N
N

N

HAL

open science

APPLICATIONS OF CARLEMAN INEQUALITIES
FOR A TWO-BY-TWO PARABOLIC SYSTEM IN AN
UNBOUNDED GUIDE

Laure Cardoulis

» To cite this version:

Laure Cardoulis. APPLICATIONS OF CARLEMAN INEQUALITIES FOR A TWO-BY-TWO
PARABOLIC SYSTEM IN AN UNBOUNDED GUIDE. Rostock. Math. Kollog, 2020. hal-03436095

HAL Id: hal-03436095
https://hal.science/hal-03436095

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03436095
https://hal.archives-ouvertes.fr

APPLICATIONS OF CARLEMAN INEQUALITIES FOR A TWO-BY-TWO
PARABOLIC SYSTEM IN AN UNBOUNDED GUIDE

LAURE CARDOULIS*

ABSTRACT. In this article we consider the inverse problem of determining some of the coefficients
of a two-by-two parabolic system defined on an unbounded guide. Using an adapted Carleman
estimate, we establish local stability results for at least two coefficients of this system in any
finite portion of the guide. These estimates are obtained with data of the solution at a fixed
time and boundary measurements for observations.

1. INTRODUCTION

Let w be a bounded connex domain in R*™1, n > 2 with C? boundary. Denote  := R x w,
Q=02x(0,T) and X = 9Q x (0,T). We consider the following system
Ou—Au+au+bv=g; in Q,
Ow—Av+cu+dv=gy in Q,
u=h; and v =hy on X%,
u(z,0) = up(z) and v(x,0) = vo(z) in Q,
where a, b, ¢, d are bounded coefficients defined on €2 such that
a,b,c,d € A(Mp) := {f € L=(Q), | fllz () < Mo} for some My > 0.
Our inverse problem is to estimate at least two coefficients between a, b, ¢, d from the data of the
solution (u,v) at T'/2 and the measurement of (u,v) on a part of the boundary.
We will consider (u,v) (resp. (u,?)) a solution of (1.1) associated with (a, b, ¢, d, ug, vo, g1, g2,

hi, he) (resp. (@, b, ¢, d, ug, 0o, g1, g2, h1, h2)) and two positive reals I, L such that [ < L. Denote
Qp = (-L,L) xw and = (=1,1) x w.

The first result of this paper gives a Holder result (3.3) for the coeflicients b and c¢ in the case where
a = a, d = d and is the following (see Theorem 3.1)

(1.1)

= ~ -, T ., T
[b— bH%?(Ql) + e — CHQL?(QZ) <K <|(U —a)(., 5)”%12(9“ + [[(v = 2)(., 5)”%12(9“

2 K

+ > (10, (0f (w =) +10,(9f (v = 9))|*) do dt)
v %x(0,T) .—g

where K is a positive constant, x € (0,1), v, is a part of the boundary (see (2.2)), and assuming

that the hypothesis (3.2) is satisfied.

The second result (3.15) of this paper is also a Hoélder stability result for the four coefficients

a, b, c,d (see Theorem 3.2)

la — 5||2L2(Ql) + b - bH%Z(Ql) + e - 5||2L2(Ql) +d - d”QL?(Ql)
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1 1
., T -, T
< K (u 20w =) ) B + 12 0@ = D) ) s
2

k=0 k=0

«f
YL X(07T) k=0

with stronger hypotheses (3.13) and (3.14) than those in Theorem 3.1 (see (3.2)).
The third theorem of this paper gives a Holder stability result (3.34) (see Theorem 3.3) for the
following reaction-diffusion system

(10, (0F (u — @))* + 10, (07 (v — 0))[*) do dt)

Ou—Au+au+bv+ Ay -Vu+ As - Vo=g¢g; in Q,
Ow—Av+cu+dv+ Az -Vu+ Ay - Vo =gy in Q,
u=h; and v =hy on X%,

u(z,0) = up(z) and v(x,0) = vo(z) in Q,

(1.2)

where all the coefficients a,b, ¢, d, Ay, As, A3, Ay are bounded (a,b,c,d € A(My) and Ay, As, Az,
Ay € A(Mo)" N HY(Q)™). We obtain a stability result for the coefficients b and A3 (assuming Az
has the form As = Vg) with the same kind of observations in the right-hand side of (3.34) as we
have obtained in (3.3) or (3.15). Assuming that the Assumptions (3.32) and (3.33) hold, we get
the following result

b — b||2L2(Ql) + |45 — A3H(2L2(Ql))"

-, T -, T
<K Zaf(u —a)(, 5)“%{?(%) + | Z@f(v —=0)(., §)|\12L13(QL)
k=0 k=0

+/ > (10,(0f (u = @))* + 10, (0f (v = 8))|?) dov dt) :

Of course each of these above stability results implies an uniqueness result.

Up to our knowledge, there are few results concerning the simultaneous identification of more than
one coefficient in each equation (see for example [1] and also [5] where the authors give a stability
result for the diffusion coefficient a and the potential b of the Schrédinger operator i9,q+aAq+bq).
In previous papers, stability results have been obtained for parabolic systems but, as far as we
know, these papers have investigated the case of bounded domains and have given results with
observations on a subdomain of their domain ([1, 7]...). Furthermore, there is no result for a two-
by-two parabolic system with only one observation on a part of the boundary and without any data
of the solution at a fixed time even in a bounded domain. We will use here the global Carleman
estimate (2.5) for one equation given in [3] based on a classical Carleman estimate given in [12, 13].
Our choice of weight functions is adapted for this unbounded domain but will give us Hélder, and
not Lipschitz, estimates of the coefficients. Recall that the method using Carleman estimates for
solving inverse problems has been initiated by [2]. Our results extend to a system previous results
for one equation defined on an unbounded guide (see [3] for the heat operator d;u — Au + qu and
[4] for the heat operator d;u — V - (cVu) where stability results are given either for the potential
g or for the diffusion coefficient c).

