Bandwidth-unlimited polarization-maintaining metasurfaces - Archive ouverte HAL Access content directly
Journal Articles Science Advances Year : 2021

Bandwidth-unlimited polarization-maintaining metasurfaces

Q Song
  • Function : Author
S Khadir
  • Function : Author
S Vézian
  • Function : Author
B Damilano
P D Mierry
  • Function : Author
S Chenot
  • Function : Author
V Brandli
  • Function : Author

Abstract

Any arbitrary state of polarization of light beam can be decomposed into a linear superposition of two orthogonal oscillations, each of which has a specific amplitude of the electric field. The dispersive nature of diffractive and refractive optical components generally affects these amplitude responses over a small wavelength range, tumbling the light polarization properties. Although recent works suggest the realization of broadband nanophotonic interfaces that can mitigate frequency dispersion, their usage for arbitrary polarization control remains elusively chromatic. Here, we present a general method to address broadband full-polarization properties of diffracted fields using an original superposition of circular polarization beams transmitted through metasurfaces. The polarizationmaintaining metasurfaces are applied for complex broadband wavefront shaping, including beam deflectors and white-light holograms. Eliminating chromatic dispersion and dispersive polarization response of conventional diffractive elements lead to broadband polarization-maintaining devices of interest for applications in polarization imaging, broadband-polarimetry, augmented/virtual reality imaging, full color display, etc.
Fichier principal
Vignette du fichier
Song-ScienceAdvance.pdf (1.47 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03436097 , version 1 (19-11-2021)

Identifiers

  • HAL Id : hal-03436097 , version 1

Cite

Q Song, S Khadir, S Vézian, B Damilano, P D Mierry, et al.. Bandwidth-unlimited polarization-maintaining metasurfaces. Science Advances , 2021. ⟨hal-03436097⟩
9 View
18 Download

Share

Gmail Mastodon Facebook X LinkedIn More