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In this article we consider the inverse problem of determining some of the coefficients of a two-by-two parabolic system defined on an unbounded guide. Using an adapted Carleman estimate, we establish local stability results for at least two coefficients of this system in any finite portion of the guide. These estimates are obtained with data of the solution at a fixed time and boundary measurements for observations.

Introduction

Let ω be a bounded connex domain in R n-1 , n ≥ 2 with C 2 boundary. Denote Ω := R × ω, Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). We consider the following system

       ∂ t u -∆u + au + bv = g 1 in Q, ∂ t v -∆v + cu + dv = g 2 in Q, u = h 1 and v = h 2 on Σ, u(x, 0) = u 0 (x) and v(x, 0) = v 0 (x) in Ω, (1.1) 
where a, b, c, d are bounded coefficients defined on Ω such that a, b, c, d ∈ Λ(M 0 ) := {f ∈ L ∞ (Ω), f L ∞ (Ω) ≤ M 0 } for some M 0 > 0.

Our inverse problem is to estimate at least two coefficients between a, b, c, d from the data of the solution (u, v) at T /2 and the measurement of (u, v) on a part of the boundary. We will consider (u, v) (resp. ( u, v)) a solution of (1.1) associated with (a, b, c, d, u 0 , v 0 , g 1 , g 2 , h 1 , h 2 ) (resp. ( a, b, c, d, u 0 , v 0 , g 1 , g 2 , h 1 , h 2 )) and two positive reals l, L such that l < L. Denote Ω L = (-L, L) × ω and Ω l = (-l, l) × ω.

The first result of this paper gives a Hölder result (3.3) for the coefficients b and c in the case where a = a, d = d and is the following (see Theorem 3.1)

b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) ≤ K (u -u)(., T 2 ) 2 H 2 (Ω L ) + (v -v)(., T 2 ) 2 H 2 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2 ) dσ dt κ
where K is a positive constant, κ ∈ (0, 1), γ L is a part of the boundary (see (2.2)), and assuming that the hypothesis (3.2) is satisfied. The second result (3.15) of this paper is also a Hölder stability result for the four coefficients a, b, c, d (see Theorem 3.2)

a -a 2 L 2 (Ω l ) + b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) + d -d 2 ≤ K 1 k=0 ∂ k t (u -u)(., T 2 ) 2 H 2 (Ω L ) + 1 k=0 ∂ k t (v -v)(., T 2 ) 2 H 2 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2
) dσ dt κ with stronger hypotheses (3.13) and (3.14) than those in Theorem 3.1 (see (3.2)).

The third theorem of this paper gives a Hölder stability result (3.34) (see Theorem 3.3) for the following reaction-diffusion system

       ∂ t u -∆u + au + bv + A 1 • ∇u + A 2 • ∇v = g 1 in Q, ∂ t v -∆v + cu + dv + A 3 • ∇u + A 4 • ∇v = g 2 in Q, u = h 1 and v = h 2 on Σ, u(x, 0) = u 0 (x) and v(x, 0) = v 0 (x) in Ω, (1.2) 
where all the coefficients a, b, c, d, A 1 , A 2 , A 3 , A 4 are bounded (a, b, c, d ∈ Λ(M 0 ) and A 1 , A 2 , A 3 , A 4 ∈ Λ(M 0 ) n ∩ H 1 (Ω) n ). We obtain a stability result for the coefficients b and A 3 (assuming A 3 has the form A 3 = ∇g) with the same kind of observations in the right-hand side of (3.34) as we have obtained in (3.3) or (3.15). Assuming that the Assumptions (3.32) and (3.33) hold, we get the following result

b -b 2 L 2 (Ω l ) + A 3 -A 3 2 (L 2 (Ω l )) n ≤ K 1 k=0 ∂ k t (u -u)(., T 2 ) 2 H 2 (Ω L ) + 1 k=0 ∂ k t (v -v)(., T 2 ) 2 H 3 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2 ) dσ dt κ .
Of course each of these above stability results implies an uniqueness result. Up to our knowledge, there are few results concerning the simultaneous identification of more than one coefficient in each equation (see for example [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF] and also [START_REF] Cardoulis | Simultaneous identification of the diffusion coefficient and the potential for the Schrödinger operator with only one observation[END_REF] where the authors give a stability result for the diffusion coefficient a and the potential b of the Schrödinger operator i∂ t q +a∆q +bq).