This Paper is organized as follows. In section 2, we specify the weight functions used for our
Carleman estimate (cf (2.1), (2.3)) and due to the particular symmetric form of these weight
functions with respect to z; and ¢t —T'/2 we recall from [3] the inequality (2.4), crucial for our final
estimates (3.3), (3.15) and (3.34). Then in section 3 we state and prove our stability results, first
for the coefficients b, ¢, after for a,b, ¢,d and finally for b, A3.
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2. CARLEMAN ESTIMATE

Denote Qr = Qp x (0,T7) = (=L, L) x w x (0,T), . = (w1, -+ ,xy) € R, &' = (x2, -+ ,z,) and
define the operator
Au = Oyu — Au.
Let [ > 0, following [3] in this section, we consider some positive real L > [ and choose a € R™ \
such that if
d(z) = |2’ —a'|? — 22 for z € Qr, then d > 0 in Q, |Vd| > 0 in Qf. (2.1)
Moreover define
' ={x€0Qr, <z—a,v(z)>>0}and vy, =T NN (2.2)

Here < .,. > denotes the usual inner product in R” and v(z) the outward unit normal vector to
08, at x. Notice that vz, does not contain any cross section of the guide. From [12] we consider
weight functions as follows: for ¢ € (0,T), if My > supge,op(t — T/2)* = (T/2)?,

2
O(z,t) = d(z) — <t — Z) + M, and ¢(z,t) = V@D, (2.3)

The constant A > 0 will be set in Proposition 2.2 and is usually used as a large parameter in
Carleman inequalities. Since we will not use it, we will consider X fixed in the article. We recall
from [3] the following result.

Proposition 2.1. There exists T > 0, L > 1, a € R?\ Q and € > 0 such that (2.1) holds and,
setting

Ore= (L x((0,26) U (T —2¢,T)))U(((-L,—L+26) U (L —2¢, L)) xw x (0,T)),

we have

di < dp < do (24)
where
. T T
do = inf ¢(., =), di = sup ¢ and ds = sup ¢(., =).
Q 2 Or,c [ 2
We will use the following notations: Let @ = (aq,- -, ay,) be a multi-index with a; € NU {0}.

We set 03 = 07" --- 09", |a| = aq + - - - + @, and define
H*'(Qr) = {u € L*(Q1), 070" u € L*(Qr), la| + 2041 < 2}
endowed with its norm
[l Fn(qp) = Z 10207 ullZ2 (g
e[ +200 41 <2
We recall here a global Carleman-type estimate proved in [3], based on a classical Carleman

estimate (see Yamamoto [12, Theorem 7.3]).

Proposition 2.2. There exist a value of A > 0 and positive constants sop and C = C (A, sg) such
that

1 .
I(u) := / <S¢(|8tu|2 + |Aul?) + s¢ |Vul? + 5‘3¢3|u2) e ?dzx dt

S C”BSd)AU”%z(QL) + 053628d1 ||U||§_I2,1(QL) + CS/ |8yu|2€25¢d0 dt, (25)
'YLX(OvT)
for all s > sy and all u € H>Y(Qyr) satisfying u(.,0) = u(.,T) =0 in Qr, u =0 on I x (0,T).
We denote d,u = v - Vu.
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In fact the above Proposition 2.2 is still valid for a more general function u: we can replace the
condition v = 0 on 02 x (0,T") in Proposition 2.2 by u =0 on (022N 0NL) x (0,T).
Since the method of Carleman estimates requires several time differentiations, we assume in the
following that u, v (resp. @, ) belong to H = H3(0,T, H3(£2)) satisfying the a-priori bound
llullg < My and ||v]|y < Ma for given My > 0.
From now on, we use the notation w(%) = w(., 2) for any function w.
3. INVERSE PROBLEMS

3.1. The first result. Consider here (u,v) (resp. (@,v)) a strong solution of (1.1) associated with
(a, b, ¢, d, ug, vo, g1, g2, h1, he) (resp. (a, b, ¢, d, ug, Vg, g1, g2, h1, h2)). Assume that all the
coefficients a, b, ¢, d, b, ¢ belong to A(Mj). From [8, Lemma 4.2], we derive the following result, also
used in [3]

Lemma 3.1. There exist some positive constants C, sy such that

C
/ 628¢(%)|Z(T/2)|2d$ < Cs/ X092z dx dt + —/ 9|0, 2| du dt,
s

L QL QL

for all s > s1 and z € H(0,T; L*(21)).
For the sake of completeness, we recall its proof.

Proof. Consider 1 defined by (3.4) and any w € H*(0,T;L?(€21)). Since n(%) =1 and n(0) = 0,

we have

T/2
/Q e T/2) e = /QL(U(T/Q)w(x,Tﬂ)) di — /QL / Q2 (D w(z, H)P)dt da

T/2 T/2
= 2/ / (z,t)Opw(x, t)dx dt—|—2/ / )0 (t)|w(z, t)|*dx dt.
QL QL

As 0 <9 <1, using Young’s inequality, it comes that for any s > 0,
C
/ w(z, T/2)? dx < Cs/ |w|*dx dt + —/ |0yw|*da dt. (3.1)
Qr QL s Jar

Then we can conclude replacing w by ez in (3.1). O

We can state our first main result for a two-by-to linear system which extend precedent results
for one equation (see [3] and [4]). We do not follow here the proof of [1, Theorem 1.2] and rather
use ideas from [3].

Theorem 3.1. Letl > 0. Let T > 0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. We make the following assumption

T T
la(., §)| > R and |v(., §)| > R in Qp for some R > 0. (3.2)
Then there exists a sufficiently small number §y such that if 6 € (0,d0),
-, T .. T
1(u=a) (., )z () HI=0) (s 52 () + Z 10, (0F (u—1))[*+18, (9f (v—0))[*)dodt < §
2 2
’yLX(O T) k=0
then the following Hélder stability estimate holds
b= bl3 20y + lle = E32 g0,y < K™ for all § € (0,5). (3.3)

Here, K > 0 and k € (0,1) are two constants depending on R, r, L, l, My, My, My, T and a.
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Proof. Let x,n be C* cut-off functions defined by x, Vx,Ax € A(Mp), 0<x<1,0<7n<1,
x(x)=0ifz € ((—00,—L+€&) U (L — € +x)) X w),
x(z)=1ifz € (—L+2¢ L —2¢) X w,
n(t) =0ift € (0,&)U(T —&T), n(t) =1if t € x (2T — 2¢). (3.4)
Denote also
y=u—1u, Yo =Xy, y1 = Oyo, y2 = Oy1, 2 =v =0, 20 = XNz, 21 = Oz and 23 = O;z1.

