 1,q
0 (Ω) into W−1,q′(Ω) with 1

q + 1
q′ = 1 by

< −∆qφ, ψ >q′,q=

∫
Ω

|∇φ|q−2∇φ · ∇ψ for all φ, ψ ∈W 1,q
0 (Ω)

(see [8, 17]) where < ., . >q′,q denotes the duality mapping between W−1,q′(Ω) and

W 1,q
0 (Ω). Therefore the Euler functional is, for u = (u1, · · · , um) ∈W,

I(u) =
1

2
H1(u) +

1

q
H2(u)−

m∑
i=1

< hi, ui >q′,q . (2.2)

The result of the existence of solution for the system (2.1) is the following.

Theorem 2.1. Assume that Assumption 1.1 is satisfied and that hi ∈ W−1,q′(Ω)
for each i = 1, · · · ,m. Then the system (2.1) has a unique solution.

Proof. The functional I : W → R defined by (2.2) is weakly lower semi-continuous
by the compactness of the embedding of W to (Lq(Ω))m and (L2(Ω))m and of
class C1 on W. Moreover this functional I is also coercive. Indeed by the Young’s
inequality we have

| < hi, ui >q′,q | ≤ ‖hi‖W−1,q′ (Ω)‖ui‖W 1,q
0 (Ω) ≤

1

2q
‖ui‖qW 1,q

0 (Ω)
+ C‖hi‖q

′

W−1,q′ (Ω)

with C > 0, C independent of u. And since H1(u) ≥ 0 and H2(u) ≥ ‖u‖W we get
that

I(u) ≥ 1

2q
‖u‖W − C

m∑
i=1

‖hi‖q
′

W−1,q′ (Ω)
.

Therefore the functional I has a gobal minimizer (cf.[18, Theorem I.1.2]) and the
system (2.1) has a solution.
Let us prove now the uniqueness of the solution. Suppose on the contrary that
there exist two distinct solutions u = (u1, · · · , um) ∈W and v = (v1, · · · , vm) ∈W
for (2.1), so there exists k such that uk 6= vk. Since

(I ′(u)− I ′(v)) · (u− v) = I ′(u) · u− I ′(v) · u− I ′(u) · v + I ′(v) · v = 0,

we have
m∑
i=1

∫
Ω

|∇ui|2 +

m∑
i,j=1

∫
Ω

aijujui +

m∑
i=1

∫
Ω

(|∇ui|q + wi|ui|q)

−
m∑
i=1

∫
Ω

∇vi · ∇ui −
m∑

i,j=1

∫
Ω

aijvjui −
m∑
i=1

∫
Ω

(|∇vi|q−2∇vi · ∇ui + wi|vi|q−2viui)

−
m∑
i=1

∫
Ω

∇ui · ∇vi −
m∑

i,j=1

∫
Ω

aijujvi −
m∑
i=1

∫
Ω

(|∇ui|q−2∇ui · ∇vi + wi|ui|q−2uivi)
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+

m∑
i=1

∫
Ω

|∇vi|2 +

m∑
i,j=1

∫
Ω

aijvjvi +

m∑
i=1

∫
Ω

(|∇vi|q + wi|vi|q) = 0.

So we get
m∑
i=1

∫
Ω

∇ui · (∇ui−∇vi)+

m∑
i,j=1

∫
Ω

aijuj(ui−vi)+

m∑
i=1

∫
Ω

|∇ui|q−2∇ui · (∇ui−∇vi)

+

m∑
i=1

∫
Ω

wi|ui|q−2ui(ui − vi)−
m∑
i=1

∫
Ω

∇vi · (∇ui −∇vi)−
m∑

i,j=1

∫
Ω

aijvj(ui − vi)

−
m∑
i=1

∫
Ω

|∇vi|q−2∇vi · (∇ui −∇vi)−
m∑
i=1

∫
Ω

wi|vi|q−2vi(ui − vi) = 0.

Thus
m∑
i=1

∫
Ω

|∇ui −∇vi|2 +

m∑
i=1

∫
Ω

(|∇ui|q−2∇ui − |∇vi|q−2∇vi) · (∇ui −∇vi)

+

m∑
i,j=1

∫
Ω

aij(uj − vj)(ui − vi) +

m∑
i=1

∫
Ω

wi(|ui|q−2ui − |vi|q−2vi)(ui − vi) = 0.

The last equality can be rewritten under the following form with the duality product
m∑
i=1

< −∆ui + ∆vi, ui − vi >2,2 +

m∑
i=1

< −∆qui + ∆qvi, ui − vi >q′,q

+

m∑
i,j=1

< aij(uj−vj), ui−vi >2,2 +

m∑
i=1

< wi(|ui|q−2ui−|vi|q−2vi), ui−vi >q′,q= 0.

Moreover a consequence of the strict convexity of the spaces W 1,2
0 (Ω) and W 1,q

0 (Ω)
is that the duality mappings −∆ and −∆q are strictly monotone. So from uk 6= vk
we get

< −∆uk + ∆vk, uk − vk >2,2> 0,

and

< −∆quk+∆qvk, uk−vk >q′,q≥ (‖uk‖q−1

W 1,q
0 (Ω)

−‖vk‖q−1

W 1,q
0 (Ω)

)(‖uk‖W 1,q
0 (Ω)−‖vk‖W 1,q

0 (Ω)) ≥ 0

since x 7→ xq−1 is increasing on [0,∞) (and even < −∆quk+∆qvk, uk−vk >q′,q> 0
from [8, Proposition 1]).
Thus

m∑
i=1

< −∆ui + ∆vi, ui − vi >2,2 +

m∑
i=1

< −∆qui + ∆qvi, ui − vi >q′,q> 0.

Furthermore, since the function x 7→ |x|q−2x is increasing and wi ≥ 0, we have
m∑
i=1

< wi(|ui|q−2ui − |vi|q−2vi), ui − vi >q′,q≥ 0.

Finally from Assumption 1.1,
m∑

i,j=1

< aij(uj − vj), ui − vi >2,2≥ 0.