In previous papers, stability results have been obtained for parabolic systems but, as far as we know, these papers have investigated the case of bounded domains and have given results with observations on a subdomain of their domain ( [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF][START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF]...). Furthermore, there is no result for a twoby-two parabolic system with only one observation on a part of the boundary and without any data of the solution at a fixed time even in a bounded domain. We will use here the global Carleman estimate (2.5) for one equation given in [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] based on a classical Carleman estimate given in [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF][START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF].

Our choice of weight functions is adapted for this unbounded domain but will give us Hölder, and not Lipschitz, estimates of the coefficients. Recall that the method using Carleman estimates for solving inverse problems has been initiated by [START_REF] Bukhgeim | Uniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF]. Our results extend to a system previous results for one equation defined on an unbounded guide (see [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] for the heat operator ∂ t u -∆u + qu and [START_REF] Cardoulis | A stability result for the diffusion coefficient of the the heat operator defined on an unbounded guide[END_REF] for the heat operator ∂ t u -∇ • (c∇u) where stability results are given either for the potential q or for the diffusion coefficient c). This Paper is organized as follows. In section 2, we specify the weight functions used for our Carleman estimate (cf (2.1), (2.3)) and due to the particular symmetric form of these weight functions with respect to x 1 and t -T /2 we recall from [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] the inequality (2.4), crucial for our final estimates (3.3), (3.15) and (3.34). Then in section 3 we state and prove our stability results, first for the coefficients b, c, after for a, b, c, d and finally for b, A 3 .

Carleman estimate

Denote Q L = Ω L × (0, T ) = (-L, L) × ω × (0, T ), x = (x 1 , • • • , x n ) ∈ R n , x = (x 2 , • • • , x n
) and define the operator Au = ∂ t u -∆u. Let l > 0, following [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] in this section, we consider some positive real L > l and choose a

∈ R n \ Ω such that if d(x) = |x -a | 2 -x 2 1 for x ∈ Ω L , then d > 0 in Ω L , |∇ d| > 0 in Ω L . (2.1)
Moreover define

Γ L = {x ∈ ∂Ω L , < x -a, ν(x) >≥ 0} and γ L = Γ L ∩ ∂Ω. (2.2)
Here < ., . > denotes the usual inner product in R n and ν(x) the outward unit normal vector to ∂Ω L at x. Notice that γ L does not contain any cross section of the guide. From [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF] we consider weight functions as follows:

for t ∈ (0, T ), if M 1 > sup 0<t<T (t -T /2) 2 = (T /2) 2 , ψ(x, t) = d(x) -t - T 2 2
+ M 1 , and φ(x, t) = e λψ(x,t) .

(2.

3)

The constant λ > 0 will be set in Proposition 2.2 and is usually used as a large parameter in Carleman inequalities. Since we will not use it, we will consider λ fixed in the article. We recall from [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] the following result.

Proposition 2.1. There exists T > 0, L > l, a ∈ R 2 \ Ω and ˜ > 0 such that (2.1) holds and, setting

O L,˜ = (Ω L × ((0, 2˜ ) ∪ (T -2˜ , T ))) ∪ (((-L, -L + 2˜ ) ∪ (L -2˜ , L)) × ω × (0, T )),
we have

d 1 < d 0 < d 2 (2.4
) where

d 0 = inf Ω l φ(., T 2 ), d 1 = sup O L,˜ φ and d 2 = sup Ω L φ(., T 2 
).

We will use the following notations:

Let α = (α 1 , • • • , α n ) be a multi-index with α i ∈ N ∪ {0}. We set ∂ α x = ∂ α1 1 • • • ∂ αn n , |α| = α 1 + • • • + α n and define H 2,1 (Q L ) = {u ∈ L 2 (Q L ), ∂ α x ∂ αn+1 t u ∈ L 2 (Q L ), |α| + 2α n+1 ≤ 2}
endowed with its norm

u 2 H 2,1 (Q L ) = |α|+2αn+1≤2 ∂ α x ∂ αn+1 t u 2 L 2 (Q L ) .
We recall here a global Carleman-type estimate proved in [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF], based on a classical Carleman estimate (see Yamamoto [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF]Theorem 7.3]).