Note that (yo, 20) satisfies

Oryo — Ayo + ayo + bzo = p1 := (b —b)xnv + (9m)xy — (Ax)ny —2Vx - V(ny) in Qr,
Orzo — Dzg + cyo + dzo = pa := (€ — e)xnu + (Om)xz — (Ax)nz — 2Vx - V(nz) in Qr,  (3.5)
Yo =20 =0on 0Qp x (0,T).

and (y1,21), (y2, z2) satisfy

Oy — Ayy + ayr + bz = Oipy in Qp, Oy2 — Ays + ays + bzo = 87p1 in Qr,
Orz1 — Azp + cyy +dzy = Opo in Qp, and Oyzo — Azo + cya +dzg = 02py in Qp,
y1 =21 =0o0n 90 x (0,T) ya = 22 =0 on 90 x (0,7T).

e First step: Applying (3.5) for ¢t = %, if we denote

sp(L "’T b ~T
Tim [ D= PP + b~ B do
Qr

then we get

T T T T
J L CeP R () +C | e (10o(F)P + [0iz0(5) ) da

Qr, 2
with
Fo(T/2) = |l20(T/2) 32 (2, + 12(T/2) 30 ) + 190(T/2)Fr2 () + 10T/ 2N F0 (2, )-
Note that
Fo(T/2) < CF(T/2) with F(T/2) = [y(T/2) |32,y + 12(T/2)32qy -
Moreover, since 0yyg = y1, 0r20 = 21 and 1 < ¢, using Lemma 3.1, we obtain

J < Ce*®=F(T)2) +CS/ e (|y1 > + |21|?) do dt + g/ e**?¢*(lya|* + |22|?) dz dt. (3.6)

L QL
e Second step: Now we evaluate J with the Carleman inequalities (2.5) for y; and z;, i = 1,2.
Note that all the terms in ||65¢Ayi||2L2(QL) or ||eS¢Azi||%2(QL) with derivatives of x or n will be

bounded above by Ce?*% with C' a positive constant. Therefore, for s sufficiently large, there
exists a positive constant C such that

I(y) + I(z) < c/ e 3[le —a? + |b—b)?] dx dt + c/ e (|yil? + |2|?) dx dt + Ce?h

L QL

> i ?{2‘1(QL) i ?'12’1(QL) 2 Wil Vil .
+Cs3 N (||y | + ||zl )+Cs (10, yil* + |0,2)?) do dt
L x(0,T)

Since e25¢ < ¢259(T/2)  we deduce that

I(y))+ 1(z) <C 2T/ 2[|c — 2% + |b — b?] da dt + Cse?™
Qr

—|—Cs/ ¢20(10, 1] + 10,2 [2) dor dt.
v % (0,T)
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Thus
83/ 0 (gl + |zif*) de dt < C | e TIDNCe —E? + b b)) do
L Qr
+Cs3e? M 1 Cs/ e®?(10,y:)? + |0,2)?) do dt. (3.7)
vLx(0,T)

Therefore, from (3.6) and (3.7), we get for s sufficiently large

S O sdy S 7
J < Ce®RR(T/2) + ] (8362 d —|—/Q 29T\ 2 (e — 22| + |b — b|?] dx
2
+S/ 628¢ Z(|auyz|2 + |8uzz|2) do dt | .
L x(0,T) i=1
So we have
J < Ce*2G(T/2) + Cse? ™ + % / > T/ 2|e — &2 + |b—b]?] da (3.8)
S Qr
with
2
G(T/2) = F(T/2) +/ Z(wyafy\? + 10,08 2|?) do dt.

7L %(0,T) .—o
e Third and last step: In this step, we come back to the coefficients b — b and ¢ — é.
First, from the hypothesis (3.2) we derive from (3.8), for s sufficiently large
/ T2\ (1b — b + [¢ — ¢f?) do < Ce*2G(T/2) 4+ Cse® ™. (3.9)
Qr,

Moreover, since e25% < ¢25¢(T/2) in ) and x = 1 in ;, we deduce from (3.9) that
e ([[b = b3 + €= cllFz () < Ce*RG(T/2) + Cse® ™.
This last inequality can be rewritten in the following form for s sufficiently large (s > s3)
16 = Bll72qy) + 1T = €llfzq,) < C(e2¥ 279 G(T/2) + e o)), (3.10)
Note that if G(T'/2) = 0, since (3.10) holds for any s > s and d; — dp < 0 we get (3.3). Now if
G(T'/2) # 0, we recall from (2.4) that d; —dy < 0 and dg — dp > 0 and optimize (3.10) with respect
to s. Indeed denote
fls) = eQS(dQ_dO)G(T/Q) + e2s(di=do) and g(s) = 625(d2_d°)G(T/2) + se2s(d1—do)
We have f(s) ~ g(s) at infinity. Moreover the function f has a minimum in
o 1 In( do — dy
87T 2dy—dy) " (ds — do)G(T)2)

) and f(ss) = K'G(T'/2)"

. do—d do—dy \ 2224 do—dq A= . .. . .
with k = 92=7t and K’ = ($2=25) 2% +(32=gt) =~ %. Finally the minimum s; is sufficiently large

(s3 > s2) if the following condition G(T/2) < dp, with §p = —do—di s gatisfied. Then we

(d2_d0)6252(d2—d1) bl

get our result (3.3) and so we complete the proof of Theorem 3.1. g

Remark 1. e Note that the hypothesis (3.2) is quite usual (cf [1, 7] for a parabolic system in a
bounded domain) and is removed in [1] by the control theory and in [7] by conditions on a, b, ¢, d,
ug, Vo, h1, ha, g1, ¢g2. In some cases, one can also diagonalise the coupling matrix of the coefficients
(see [6]) then use a parabolic positivity result (see [9, Theorem 13.5]) for the decoupling system.
Of course we could obtain the same result as (3.3) for any coefficient in each equation of (1.1).
But if we want to determine the coefficients b and d for example, we only have to assume that
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[5(., £)| > R in Q, for some R > 0, instead of (3.2).

e In fact we can obtain in the right-hand side of (3.3) the term f «(0.T) Zk (10, (0F (u— 1)) > +
|0, (0F (v — 0))|?) do dt instead of f (0T Zk 0 (10, (8 (u — u))|2 +10,(0F (v —0))|?) do dt if we
slightly modify dy (if we define di = supg.— ¢, the inequalities (2.4) still hold and all the terms

inside the integrals on vy, with derivatives of n are therefore bounded above by e?391).