Therefore we get a contradiction. �
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Remark: We can generalize Theorem 2.1 replacing the 2-Laplacian operator
by the p-Laplacian with 2 < p < q, that for the following system{

−∆pui −∆qui + wi|ui|q−2ui +
∑m
j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,

and even for{
−∆pui −∆qui + bi|ui|p−2ui + wi|ui|q−2ui +

∑m
j=1 aijuj = hi in Ω,

ui = 0 on ∂Ω,

under the additional hypothesis that the bounded functions bi, i = 1, · · · ,m are
non-negative.

3. Second case: gi(., u1, · · · , um) := mi|ui|q−2ui

In this section we assume that

Assumption 3.1. q < 2∗ where 2∗ = 2N
N−2 if N > 2 and 2∗ =∞ if N ≤ 2,

and we rewrite the system (S, q, g) under the following form:
for i = 1, · · · ,m,{

−∆ui −∆qui + wi|ui|q−2ui +
∑m
j=1 aijuj = mi|ui|q−2ui in Ω,

ui = 0 on ∂Ω.
(3.1)

Note that the decomposition with the weights ci := mi − wi does not necessarily
coincide with the decomposition ci = ci+ − ci− where ci+ = max(ci, 0) and ci− =
max(−ci, 0). Define now for u = (u1, · · · , um) ∈W the functional

M(u) =

m∑
i=1

∫
Ω

mi|ui|q. (3.2)

The Euler functional associated with (3.1) is consequently for u = (u1, · · · , um) ∈
W,

I(u) =
1

2
H1(u) +

1

q
H2(u)− 1

q
M(u). (3.3)

First let us recall the usual weighted eigenvalue problem for the q-Laplacian:{
−∆qu = λρ|u|q−2u in Ω,
u = 0 on ∂Ω,

(3.4)

with a bounded weight function ρ and a real parameter λ. It is said that λ is an
eigenvalue of the q-Laplacian associated with the weight ρ if (3.4) has a non-trivial
solution u which is called an eigenfunction associated with λ. It is well known (see
[1]) that if the Lebesgue measure of {x ∈ Ω, ρ(x) > 0} is positive, then the first
positive eigenvalue λ1,q,ρ of −∆q with weight function ρ is obtained by the Rayleight
quotient

λ1,q,ρ = inf{
∫

Ω
|∇u|q∫

Ω
ρ|u|q

;u ∈W 1,q
0 (Ω),

∫
Ω

ρ|u|q > 0}. (3.5)

Moreover, λ1,q,ρ has a positive eigenfunction φ1,q,ρ ∈ C
1,αq
0 (Ω) (for some αq ∈

(0, 1)). Assume in this section that

Assumption 3.2. i): For all i = 1, · · · ,m, mi ∈ L∞(Ω),
ii): For all i = 1, · · · ,m, the real 1 is not an eigenvalue of the q-Laplacian

with the weight mi − wi.
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Assume also in this section that either Assumption 3.3 or Assumption 3.4 holds

Assumption 3.3. There exists k ∈ {1, · · · ,m} such that:

meas{x ∈ Ω, (mk − wk)(x) > 0} 6= 0 and λ1,q,mk−wk < 1.

Assumption 3.4. There exist k, l ∈ {1, · · · ,m}, k 6= l such that:

meas{x ∈ Ω, (mk−wk)(x) > 0} 6= 0 and λ1,q,mk−wk+

∫
Ω

(wl−ml)|φ1,q,mk−wk |q < 0

with φ1,q,mk−wk the normalized eigenfunction associated with λ1,q,mk−wk .

Note that Assumption 3.4 is satisfed when λ1,q,mk−wk(mk − wk) + wl −ml < 0
a. e. in Ω. Our aim is to study the existence of a weak solution for the system (3.1)
by minimizing the functional I defined by (3.3). As in section 2, the functional I
is weakly lower semi-continous on W but may be no more coercive so we cannot
use standard arguments for minimizing I. First, we prove that any Palais-Smale
sequence is bounded in W and has a strong convergent subsequence. Then we are
able to apply the Mountain-Pass Lemma and Assumptions 3.3 or 3.4 allow us to
get a non-trivial solution.

We say that (un) ⊂ W, un = (u1n, · · · , umn), is a Palais-Smale sequence if it
satisfies the following conditions

|I(un)| ≤ D for all n ∈ N and ‖I ′(un)‖W∗ → 0 as n→∞ (3.6)

with some constant D > 0, W ∗ being the dual space of W.

Lemma 3.1. Assume that Assumptions 1.1 and 3.2 are satisfied. If (un) ⊂ W,
un = (u1n, · · · , umn), is a Palais-Smale sequence, then (un) is bounded in W.

Proof. Let (un) ⊂ W, un = (u1n, · · · , umn), be a Palais-Smale sequence. We want
to prove that (‖un‖W )n is bounded or equivalently that (H2(un))n is bounded. But

1

q
H2(un) = I(un)−1

2
H1(un)+

1

q
M(un) ≤ D+

1

q
M(un) ≤ D+C‖un‖q(Lq(Ω))m (3.7)

with C a positive constant, C independent of un (since the functions mi are
bounded in the functional M(u) defined by (3.2)). So it is sufficient to show that
(‖un‖(Lq(Ω))m) is bounded. We adapt ideas from [19]. Assume on the contrary

that αn := ‖un‖(Lq(Ω))m →n→∞ ∞ (for a subsequence) and denote vn = 1
αn
un =

(v1n, · · · , vmn). From (3.7), we deduce that (‖vn‖W ) is bounded and from the com-
pact embedding of W into (Lq(Ω))m we get the existence of v0 = (v01, · · · , v0m) ∈
W such that (vn) converges to v0, strongly in (Lq(Ω))m and weakly in W (for a
subsequence).
• Now we prove that (vn) converges strongly to v0 in W. Indeed by taking
φn := 1

αq−1
n

(vn − v0), we obtain

I ′(un).φn =
1

αq−1
n

m∑
i=1

∫
Ω

(∇uin.∇(vin − v0i) + aiiuin(vin − v0i))