3.2. The second result. Consider now (u,v) (resp. (u,v)) a strong solution of (1.1) associated

Wlth (CL, ba C, d7 uo, Vo, 91, 92, hla h2) (resp. (av b7 Ev da u~07 {}\(/)7 g1, 92, h17 h?)) Assume that au
the coefficients a,b, ¢, d,a,b, ¢, d belong to A(My). For our second main result, first we need the

following lemma inspired from Klibanov and Timonov ([11]). Recall that x and 5 are defined by
(3.4).

Lemma 3.2. There exists a positive constant C' such that

2
t
/ ey *n? ( £ dg) dr dt < < (e25d1 + / e\ f? dx dt>
L T/2 § L

for all s >0 and f € L*(0, T, L*(Q1)) N L>=(QL).
Proof. By the Cauchy-Schwarz inequality, we have

" 2
ox’n?e*? ( / f(@,€) d5> dz dt < / oxXn’ e |t — 5|
QL T/2 QL

/QL / o (2 1) t

[z, €)2d¢
Note that

dx dt

t
/ Fla,€)? de
T/2

dxdt+ / dX*n?e?? (t— T) t f(z,€)%d¢ | dadt.
T/2 2 T/2
(3.11)

T/2

T
9, (e259) = —As\(t — §)¢628¢.
For the second integral of the right hand side of (3.11), since n(T) = 0, by integration by parts we

have
t
/ oxX°n7e*?(t — T)( f(saf)st) dx dt
o, J1/2 2 T/2

t

= 2,25 (p25¢
T 4sh /QL /T/QX o) (| f(w,€)dS) du dt

T/2

=T
1 222¢ // 2¢>222
— s i s dzr dt
1o [Xne f:zrf df dx+48)\ o n°f° dx

t=T/2

/ / &0 277(%77/ F(@,€)2de) de dt
28)\ Qr T/2

o256 2 o256 22 f2
77877/ f(z,€)%de) dacdt—l——/ / x“n°f° dx dt. 3.12
ZSA /QL /7:/2 t 4SA Qp JT/2 ( )
The first 1ntegral of (3.12) is bounded above by %628(11 due to the derivative of 1. Therefore

t
/ ox2n2e®?(t — Z) f(z,6)%de | dz dt < ¢ (eZSdl +/ e 2n? 2 dx dt)
o J1/2 2 T/2 s .
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We obtain a similar result for the first integral of (3.11) and this concludes the proof of Lemma
3.2. O

Now we can state our second main result in view to obtain a stability estimate of the four
coefficients of (1.1) with nearly the same observations that we obtained in Theorem 3.1 (see the
right-hand sides of (3.3) and (3.15)).

Theorem 3.2. Letl > 0. Let T >0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. We make here the following assumptions

[a] > R and |8t(%)\ > R in Q for some R > 0, (3.13)
and _
[o] > R and |3t(%)\ > R in Q for some R > 0. (3.14)
Then there exists a sufficiently small number &y such that if 6 € (0,0¢),
! k ~ T - k ~ T
I Z 9y (u—a)(., §)||H2(QL) + Zat (v =2)(, §)||H2(QL)
k=0

k=0

+f Z 0,0 (u — 1) + 12,0 (0 — 0)) dor di <5
'YLX 0 T
then the following Hélder stabzlzty estimate holds
la = @l|72q,) + 16 = bl 720y + lle = ez + 1d = dl|72q,) < K6° for all § € (0,80).  (3.15)
Here, K > 0 and k € (0,1) are two constants depending on R, r, L, l, My, My, My, T and a.
Proof. As in Thereom 3.1 denote y = u — @ and z = v — v. Then (y, 2) satisfies
Ay — Ay +ay+bz=(a—a)i+ (b—0b)vinQ,

Ohz—Az+cy+dz=(C—c)u+(d—d)vin Q,
y=z=0on2X.

o First step: Let y1 = £ and 2, = Z. Then (y, 21) satisfies
dy1 —Ayr+ayr +bzr = fr+a—a+ @_b)% in Q,

Opz1 — Az1 +cyp +dz1 = fo —l—E—c—i—(d—d)% in Q,
y1 =21 =0 on X,

with f1 = %(—ylaﬂ + ylAfi + 2Vy1 . Vﬂ) and fg = ﬁ( Zlatﬂ"‘r Z1Aﬂ+ 2V21 . Vﬂ)

Denote now yo = dyy1, 20 = 0421, Y3 = . (U)yg and z =% (i)zQ. Then
Dy — Ays + ays + bz = O fr + (b= b)3i(2) in Q,
Opzo — Azg + cys + dzo = 8tf2 + (d d) (%) in @,

Y2 = 22 = 0 on X,

and _
Owy3 — Ays +ays +bzs = f3+b—bin Q,
Orzz — Azz +cys +dzs = fa+ d—din Q, (3.16)
ys = 23 = 0 on X,

with

at(li) ( Y307 (~)+Z/3A(8t(~))+2Vy3-V(@t(g))—i—ﬁtfl)

u

fs =
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and
1 v v v
o= i (023 + 580N + 295 V@D +0uf).
1%

Finally let y4 = Oyys, 24 = O¢23, Y5 = Xxnys and z5 = xnz4. Then

Oys — Ays + ays + bzs = xno f3 + f5 in Qr, (3.17)

Orzs — Azs + cys + dzs = xn0y fa + f6 in Qr, .
with

f5 = (Om)xys — (Ax)nya — 2nVx - Vya

and

fo = (Oem)xzs — (Ax)nza — 20V x - Vzy.
Due to the truncation functions, we can apply the Carleman estimates for y5 and z; and now we
estimate I(ys) + I(z5) with (2.5). We have

I(ys)+1(z5) < C’/ 625¢((Ay5)2—|—(AZ5)2)dxdt+053625d1—|—C’s/ e2?(|0,ys|?+|0, 25| dodt.
L vL %(0,T)
(3.18)
As in Thereom 3.1, all the terms in fQL €259 ((Ays)? + (Az5)?) dx dt with derivatives of n or y will
be bounded above by Ce?% . So since ¢ > 1

/ e**?((Ays)® + (Az5)?) da dt < C’/ 2P (y2 4 22) dx dt + Ce*™

L L

+C/ P2 (0, fs? + 104 fal?) de dt

<C 2 (y2 + 22)dxdt + Ce* ™ +C e\ *n? Z yi + |Vyil® + 27 + | V2| ?)dadt. (3.19)
QL Qr i=1

Since xnys = ys and xnz4 = 25, (3.19) implies

/ e ((Ays)® + (Az5)%) do dt < C | (3 + 22 + |Vys|* + |Vzs|?) da dt + Ce** @
L Qr

+C/ PPy 22 Y2+ |Vyl® + 27 +|Vz]?) da dt. (3.20)
i=1
From (3.18)-(3.20), we get for s sufficiently large

I(ys) + I(z5) < Cs®e*™h +C/ ¢625¢x2n22 (W7 + |Vyil® + 27 + [V de dt
=1

—|—C’s/ e*(|0,ys|* + |0, 25]?) do dt. (3.21)
L x(0,T)

Using now Lemma 3.2 we have

2
¢€QS¢X2772y2 dx dt = by 2n? </ Owyr (£)dE + yl(T/2)> dx dt
Qr Qr

C ., C
S 762&11 + 7/ 25(25 2n2y2 de' dt+C ¢625¢X2n2y (T/2)2 df,U dt
§ S JQL QL

C C
< Ze?sh g = pe***x*ny2 dx dt + C 6e®*x 0Py (T/2)* dx dt
§ s JQL QL
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2
t
< %e%dl—i-% pe%* 0’ n? (/ Orys(&)dE + yg(T/2)> dx dt+C ¢e25¢x2772y1 (T/2)2 dx dt
T/2

QL QL
<SEh g <€M1 ) ey d dt) +C [ 9P (T2 4 (T/2P) do de
QL QL
< %eQSdl + s%/ e* 0y du dt + C’ezs‘b/ (y1(T/2)? + y2(T/2)?) d. (3.22)
L Qp

Doing the same for fQL #e25Px2n?y2 dx dt, fQL e250x2n?22 dw dt, fQL #e2*?x2n?|Vy;|? dz dt and
Jo, 9€°°0X°0°|Vzi|* da dt, for i = 1,2,3 we get from (3.21)-(3.22) and for s sufficienlty large

I(ys) + 1(z5) < Cs3e?sd 4 Cs/ 625(‘5(|c’9,,y5|2 + |8,,z5|2) do dt
v x(0,T)

2
O / S @T/2 + 2(T/2 + [Vl T/2)P + [Va(T/2)P) de. (3.23)
L =1

Note that (3.23) can be rewritten on the following form

2
I(ys) + I(2z5) < Cs3e?h 4 Cge?52 / > (10.0Fyl* + 10,0f 2|?) do dt
YL x(0,T) . —o

1
+Ce> = [N (0Fy(T/2) + 0 2(T/2)* + |[VOfy(T/2)* + |[VOF 2(T/2)|?) da

QL k=0
and so
I(ys) + I(z5) < Ose® 4 Cse® = Fy(T/2) (3.24)
with
2 1
Fi(T/2) =/ o > 10,08y +10,0F =) do dt -+ (105 y(T/2)I2 g,y + 105 2(T/2) 13 (g, )-
YL , k=0 k=0

e Second step: Now we evaluate (3.16) at T'/2. We have

/ T2\ 2 ([b—b)2+|d—d|?) do < C | 2T/ 32(10,y3(T/2) 24|08, 23(T/2)|?) da+Ce>*® Fy(T/2)
QL QL

with
2

Es(T/2) =Y Iy T/l + 12T/ 220y )
i=1
So, since n(T/2) = 1,

/ 2 0T/232 (b2 4 |d—d|?) dw < C / e230T/2) (|ys (T)2)[2+|25(T/2)[2) dw+Ce% Fy(T/2).
Qr, Qp,

(3.25)
Now let 1 = e*?ys and 1, = e?z5. Calculate J; = fQL OT/2 Oph1 (t)1(t) dx dt and
J2= o, OT/2 Oyha(t)1ha(t) dz dt. Since n(0) = 0, we get
Jy = E 1(T/2)? dx = 1 / >0y (T/2)? da and Jy = 1 / e291/2) (T /2)? d.
2 Ja, 2 Ja, 2 Ja,

Therefore (3.25) becomes

/ e250T/23 215 _ b2 1 |d — dJ2) dz < Ce® %= Fy(T/2)
Qr
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T/2 4 T/2
+C/ / —0pb1 (t)s)1(t) dx dt + C/ / —0gtha(t)so(t) dx dt. (3.26)
QL Jo $ Qr Jo s
Using Young inequality, we deduce from (3.26)

Q

/ > T1232 (b — b + |d — d|?) doe < =(I(ys) + I(25)) + Ce>* 2 Fy(T/2). (3.27)
Qr, 8§
From (3.24) and (3.27) we get

/ 2T\ 2 (1 — b 4 |d — d?) dz < Cs2e> + Ce®*2(Fy(T)2) + Fy(T/2)). (3.28)