+
1

αq−1
n

m∑
i=1

∫
Ω

(|∇uin|q−2∇uin.∇(vin − v0i) + wi|uin|q−2uin(vin − v0i))
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+
1

αq−1
n

∑
i,j;i 6=j

∫
Ω

aijujn(vin − v0i)−
1

αq−1
n

m∑
i=1

∫
Ω

mi|uin|q−2uin(vin − v0i). (3.8)

But un = αnvn so (3.8) becomes

I ′(un).φn =
1

αq−2
n

m∑
i=1

∫
Ω

(∇vin.∇(vin − v0i) + aiivin(vin − v0i))

+

m∑
i=1

∫
Ω

(|∇vin|q−2∇vin.∇(vin − v0i) + wi|vin|q−2vin(vin − v0i))

+
1

αq−2
n

∑
i,j;i6=j

∫
Ω

aijvjn(vin − v0i)−
m∑
i=1

∫
Ω

mi|vin|q−2vin(vin − v0i). (3.9)

Note that |I ′(un).φn| ≤ ‖I ′(un)‖W∗‖φn‖W = ‖I ′(un)‖W∗ 1

αq−1
n
‖vn − v0‖W so

I ′(un).φn →n→∞ 0 from (3.6), αn →n→∞ ∞ and (‖vn‖W ) bounded. Moreover,
since the functions aij , wi,mi are bounded there exists a positive constant, denot-
ing C at each step, such that

|
∫

Ω

aijvjn(vin − v0i))| ≤ C‖vjn‖L2(Ω)‖vin − v0i‖L2(Ω) ≤ C‖vn‖W ‖vn − v0‖(Lq(Ω))m

and therefore ∫
Ω

aijvjn(vin − v0i))→ 0 as n→∞. (3.10)

By the same way, for bi = wi or bi = mi,

|
∫

Ω

bi|vin|q−2vin(vin−v0i))| ≤ C(

∫
Ω

|vin|q)
q−1
q (

∫
Ω

|vin−v0i|q)1/q ≤ C‖vn‖q−1
W ‖vn−v0‖(Lq(Ω))m

so ∫
Ω

bi|vin|q−2vin(vin − v0i))→ 0 as n→∞. (3.11)

Recall that < ., . >q′,q is the duality product between W−1,q′(Ω) and W 1,q
0 (Ω) with

1
q + 1

q′ = 1. From (3.9), (3.10), (3.11), we deduce that

1

αq−2
n

m∑
i=1

< −∆vin, vin − v0i >2,2 +

m∑
i=1

< −∆qvin, vin − v0i >q′,q→ 0 as n→∞.

(3.12)
Moreover we have (see also the proof of Theorem 2.1)

< −∆qvin+∆qv0i, vin−v0i >q′,q≥ (‖vin‖q−1

W 1,q
0 (Ω)

−‖v0i‖q−1

W 1,q
0 (Ω)

)(‖vin‖W 1,q
0 (Ω)−‖v0i‖W 1,q

0 (Ω)) ≥ 0

(3.13)
and

< −∆vin+∆v0i, vin−v0i >2,2= ‖vin−v0i‖2W 1,2
0 (Ω)

≥ (‖vin‖W 1,2
0 (Ω)−‖v0i‖W 1,2

0 (Ω))
2.

(3.14)
From (3.13) and (3.14) we get

0 ≤
m∑
i=1

(‖vin‖q−1

W 1,q
0 (Ω)

− ‖v0i‖q−1

W 1,q
0 (Ω)

)(‖vin‖W 1,q
0 (Ω) − ‖v0i‖W 1,q

0 (Ω))

+
1

αq−2
n

m∑
i=1

(‖vin‖W 1,2
0 (Ω) − ‖v0i‖W 1,2

0 (Ω))
2
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≤ 1

αq−2
n

m∑
i=1

< −∆vin, vin − v0i >2,2 +

m∑
i=1

< −∆qvin, vin − v0i >q′,q

+

m∑
i=1

< ∆qv0i, vin − v0i >q′,q +
1

αq−2
n

m∑
i=1

< ∆v0i, vin − v0i >2,2 .

Because the right-hand side of the above estimate tends to 0 as n tends to infinity
(from (3.12) and the weak convergence of (vn) to v0 in W ) we obtain that for
i = 1, · · · ,m, ‖vin‖W 1,q

0 (Ω) → ‖v0i‖W 1,q
0 (Ω) as n → ∞ and therefore (vn) strongly

converges to v0 in W.
• Finally, we prove that v0i is a non-trivial solution of the eigenvalue problem of
the q-Laplacian with weight mi − wi for at least one i.
Let φ = (φ1, · · · , φm) ∈ W. Taking 1

αq−1
n

φ as a test function, since un = αnvn, we

have

I ′(un).
1

αq−1
n

φ =
1

αq−2
n

m∑
i=1

∫
Ω

(∇vin.∇φi +

m∑
j=1

∫
Ω

aijvjnφi)

+

m∑
i=1

∫
Ω

(|∇vin|q−2∇vin.∇φi + wi|vin|q−2vinφi −mi|vin|q−2vinφi).

Letting n→∞, we see that for each i = 1, · · · ,m, v0i is a weak solution to{
−∆qv0i + wi|v0i|q−2v0i = mi|v0i|q−2v0i in Ω
v0i = 0 on ∂Ω

. (3.15)

Since ‖vn‖(Lq(Ω))m = 1 and (vn) converges strongly to v0 in W we get that ‖v0‖W ≥
1. Therefore there exists i such that v0i is a non-trivial solution of (3.15). This
contradicts Assumption 3.2. �

Lemma 3.2. Assume that Assumptions 1.1 and 3.2 are satisfied. If (un) ⊂ W,
un = (u1n, · · · , umn), is a Palais-Smale sequence, then (un) has a strong convergent
subsequence in W.

Proof. Let (un) be a Palais-Smale sequence in W , un = (u1n, · · · , umn). By Lemma
3.1, the sequence (un) is bounded in W. From the compact embedding of W 1,q(Ω)
into Lq(Ω) we get the existence of u0 = (u01, · · · , u0m) ∈ W such that (un) con-
verges to u0 strongly in (Lq(Ω))m and weakly in W (for a subsequence still denoted
by (un)). We want to prove that ‖un‖W → ‖u0‖W as n → ∞ and we proceed as
in the proof of Lemma 3.1.
Since |I ′(un).(un − u0)| ≤ ‖I ′(un)‖W∗(‖un‖W + ‖u0‖W ) we deduce that

I ′(un).(un − u0)→ 0 as n→∞. (3.16)

But

I ′(un).(un − u0) =

m∑
i=1

∫
Ω

(∇uin · ∇(uin − u0i) +

m∑
j=1

aijujn(uin − u0i))

+

m∑
i=1

∫
Ω

(|∇uin|q−2∇uin.∇(uin − u0i) + (wi −mi)|uin|q−2uin(uin − u0i)).

As in Lemma 3.1, denoting bi either wi or mi, we have for i, j = 1, · · · ,m,,∫
Ω

bi|uin|q−2uin(uin − u0i))→ 0 as n→∞,
∫

Ω

aijujn(uin − u0i))→ 0 as n→∞.

(3.17)
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From (3.16) and (3.17), we get that
m∑
i=1

< −∆uin, uin − u0i >2,2 +

m∑
i=1

< −∆quin, uin − u0i >q′,q→ 0 as n→∞.

Moreover we have

0 ≤
m∑
i=1

(‖uin‖q−1

W 1,q
0 (Ω)

− ‖u0i‖q−1

W 1,q
0 (Ω)

)(‖uin‖W 1,q
0 (Ω) − ‖u0i‖W 1,q

0 (Ω))

+

m∑
i=1

(‖uin‖W 1,2
0 (Ω) − ‖u0i‖W 1,2

0 (Ω))
2

≤
m∑
i=1

< −∆uin, uin − u0i >2,2 +

m∑
i=1

< −∆quin, uin − u0i >q′,q

+

m∑
i=1

< ∆qu0i, uin − u0i >q′,q +

m∑
i=1

< ∆ui, uin − u0i >2,2 .

As in Lemma 3.1 we deduce that for i = 1, · · · ,m, ‖uin‖W 1,q
0 (Ω) → ‖u0i‖W 1,q

0 (Ω) as

n→∞ and therefore (un) strongly converges to u0 in W. �

So we can state the main result of this section

Theorem 3.1. Assume that Assumptions 1.1, 3.1 and 3.2 are satisfied. Assume
also that either Assumption 3.3 or 3.4 holds. Then the system (3.1) has a non-
trivial solution in W.

Proof. The C1-functional I satisfies the Palais-Smale conditions and I(0) = 0.
• First, we claim that there exist positive constants ρ∗ > 0 and δ > 0 such that
I(u) ≥ δ for any u = (u1, · · · , um) ∈W satisfying ‖u‖W = ρ∗.
Let u = (u1, · · · , um) ∈ W. Put ρ = ‖u‖W and note that H1(u) ≥ ‖u‖2H and
H2(u) ≥ ρq.
Moreover, since q < 2∗, for i = 1, · · · ,m,

|
∫

Ω

mi|ui|q| ≤ (

∫
Ω

|mi|r)1/r(

∫
Ω

|ui|qt)1/t with
1

r
+

1

t
= 1 and s := qt < 2∗.

From the continous embedding of W 1,2(Ω) ⊂ Ls(Ω) we deduce the existence of a
positive constant C1 such that |

∫
Ω
mi|ui|q| ≤ C1‖ui‖qW 1,2(Ω). Thus

|M(u)| ≤ C1‖u‖qH
and

I(u) ≥ 1

q
ρq +

1

2
‖u‖2H(1− 2C1

q
‖u‖q−2

H ).

Recall also that there exists a positive constant C2 > 0 such that ‖u‖H ≤ C2‖u‖W
for all u ∈W.
Therefore if ρ ≤ ρ∗ := 1

C2

(
q

2C1

) 1
q−2

, then 1 − 2C1

q ‖u‖
q−2
H ≥ 1 − 2C1

q (C2ρ)q−2 ≥ 0

and

I(u) ≥ 1

q
ρq := δ.

• Assume here that Assumption 3.3 is satisfied with k = 1 for simplicity.
Let φ1,q,m1−w1 be the normalized eigenfunction associated with λ1,q,m1−w1 (i. e. be
such that

∫
Ω

(m1 − w1)|φ1,q,m1−w1
|q = 1, we may choose such φ1,q,m1−w1

because
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the equation (3.4) is homogeneous). Denote Φq = (φ1,q,m1−w1
, 0, · · · , 0) and take

R sufficiently large such that ‖RΦq‖W > ρ∗. We have from (3.4) and (3.5)

I(RΦq) =
R2

2
H1(Φq) +

Rq

q

∫
Ω

(|∇φ1,q,m1−w1
|q + (w1 −m1)|φ1,q,m1−w1

|q)

=
R2

2
H1(Φq) +

Rq

q

∫
Ω

(λ1,q,m1−w1
(m1 − w1) + w1 −m1)|φ1,q,m1−w1

|q.

So, since λ1,q,m1−w1 < 1,

I(RΦq) =
R2

2
H1(Φq) +

Rq

q
(λ1,q,m1−w1 − 1) < 0

for R sufficiently large.Therefore we can apply the mountain-pass theorem to de-
duce that I has a non-trivial critical point which is a non-trivial weak solution of
the system (3.1).
• Assume now that Assumption 3.4 is satisfied with k = 1 and l = 2 for simplicity.
Denote again φ1,q,m1−w1 the normalized eigenfunction associated with λ1,q,m1−w1

such that
∫

Ω
(m1−w1)|φ1,q,m1−w1

|q = 1 and denote here Ψq = (0, φ1,q,m1−w1
, 0, · · · , 0).