Qr,
Proceeding as in Theorem 3.1, we obtain from (3.28)
/ (1b—b]? + |d — d|?) do < Cs?e*(d1—do) 4 Ce?3(d2=do) [y (T /2) (3.29)
197]
with
1 2
F5(T/2) = Y (10Fy(T/2)l13 (0, + \\3fZ(T/2)II?12(QL>)+/ o) > 10,0y +10,0¢ %) do dt.
k=0 YL X024 k=0

Notice that in the first and second steps of this proof, we have only used the hypothesis (3.13).
e Third step: Finally using the hypothesis (3.14), we can proceed exactly as before and obtain

/Q (Ja —al? 4+ [¢ — ¢?) da < Cs?e?(h—do) 4 O2s(d2=do) py(T7/2). (3.30)
l

From (3.29)-(3.30) we end the proof of Thereom 3.2. O

Remark 2. e First note that our stability results (3.3) and (3.15) are obtained on §; for the left-
hand term while the observation data G(T'/2) and F3(T'/2) are required on €y, for the right-hand
term of (3.3), (3.15).

e Second we have used Lemma 3.2 instead of Lemma 3.1 in the proof of Theorem 3.2 in order to
avoid a third derivative with respect to ¢ in the observation terms. Indeed, if we no longer used
Lemma 3.2 in the proof of Theorem 3.2, we could use a modified version of Lemma 3.1: applying
(3.1) with w = e*?ynz, we could obtain the following inequality

C C
/ (32’;d’(%)><2\,z*(T/2)|2 dx < C’s/ 2202202 |2|? dax dt + —e* D + —/ X502 |0,2)? da dt,
Qr QL 8 8 L

for all z € HY(0,T; L*(Qy1)).

Moreover, if we did so, since we had to give up the end of the first step of the proof of The-
orem 3.2, we’d rather follow the ideas of the proof of Theorem 3.1. Therefore, when in the
second step we evaluated (3.16) for t = T/2, with the above inequality we would have to es-
timate [, e25¢(T/2)x2|8,y5(T/2)|> dx and Ja, e258(T/2)x2|8,23(T/2)|? dx; thus we could obtain
fQL e2% % Opy4|? dz dt and fQL e25%x2n?|0yz4| dx dt in the right-hand side of the estimates.
Then we would have to apply the Carleman estimates for xnys, xnz4, X10:ys, X024 and so we
would obtain a third derivative in time for the observation terms. _ _
e Third the assumptions (3.13) and (3.14) are equivalent to |a| > R, |v] > R and |det( <% gt%

¢

R with R a positive constant. For example, if n = 2 and w = (r1,r9) with 71 > 0, let a(z1) be a
positive and bounded function in C?(R) such that min,, eg a(x1) > 2r3. Then u(x,t) = a(xq)t+ 2

_ o (z1)+a(zr)zs

a(z)-z3

| >

and v(z,t) = txa + 1 are solutions of the system (1.1) with g; = g2 = 0, a(x)
b(z) = M, () = _ T d(z) = =2221) "and satisfy the conditions (3.13)-(3.14).

a(zy)—z3 a(z)—x2’ a(zy)—z3
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e Finally note that the above results remain valid for the system (1.2) when all the coefficients
a,b,c,d, Ay, As, Az, Ay are bounded (a,b,c,d € A(My) and Ay, Ay, A3, Ay € (A(Mp))™). We ob-
tain a stability result of at least two coefficients between a, b, ¢, d with the same observations in the
right-hand sides of (3.3) or (3.15). In the next section we study the inverse problem of determining
at least one of the coefficient Ay, Ao, Az, A4, for example Az if we assume that this coefficient has
the form Az = Vg.

3.3. The third result. Consider now (u,v) (resp. (@,v)) a strong solution of (1.2) associated
with (a’ b7 () da A17 AQ’ A3a A47 Uo, Yo, 91, 92, hl, h2) (I'eSp. (CL, Z, ¢, d7 Ala AQ; ;If;v A47 ﬂa, 1}67 g1,
92, h1, ha)). Assume that all the coefficients a, b, ¢, d belong to A(My), A1, As, Az, Ay, As belong
to (A(Mp))™ N (H(22))™ and that there exist functions g, g such that

A3 = Vg, A3 = Vg in Q. (3.31)

The Assumption (3.31) implies conditions on As, As: if tA5 = (c1, -+ ,¢n), it means that for all
i,j =1,---,n, Op,cj = Oz;c;, in other words rot(Az) =0 if n = 3.

Now following an idea developed in [10] for Lamé system in bounded domains, also used for example
in [4], we obtain the following result

Lemma 3.3. Assume that the following assumption
|Vd-Vu(T/2)| > R in Qf, for some R >0 (3.32)
holds. Consider the first order partial differential operator Pf =V f - Vu(T/2). Then there exist
positive constants sy > 0 and C' > 0 such that for all s > sy,
52/ 623¢(T/2)|f|2 dx < C/ €2S¢(T/2)‘Pf|2 dﬁC,
QL QL

for all f € HY(Q1).
Proof. The proof follows [4]. Let f € H3(Qr). Denote w = e3¢(7/2) f and Qu = e3¢(T/2) P(e=3¢(T/2)qy).
So we get Qu = Pw — swV¢(T/2) - Vu(T/2). Therefore we have
/ |Qu|* dx > 52/ w?|Vo(T)2) - Vu(T/2)* da — 25/ (Pw)w(Ve(T/2) - Vu(T/2)) dx
Qr

QL QL

/ |Qu|* dx > SQV/ w?(¢(T/2))*|Vd - Va(T/2)|* dx
Qr

L

—os) [ (V- VA(T/2))wé(T/2)(Vd - VE(T/2)) dx.
Qr
So

/ Qu? do > 22 / w(H(T/2))2|Vd - Vi(T/2) da
Qr

Qr
—sA [ (T/2)(Vd - Vu(T/2))(V(w?) - Va(T/2)) da.
Qr
Thus integrating by parts

/ Qul? dz > 52\ / W (G(T/2))2|Vd - Va(T/2)]? da
Qr,

oA /Q W2V - (6(T/2)(Vd - Vi(T/2))Vi(T/2)) dx
and

/ 20T/ pfI2 gy — / Quf? dz > $2)2 / 29172 £2( (T /2))2|Vd - Vi(T/2)|® da
Qr, Qr Qr
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+sh [ 20T 27 (o(T/2)(Vd - VU(T/2))Vu(T/2)) dx
Qr
And we can conclude for s sufficiently large. O

The strong positivity assumption (3.32) is frequently involved in inverse problems and is removed
in [4] for one equation by the construction of an adapted control. Now we state the third result.