Take R sufficiently large such that ‖RΨq‖W > ρ∗. We have here

I(RΨq) =
R2

2
H1(Ψq) +

Rq

q

∫
Ω

(|∇φ1,q,m1−w1
|q + (w2 −m2)|φ1,q,m1−w1

|q)

=
R2

2
H1(Ψq) +

Rq

q

∫
Ω

(λ1,q,m1−w1
(m1 − w1) + w2 −m2)|φ1,q,m1−w1

|q.

From Assumption 3.4, we get that I(RΨq) < 0 for R sufficiently large.Therefore,
as in the precedent case, we apply the mountain-pass theorem and deduce that I
has a non-trivial critical point. �

Remark: As in section 2, we can generalize Theorem 3.1 replacing the 2-
Laplacian operator by the p-Laplacian with 2 ≤ p < q for the following system{
−∆pui −∆qui + bi|ui|p−2ui + λwi|ui|q−2ui +

∑m
j=1 aijuj = λmi|ui|q−2ui in Ω,

ui = 0 on ∂Ω,

under the additional hypotheses that the bounded functions bi, i = 1, · · · ,m are
non-negative and λ is a real parameter. Then the hypothesis ii) in Assumption
3.2 is replaced by λ is not an eigenvalue of −∆q associated with mi − wi for
each i. Moreover the hypothesis λ1,q,mk−wk < 1 in Assumption 3.3 is replaced
by λ1,q,mk−wk < λ.

4. Third case: gi(., u1, · · · , um) := λfi|ui|γ−2ui

In this section we rewrite the system (S, q, g) under the following form:
for i = 1, · · · ,m,{

−∆ui −∆qui + wi|ui|q−2ui +
∑m
j=1 aijuj = λfi|ui|γ−2ui in Ω,

ui = 0 on ∂Ω.
(4.1)

We assume throughout all this section that the indefinite bounded functions fi and
the coefficients γ and q satisfy the following hypotheses

Assumption 4.1. i): 2 < γ < q,
ii): γ < 2∗ where 2∗ = 2N

N−2 if 2 < N and 2∗ =∞ if 2 ≥ N,
iii): For each i = 1, · · · ,m, fi ∈ L∞(Ω) and meas{x ∈ Ω, fi(x) > 0} 6= 0.
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We also define the functionals

F (u) =

m∑
i=1

∫
Ω

fi|ui|γ (4.2)

and

Iλ(u) =
1

2
H1(u) +

1

q
H2(u)− λ

γ
F (u) (4.3)

where H1 and H2 are respectively defined by (1.1) and (1.2). We recall that we
study here the existence of a weak non-trivial solution u = (u1, · · · , um) ∈ W for
the system (4.1) with respect to the real positive parameter λ and that the existence
of weak solutions for the system (4.1) is equivalent to the existence of critical points
for the Euler functional Iλ. The main result is the existence of a weak non-trivial
solution for the system (4.1) associated with λ > λ+

1 where λ+
1 is defined by (4.7).

For the first part of this section we follow a method developed by Cherfils-Il’Yasov
in [7] for one equation with the (p,q)-Laplacian operator. This method is based on
proving the existence of solution for λ = λ+

1 then on applying the mountain-pass
theorem for λ > λ+

1 . Although we also could apply the mountain-pass theorem for
our case, we will use in fact standard arguments to minimize the functional Iλ.

In section 4.1 we present some preliminary results: we define λ+
1 and we prove the

existence of a solution for the system (4.1) for λ = λ+
1 . The section 4.2 is devoted

to the main theorem of the existence of a solution for the system (4.1) associated
with λ > λ+

1 .

4.1. Some preliminaries results. As in [7] we define for λ > 0, t > 0 and u ∈W,
Ĩλ(t, u) = Iλ(tu).

Lemma 4.1. Assume that Assumptions 1.1, 4.1 i), 4.1 iii) are satisfied. For given
u in W,u 6= 0 such that F (u) 6= 0, the unique solution (t(u), λ(u)) of the system{

∂
∂t Ĩλ(t, u) = 0
∂2

∂t2 Ĩλ(t, u) = 0
is given by

t(u) =

(
γ − 2

q − γ

) 1
q−2
(
H1(u)

H2(u)

) 1
q−2

> 0, λ(u) = Cq,γ
H1(u)αH2(u)1−α

F (u)
(4.4)

with

α =
q − γ
q − 2

, Cq,γ =
q − 2

(q − γ)α(γ − 2)1−α . (4.5)

Proof. The system (S)

{
∂
∂t Ĩλ(t, u) = 0
∂2

∂t2 Ĩλ(t, u) = 0
is equivalent to the system{

tH1(u) + tq−1H2(u)− λtγ−1F (u) = 0
H1(u) + (q − 1)tq−2H2(u)− λ(γ − 1)tγ−2F (u) = 0

and to the following system{
H1(u) + tq−2H2(u)− λtγ−2F (u) = 0
H1(u) + (q − 1)tq−2H2(u)− λ(γ − 1)tγ−2F (u) = 0

.

Therefore

(q − 2)tq−2H2(u)− λ(γ − 2)tγ−2F (u) = 0. (4.6)



12 LAURE CARDOULIS

Note that the system (S) is not solvable in the case where u ∈ W, u 6= 0 satisfies
F (u) = 0 (since if u 6= 0, then H2(u) 6= 0 and from (4.6) we deduce F (u) 6= 0).
We deduce that

λ =
(q − 2)tq−2H2(u)

(γ − 2)tγ−2F (u)
.

Replacing λ by (q−2)tq−2H2(u)
(γ−2)tγ−2F (u) in H1(u) + tq−2H2(u)− λtγ−2F (u) = 0, we get that

tq−2 = (γ−2
q−γ )H1(u)

H2(u) . And we obtain (4.4) associated with (4.5). �

Thus we can define the following characteristic points (recall that F is defined
by (4.2))

Λ+
1 = inf{λ(u), u ∈W,F (u) > 0} and λ+

1 =
γ

2αq1−αΛ+
1 . (4.7)

Lemma 4.2. Assume that Assumptions 1.1 and 4.1 are satisfied.
We have 0 < Λ+

1 < λ+
1 .

Proof. Let u = (u1, · · · , um) ∈W be such that F (u) > 0.
First from γ < 2∗, let (t, l) be such that γ < t < 2∗ and 1

l + γ
t = 1. Since

W 1,2
0 (Ω) ⊂ Lt(Ω) with a continuous embedding and since the functions fi are

bounded, there exist positive constants still denoting C at each step and depending
on some Sobolev constants, such that for i = 1, · · · ,m

|
∫

Ω

fi|ui|γ | ≤ (

∫
Ω

|fi|l)1/l(

∫
Ω

|ui|t)γ/t ≤ C‖ui‖γLt(Ω) ≤ C‖ui‖
γ

W 1,2
0 (Ω)

.

Then

F (u) ≤ CH1(u)γ/2.

By the same way, from γ < q, let s = q
γ and r be such that 1

s + 1
r = 1.

Then we have

|
∫

Ω

fi|ui|γ | ≤ m(

∫
Ω

|fi|r)1/r(

∫
Ω

|ui|γs)1/s ≤ C‖ui‖γLq(Ω) ≤ C‖ui‖
γ

W 1,q
0 (Ω)

and

F (u) ≤ CH2(u)γ/q.

Therefore there exists a positive constant C ′, independent of u, such that

λ(u) = Cq,γ
H1(u)αH2(u)1−α

F (u)
≥ C ′Cq,γ

F (u)
2α
γ F (u)

q(1−α)
γ

F (u)
= C ′Cq,γ

since 2α
γ + q(1−α)

γ = 1. Thus Λ+
1 > 0.

Finally we prove that Λ+
1 < λ+

1 .
Indeed note that λ+

1 > Λ+
1 ⇔

γ
2αq1−αΛ+

1 > Λ+
1 ⇔ (γ2 )q−2 > ( q2 )γ−2.

Denote µ = q−2
2 > 0 and η = γ−2

2 > 0. Since 2 < γ < q we have µ > η. Moreover

the function f defined by f(x) = (1 + x)1/x, is strictly decreasing on (0,∞). Then
(1 + µ)1/µ < (1 + η)1/η. And we get that ( q2 )γ−2 < (γ2 )q−2. So Λ+

1 < λ+
1 . �

We obtain now the following result that will enable us to get the existence of a
non-trivial solution for the system (4.1) associated with λ+

1 .
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Proposition 4.1. Assume that Assumptions 1.1 and 4.1 are satisfied. Assume
that u = (u1, · · · , um) ∈ W satisfies F (u) 6= 0 and λ′(u) = 0 (i.e. u is a critical
point of λ(u)). Then ũ = (ũ1, · · · , ũm) ∈ W is a non-trivial solution of the system

(4.1) associated with λ̃ = γ
2αq1−αλ(u) where for all i = 1, · · · ,m, ũi = 1

sui and
1
s = ( q2 )

1
q−2 t(u) > 0. Moreover Iλ̃(ũ) = 0.

Proof. Let u = (u1, · · · , um) ∈W which satisfies F (u) 6= 0 and λ′(u) = 0.
For all test function φ, we have

∂λ

∂u1
(u) · φ = 0.

So

2Cq,γα(H1(u))α−1(H2(u))1−α(F (u))−1

∫
Ω

(∇u1 · ∇φ+ a11u1φ+

m∑
j=2

a1jujφ)

+qCq,γ(1− α)(H1(u))α(H2(u))−α(F (u))−1

∫
Ω

(|∇u1|q−2∇u1 · ∇φ+ w1|u1|q−2u1φ)

−γCq,γα(H1(u))α(H2(u))1−α(F (u))−2

∫
Ω

f1|u1|γ−2u1φ = 0.

And

2Cq,γα

(
H1(u)

H2(u)

)α−1 ∫
Ω

(∇u1 · ∇φ+ a11u1φ+

m∑
j=2

a1jujφ)

+qCq,γ(1− α)

(
H1(u)

H2(u)

)α ∫
Ω

(|∇u1|q−2∇u1 · ∇φ+ w1|u1|q−2u1φ)

−λ(u)γ

∫
Ω

f1|u1|γ−2u1φ = 0.

Define ũi = 1
sui for i = 1, · · · ,m, s > 0 and H(u) = H1(u)

H2(u) . Then

2Cq,γα(H(u))α−1s

∫
Ω

(∇ũ1 · ∇φ+ a11ũ1φ+

m∑
j=2

a1j ũjφ)

+Cq,γ(1− α)(H(u))αqsq−1

∫
Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ(u)γsγ−1

∫
Ω

f1|ũ1|γ−2ũ1φ = 0.

And equivalently

2Cq,γα(H(u))α−1s2−γ
∫

Ω

(∇ũ1 · ∇φ+ a11ũ1φ+

m∑
j=2

a1j ũjφ)

+Cq,γ(1− α)(H(u))αqsq−γ
∫

Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ(u)γ

∫
Ω

f1|ũ1|γ−2ũ1φ = 0.

Multiplying this last equation by 1
2αq1−α and denoting λ̃ = γ

2αq1−αλ(u) we get(
2(q − γ)

q(γ − 2)H(u)

) γ−2
q−2

s2−γ
∫

Ω

(∇ũ1 · ∇φ+ a11ũ1φ+

m∑
j=2

a1j ũjφ)
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+

(
q(γ − 2)H(u)

2(q − γ)

) q−γ
q−2

sq−γ
∫

Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ̃
∫

Ω

f1|ũ1|γ−2ũ1φ = 0.

Choosing s =
(

2(q−γ)
q(γ−2)H(u)

) 1
q−2

we obtain∫
Ω

(∇ũ1 · ∇φ+ a11ũ1φ+

m∑
j=2

a1j ũjφ) +

∫
Ω

(|∇ũ1|q−2∇ũ1 · ∇φ+ w1|ũ1|q−2ũ1φ)

−λ̃
∫

Ω

f1|ũ1|γ−2ũ1φ = 0.