Theorem 3.3. Letl > 0. Let T > 0, L > 1 and a € R™\ Q satisfying the conditions of Proposition
2.1. Assume that Assumptions (3.31) and (3.32) hold. We also make the following hypothesis

T
[o(., §)| > R in Qp for some R > 0. (3.33)

If g =g and As = ;{; on 002 N Oy, then there exists a sufficiently small number dg such that if
b€ (07(50)7

! T ! T .
| Z 85(“ —u) (. 5)”%12(9@ + 1 Zatk(v -0)(, §)||H3(QL)
k=0

k=0

—|—/ Z |0, (O @))% + |0, (0F (v —0))|? do dt < §
YL X OT

then the following Hélder stabzlzty estimate holds
b= BlI3 20, + | A5 — As[|212 (0 yye < K™ for all § € (0,5p). (3.34)
Here, K > 0 and k € (0,1) are two constants depending on R, r, L, l, My, My, M>, T and a.
Proof. As in Theorem 3.1 denote
Y=u—1u, Yo = XNY, Y1 = OYo, Y2 = OeY1, 2 =0 — U, 2o = XNz, 21 = Orzp and z3 = 0¢2;.
Then (yo, z0) satisfies
Oryo — Ayo + ayo +bzo + A1 - Vyo + A2 - Vzo = & in Q,
Orzg — Azg + cyo +dzg + A3 - Vyg + Ay - Vzg =& in Qp, (335)
Yo = 20 = 0 on 6QL X (O,T)
with _
& = xn(b—0)v + (Om)xy — (Ax)ny — 2Vx - V(ny) + nyAr - VX +nzAs - Vx
and
€2 := xn(As — As) - Vu+ (0in)xz — (Ax)nz — 2Vx - V(n2) + nyAs - VX + 1244 - V.
Then
& =nV(x(g—9)) - Vi-n(g—g)Vx Vi+(0m)xz—(Ax)nz—2Vx V(nz) +nyAs-Vx+nz4s- Vx.
e First step: We evaluate (3.35) for t = Z and we get
Oyo(T/2) — Ayo(T'/2) + ayo(T/2) + bzo(T/2) + A1 - Vyo(T/2) + Az - Vzo(T/2)
= X(b—b)T(T/2) — (AX)y(T/2) = 2V x - Vy(T/2) + y(T/2)Ar - Vx + 2(T/2) A2 - VX (3.36)
and
O120(T/2) — Az0(T/2) + cyo(T/2) + dzo(T/2) + Az - Vyo(T'/2) + As - V2o(T/2)
=P(x(9-9))—(g—9)Vx-Vu(T/2) = (Ax)2(T/2) =2V x-V2(T/2)+y(T/2) As-Vx+2(T/2) A4-Vx
(3.37)
with P the operator defined in Lemma 3.3. From (3.36) we have

|- b R de <o [ a3 de
Qrp

Qp
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+Ce* % (|120(T/2) N H1 ) + 190(T/2) 20 + 19T/ 2 0, + 12(T/2)M720,))-
So

T
/ Db — b f(5 D)2 dw < e Fy(1/2) + © oo (5 da
QL QL
with
FT/2) = ly(T/2) 20, + 12(T/2) 1 )

Then, applying Lemma 3.1 we get

c
/ ) B T2 dz < Ce? @ By (T/2)+C's / 20y ? da di-— / €20 63y |2 d di.
Qr

L QrL

(3.38)
Moreover using Lemma 3.3 for (3.37) we have
[ et g2 ds < e [ TP - g da
QL QL
2sd 2s¢( ) T
<Ce™™ +C |8tzo( )|? dx
Qr
+Ce*® (||20(T/2)3r2(,) + I90(T/2) 1 @) + 1T/ L2 0, + 12T/ 30 (@,)-
Applying again Lemma 3.1 we get
52/ 29T\ 2(G — g)2da < Ce® 4 4 Ce®* 2 Fy(T/2) + C’s/ eZ5?¢3| 21| da dt
QL QL
+g / €25 3| 2|2 dadt (3.39)
S JQL

with
Fy(T/2) = |ly(T/2)N7 ) + 12(T/2) 20, -
From (3.38)-(3.39) we obtain

| B BPEG)R dot [ TG g da

C C
< 8—262Sd1 + Ce2* 2 y(T/2) + Cs/ 263 (|y1|? + |21 %) dwdt + Z/ e 4% (|ya|? + |22|?)dxdt
QL

QL
(3.40)
with
Fy(T/2) = 9T/l + 12(T/2) [y -
Using now Assumption (3.33), we get from (3.40) and for s sufficiently large
~ ~ C
/Q D=0 + (5~ 9)%) dr < 5P+ CEF(T)2)
L
2s¢ 3 2 2 ¢ 2s¢ (3 2 2
+Cs e (lyn|* + |21|*) dx dt + . e“*?0° (ly2|* + |22]7) dx dt. (3.41)
L QL

e Second step: As in Theorem 3.1, now we use the Carleman inequalities (2.5) for y; and z;,
i =1,2. Recall that ¢ < ¢(T'/2) so we get for s sufficiently large

Iy) +1(z) < C [ 2TV (x(G — g))]* + x3[b — b]?) dx + OsPe*h
Qr

—|—Cs/ ¢20(10, 312 + 10, 2[2) dor dt.
v % (0,T)



APPLICATIONS OF CARLEMAN INEQUALITIES FOR A TWO-BY-TWO PARABOLIC SYSTEM IN AN UNBOUNDED GUIDB

Thus
83/ e (|yil* + |zi]?) da dt < C : TV (x (g - 9)* + x2[b— b]*) do
L L
+Cs3e25M 4 CS/ e*(|0,yi|* + |0, 2:]%) do dt. (3.42)
L x(0,T)