Doing the same for ũi, i = 2, · · · ,m, we get that ũ = (ũ1, · · · , ũm) is a weak solu-

tion of (4.1) associated with λ̃.

Now we prove that Iλ̃(ũ) = 0.

Recall that ũ = 1
su and λ̃ = γ

2αq1−αλ(u). Then we have

Iλ̃(ũ) =
H1(u)

2s2
+
H2(u)

qsq
− Cq,γH1(u)αH2(u)1−α

2αq1−αsγ
.

Denoting r =
Cq,γH1(u)αH2(u)1−α

2αq1−αsγ , since 1
s = ( q2 )

1
q−2 t(u) > 0 and α = q−γ

q−2 we get

Iλ̃(ũ) = r

[
1

Cq,γ

(
qH1(u)

2H2(u)

)1−α (q
2

)α−1

(t(u))2−γ +
1

Cq,γ

(
2H2(u)

qH1(u)

)α (q
2

)α
(t(u))q−γ − 1

]
.

But t(u) =
(
γ−2
q−γ

) 1
q−2
(
H1(u)
H2(u)

) 1
q−2

> 0 and Cq,γ = q−2
(q−γ)α(γ−2)1−α so

Iλ̃(ũ) = r

[
q − γ
q − 2

+
γ − 2

q − 2
− 1

]
= 0.

�

Proposition 4.2. Assume that Assumptions 1.1 and 4.1 are satisfied and
0 < λ < Λ+

1 . Then the system (4.1) has no non-trivial solution in W associated
with λ.

Proof. Assume that 0 < λ < Λ+
1 . Assume also that the system (4.1) has a non-

trivial solution u = (u1, · · · , um) ∈W associated with λ. Then we have
H1(u) +H2(u) = λF (u). Note that this is impossible if F (u) ≤ 0.

Therefore assume now that F (u) > 0.

Recall that Ĩλ(t, v) = Iλ(tv) = t2

2 H1(v) + tq

q H2(v) − λtγ

γ F (v) for all t > 0 and

v ∈ W. We have ∂
∂t Ĩλ(t, v) = tH1(v) + tq−1H2(v) − λtγ−1F (v) and in particular,

since u is a weak solution of (4.1), note that

∂

∂t
Ĩλ(‖u‖, 1

‖u‖
u) = I ′λ(u) · 1

‖u‖
u = 0.

Moreover we have ∂
∂t Ĩλ(t, v) = tγ−1Rλ(t, v) with

Rλ(t, v) = t2−γH1(v) + tq−γH2(v)− λF (v).
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Let v ∈ W be such that v 6= 0 and F (v) > 0. Note that from Lemma 4.1 we have
Rλ(v)(t(v), v) = 0.
Moreover we can prove that Rλ(t, v) ≥ Rλ(t(v), v) for all t > 0.
Indeed let f(t) = t2−γH1(v) + tq−γH2(v). The function f admits a global mini-

mum on t(v) on (0,∞) so f(t) ≥ f(t(v)) =
(
H1(v)
α

)α (
H2(v)
1−α

)1−α
> 0. Therefore

Rλ(t, v) ≥ Rλ(t(v), v) for all t > 0.
Finally since λ < Λ+

1 ≤ λ(v), we get that Rλ(t, v) > Rλ(v)(t, v) for all t > 0. Thus

Rλ(t, v) ≥ Rλ(t(v), v) > Rλ(v)(t(v), v) = 0 and ∂
∂t Ĩλ(t, v) = ∂

∂tIλ(tv) > 0 for all
t > 0.
So, choosing t = ‖u‖ and v = 1

‖u‖u, we get a contradiction since ∂
∂t Ĩλ(‖u‖, 1

‖u‖u) =

0. �

Now we obtain a minimizer for Λ+
1 .

Proposition 4.3. Assume that Assumptions 1.1 and 4.1 are satisfied. There exists
v = (v1, · · · , vm) ∈W such that λ(v) = Λ+

1 .

Proof. First note that λ(tu) = λ(u) for all t > 0 and u ∈W.
Define t̃(u) = 1

((H1(u))α(H2(u))1−α)
1
γ

for u ∈W \ {0} and note that

(H1(t̃(u)u)α(H2(t̃(u)))1−α = 1.

Therefore we can derive that

Λ+
1 = inf{λ(u), u ∈W such that F (u) > 0 and H1(u)αH2(u)1−α = 1}.

Then we consider a minimizing sequence (vn) of Λ+
1 .

We have γ = 2α+ q(1− α), so

‖vn‖γH = ‖vn‖2αH ‖vn‖
q(1−α)
H

and since W ⊂ H with a continuous embedding, there exists a positive constant C
such that

‖vn‖γH ≤ C‖vn‖
2α
H ‖vn‖

q(1−α)
W .

But H1 and H2 are equivalent norms respectively in H and W so we get that

‖vn‖γH ≤ C(H1(vn))α(H2(vn))1−α = C

(for a positive constant C). We deduce that (vn) is a bounded sequence in H. By

the compact embedding W 1,2
0 (Ω) ⊂ Lγ(Ω) (for γ < 2∗), we get the existence of

v = (v1, · · · , vm) ∈ H such that (vn) converges to v, strongly in (Lγ(Ω))m and
weakly in H (for a subsequence).

Afterwards we prove that F (v) > 0, v ∈ W and since H1 and H2 are weakly
lower semi-continous in H and W respectively, we get that λ(v) = Λ+

1 .

Indeed, since F is a continuous function and F (vn) > 0, F (vn) →n→∞ F (v),

we have F (v) ≥ 0. Moreover, if F (v) = 0, then λ(vn) =
Cq,γ
F (vn) →n→∞ ∞. This

contradicts λ(vn)→n→∞ Λ+
1 . So F (v) > 0 and v 6= 0.

Now we prove that v ∈W. Recall that (vn) is a bounded sequence in H and that
(vn) converges to v 6= 0 strongly in (Lγ(Ω))m. So there exists a positive constant C ′
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such that ‖vn‖(Lγ(Ω))m ≥ C ′ > 0 for n large enough. Therefore, from the continu-
ous embedding H ⊂ (Lγ(Ω))m, we get that ‖vn‖H ≥ C ′ > 0 for n large enough.