Therefore, from (3.41) and (3.42), we get for s sufficiently large

/ 205 2((b— 5)2 + (3 — g)2) dz < Ce®® Fy(T/2) + Cse?™
Qr

C N ~ C 2
+— / 29T (19 (x(G — 9)2 + x2Jb — b)) da + — / S (10,yil? + 10,22 do dt.
s* Jar § JyLx(0,1) i=1

Thus we have for s sufficiently large

/ e28¢<%>x2<<b—5>2+<§—g>2>dxsCe2sd2F4<T/2>+0se23d1+% / T2V (x(g-9) | dx
Qr S

Qr
(3.43)

with
2

BT/ =Bt/ + [ S0kl + (0,058 do

YL x(0,T) =g
e Third step: We apply the same ideas for V(x(g — g)). For any integer 1 < i < n, taking the
space derivative with respect to z; in (3.37), we obtain
8t8wizo(T/2) — Aawle(T/Q) + 6:131 (Cyo(T/2) + dZO(T/Q) + As - VyO(T/2) + Ay - VZO(T/2))

= P(02,(x(9 — 9))) + V(x(9 — 9)) - V(9:,u(T/2)) = 9, (g — 9)Vx - Vu(T/2))
=02, ((AX)2(T/2) =2V x - Vz(T/2) + y(T/2)As - Vx + 2(T/2) Ay - V). (3.44)
We can apply again Lemma 3.3: there exists a positive constant C' such that for s sufficiently large,
52/ 20, (x(g—9)* de < C | TP, (x(g - 9))))° da.
QL QL
Thus, using (3.44) we obtain

[0, (7 - 9))? de < CHEE(T/2) 4 CE 4 C [ B, (/D) ds
Qr Q

L

+C | TPV (x(g - 9)*| dw
Qp

with F5(T/2) = ||Z(T/2)||%13(QL) + Hy(T/Z)H%Iz(QL). So using Lemma 3.1 we get

. / 29 T/2(8,, (x(G - 9)))? dv < Ce>BF(T/2) + Ce*U 1. C [ 29TV (x(g - 3))| da
QL QL

—|—Cs/ e*?(0p,21)* dx dt + g/ e*5(0y,22)? d dt. (3.45)
L s L

Moreover by the Carleman inequality (2.5), we have for j = 1,2,

3/ 628¢(z]2- +|Vz|?) do dt < C | Az;|? da dt + 053625d1”2’j”?{2‘1(QL)
L QL

—|—CS/ 10,2 |%€** do dL.
L x(0,T)
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Thus
s T drat <O [ VP ) drdi | TG de
L L

L

+Cs3eh 4 Cs/ 10, 2;%e**? do dL. (3.46)
v x(0,T)
By the same way we obtain

s/ e**? (g5 +|Vy;|*) da dt < C’/ (Y 4+ |Vy; [P +25+(V 2)?) do dt+/ e***(x(b—b))? du dt

QL QL L

+COs3e2M 4 C’s/ 10,y;2e**? do dt. (3.47)
L x(0,T)

From (3.46) and (3.47) we deduce

s/ 628¢(Z]2- + y]2 +|V2|? + | Vy;|?)dzdt < C/ er‘z’(y? + | Vy; |2 + 2]2 + |V 2,|*)dzdt + Cs3e?sh
QL

+C [ e(V(x(G—9)+ (x(b—b))?) dx dt+Cs/ e**?(|0, 2 +10,y;*) do dt. (3.48)

QL v %x(0,T')
Since ¢ < ¢(T'/2), (3.48) implies for s sufficiently large

s/ ezsd’(zjz» + y? +|Vzi |2 + |Vy; ) da dt < Csdeh

L
4 [ ETRVG - )P+ (- 0)) da Cs [ (0, 0uf?) do de
QL L% (0,T)
and so

2 2
s/ e2s? Z(\Vzﬂz + |Vy;|?) dx dt < s/ 625¢Z(Z]2' + 45 + |Vz|? + | Vy;|?) do dt

L j=1 L j=1

2
< OsPe?*h 4 Cs/ e25? Z(|8sz|2 + 10,y;1?) do dt

~vL % (0,T) j=1

+C [ TG~ ) + (1B~ ) de (3.49)

Using inequalities (3.45) for 1 <14 <n and (3.49), we get

[ V(G- do < ORI/ 4C [ TRV ((g-G)P|+ XO-D)) da
Qr, Qr

2
+Cs3e25M 4 Cs/ ¢ Z(|8VZJ|2 + 0yy;]?) do dt.
v % (0,T) j=1

Therefore for s sufficienlty large

[ TG - g)) do < O (1)) +C [ D (b D) do
Qr, Qp,

2
+Cs3e25M 4 Cs/ %0 Z(|8,,zj|2 + 0uy;]?) do dt. (3.50)

v % (0,T) j=1
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e Fourth step: Now we gather (3.43) and (3.50) and we get for s sufficiently large
/Q Db = b + 17 — 9 + [V (x(@ ~ 9)I*) de < Ce*Fy(T/2) + Cse®™, (3.51)
L

with Fg(T/2) = Fy(T/2) + F5(T/2). Moreover, since e2*% < ¢25¢(T/2) in Q; and y = 1 in €, we
deduce that

= b”QL?(Ql) + g - gH%[l(Ql) < O(e?(d2=do) iy (T/2) 4 se2s(di=do))y,
This concludes the proof of Theorem 3.3. 0

Remark 3. In Theorem 3.3 we have presented the case of determining the coefficients b and As. Of
course we could obtain similar results for at least two coefficients between a, b, ¢, d, A1, As, Az, Ay.
If we want to determine A; and Asz, we only have to assume that Assumption (3.32) holds intead
of (3.32)-(3.33). If we want to estimate the coefficients Ay and As, we still have to assume the
hypothesis (3.32) satisfied but in this case, we should also assume that the following hypothesis

|Vd-Vu(T/2)] > R in Qf, for some R > 0

holds. Note also that the last item of Remark 1 still holds for (3.34). To conclude, if we would like
to determine more than two coefficients, we could procede with the same method used in Theorem
3.2.
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