Finally from ‖vn‖H ≥ C ′ > 0 and ‖vn‖2αH ‖vn‖
(1−α)q
W ≤ C we obtain that (vn) is a

bounded sequence in W . Therefore (vn) admits a subsequence, still denoted (vn)
such that (vn) converges to v strongly in (Lγ(Ω))2 and weakly in W. Thus v ∈W.

Finally we prove that λ(v) = Λ+
1 .

From the weakly semi-continuousness of H1 and H2 respectively on H and W we
have

H1(v) ≤ lim inf H1(vn) and H2(v) ≤ lim inf H2(vn).

But λ(vn) =
Cq,γ
F (vn) =

Cq,γ(H1(vn))α(H2(vn))1−α

F (vn) →n→∞ Λ+
1 . Passing to the limit inf

as n tends to ∞ we get that Λ+
1 ≥

Cq,γ(H1(v))α(H2(v))1−α

F (v) = λ(v). We deduce that

λ(v) = Λ+
1 .

This concludes the proof. �

Contrary to [7], we are not able to prove that the minimizer v is non-negative
because of the coupling terms aijvjvi in H1(v). Finally combining Propositions 4.1
and 4.3, since v (defined by Proposition 4.3) is a critical point of λ(u), we derive
the existence of a non-trivial weak solution u+ = (u+

1 , · · · , u+
m) for the system (4.1)

associated with λ+
1 . This is the following result

Proposition 4.4. Assume that Assumptions 1.1 and 4.1 are satisfied.
There exists u+ = (u+

1 , · · · , u+
m) ∈ W a non-trivial solution for the system (4.1)

associated with λ+
1 . Moreover Iλ+

1
(u+) = 0 and F (u+) > 0.

Proof. From Proposition 4.3 we have λ(v) = Λ+
1 = inf{λ(u), u ∈ W,F (u) > 0}.

Thus v is a critical point of the function λ on W. From Proposition 4.1 we derive
that there exists a non-trivial solution u+ = (u+

1 , · · · , u+
m) of system (4.1) associated

with γ
2αq1−αλ(v) = λ+

1 where for all i = 1, · · · ,m, u+
i = 1

svi and 1
s = ( q2 )

1
q−2 t(v) > 0.

Moreover from Proposition 4.1, Iλ+
1

(u+) = 0 and from Proposition 4.3, F (u+) =
1
sγ F (v) > 0. �

4.2. Main result.

Theorem 4.1. Assume that Assumptions 1.1 and 4.1 are satisfied. If λ > λ+
1 ,

then the system (4.1), associated with λ, admits a non-trivial solution in W.

Proof. Even if we could follow [7] for proving this result using the mountain-
pass theorem, we use here standard arguments by global minimization of the C1-
functional Iλ. Note that Iλ is weakly lower semi-continuous by the compact em-
bedding of W into (Lq(Ω))m and (L2(Ω))m. Moreover Iλ is coercive: indeed for
any u ∈W,

Iλ(u) ≥ 1

q
H2(u)− λ

γ
F (u).

Since |F (u)| ≤ C‖u‖γW with C a positive constant, we get that

Iλ(u) ≥ 1

q
‖u‖qW

(
1− λCq

γ
‖u‖γ−qW

)
.
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Thus Iλ is coercive. Furthermore from Proposition 4.4, we have Iλ+
1

(u+) = 0 and

F (u+) > 0. Finally from the hypothesis λ > λ+
1 , we get that Iλ(u+) < Iλ+

1
(u+) = 0.

Therefore we deduce that Iλ has a non-trivial critical point which is a non-trivial
weak solution of the system (4.1) associated with λ. �

Remarks: We can get the same results for a larger class of coefficients, assuming
that aij , wi, fi ∈ Lr(Ω) for some r > 1 as in [7]. But we have not been able to adapt
this method for a system with a (p,q)-Laplacian operator (with p 6= 2) and even for
a non-symmetric system with a (2,q)-Laplacian operator. However in the particular
case where the matrix A is not symmetric and has the following form: A = (aij)
with aj1 = Ka1j for j = 2, · · · ,m for some positive constant K > 0 (K independent
of j) and aij = aji for i, j ≥ 2, we can generalize all the above results. Indeed we
introduce the diagonal matrix D = (dij) with d11 = K, dii = 1 for i = 2, · · · ,m
and dij = 0 if i 6= j. We replace the functionals H1, H2 and F (defined before by
(1.1),(1.2),(4.2)) by

H2(u) =

m∑
i=1

dii

∫
Ω

(|∇ui|q + wi|ui|q), F (u) =

m∑
i=1

dii

∫
Ω

fi|ui|γ ,

H1(u) =

m∑
i=1

dii

∫
Ω

(|∇ui|2 + aiiu
2
i +

m∑
j=1,i6=j

aijujui),

H1(u) =

m∑
i=1

dii

∫
Ω

|∇ui|2 +

∫
Ω

tUDAU withtU = (u1, · · · , um).

Therefore if we assume that the matrixDA satisfies the following hypothesis tξDAξ ≥
0 for all tξ = (ξ1, · · · , ξm) ∈ Rm, we still derive that the Euler functional Iλ defined
by (4.3) (with the new functionals H1, H2 and F ) is associated with the system
(4.1) and the existence of weak solutions for the system (4.1) is equivalent to the
existence of critical points for Iλ. Finally note that we obtain the existence of a
non-trivial solution for (4.1) in Theorem 4.1 but contrary to [7], due to the coupling
terms, we are not able to get the existence of a non-negative solution.
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[9] Drábek, P—Hernández, J:Existence and uniqueness of positive solutions for some quasilinear

elliptic problems, Nonlinear Analysis 44 (2001), 189–204.

[10] Clément, P—Fleckinger, J.— Mitidieri, E.—de Thélin, F.: Existence of positive solutions for
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