Proposition 2.2. There exist a value of λ > 0 and positive constants s 0 and C = C(λ, s 0 ) such that

I(u) := Q L 1 sφ (|∂ t u| 2 + |∆u| 2 ) + sφ |∇u| 2 + s 3 φ 3 |u| 2 e 2sφ dx dt ≤ C e sφ Au 2 L 2 (Q L ) + Cs 3 e 2sd1 u 2 H 2,1 (Q L ) + Cs γ L ×(0,T ) |∂ ν u| 2 e 2sφ dσ dt, (2.5) 
for all s > s 0 and all u ∈ H 2,1 (Q L ) satisfying u(., 0) = u(., T ) = 0 in Ω L , u = 0 on ∂Ω L × (0, T ).

We denote ∂ ν u = ν • ∇u.

In fact the above Proposition 2.2 is still valid for a more general function u: we can replace the condition u = 0 on ∂Ω L × (0, T ) in Proposition 2.2 by u = 0 on (∂Ω ∩ ∂Ω L ) × (0, T ). Since the method of Carleman estimates requires several time differentiations, we assume in the following that u, v (resp. u, v) belong to H = H 3 (0, T, H 3 (Ω)) satisfying the a-priori bound u H < M 2 and v H < M 2 for given M 2 > 0.

From now on, we use the notation w( T 2 ) = w(., T 2 ) for any function w.

Inverse problems

3.1. The first result. Consider here (u, v) (resp. ( u, v)) a strong solution of (1.1) associated with

(a, b, c, d, u 0 , v 0 , g 1 , g 2 , h 1 , h 2 ) (resp. (a, b, c, d, u 0 , v 0 , g 1 , g 2 , h 1 , h 2 ))
. Assume that all the coefficients a, b, c, d, b, c belong to Λ(M 0 ). From [8, Lemma 4.2], we derive the following result, also used in [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] Lemma 3.1. There exist some positive constants C, s 1 such that

Ω L e 2sφ( T 2 ) |z(T /2)| 2 dx ≤ Cs Q L e 2sφ φ 2 |z| 2 dx dt + C s Q L e 2sφ |∂ t z| 2 dx dt,
for all s ≥ s 1 and z ∈ H 1 (0, T ; L 2 (Ω L )).

For the sake of completeness, we recall its proof.

Proof. Consider η defined by (3.4) and any w ∈ H 1 (0, T ; L 2 (Ω L )). Since η( T 2 ) = 1 and η(0) = 0, we have

Ω L w(x, T /2) 2 dx = Ω L (η(T /2)w(x, T /2)) 2 dx = Ω L T /2 0 ∂ t (η 2 (t)|w(x, t)| 2 )dt dx = 2 T /2 0 Ω L η 2 (t)w(x, t)∂ t w(x, t)dx dt + 2 T /2 0 Ω L η(t)∂ t η(t)|w(x, t)| 2 dx dt.
As 0 ≤ η ≤ 1, using Young's inequality, it comes that for any s > 0,

Ω L w(x, T /2) 2 dx ≤ Cs Q L |w| 2 dx dt + C s Q L |∂ t w| 2 dx dt. (3.1)
Then we can conclude replacing w by e sφ z in (3.1).

We can state our first main result for a two-by-to linear system which extend precedent results for one equation (see [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF] and [START_REF] Cardoulis | A stability result for the diffusion coefficient of the the heat operator defined on an unbounded guide[END_REF]). We do not follow here the proof of [1, Theorem 1.2] and rather use ideas from [START_REF] Cardoulis | An inverse problem for the heat equation in an unbounded guide[END_REF]. Theorem 3.1. Let l > 0. Let T > 0, L > l and a ∈ R n \ Ω satisfying the conditions of Proposition 2.1. We make the following assumption

| u(., T 2 )| ≥ R and | v(., T 2 )| ≥ R in Ω L for some R > 0. (3.2)
Then there exists a sufficiently small number δ 0 such that if δ ∈ (0, δ 0 ),

(u-u)(., T 2 ) 2 H 2 (Ω L ) + (v-v)(., T 2 ) 2 H 2 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u-ũ))| 2 +|∂ ν (∂ k t (v-ṽ))| 2 )dσdt ≤ δ then the following Hölder stability estimate holds b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) ≤ Kδ κ for all δ ∈ (0, δ 0 ). (3.3)
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M 0 , M 1 , M 2 , T and a.

Proof. Let χ, η be C ∞ cut-off functions defined by χ, ∇χ, ∆χ ∈ Λ(M 0 ), 0 ≤ χ ≤ 1, 0 ≤ η ≤ 1, χ(x) = 0 if x ∈ ((-∞, -L + ˜ ) ∪ (L -˜ , +∞)) × ω), χ(x) = 1 if x ∈ (-L + 2˜ , L -2˜ ) × ω, η(t) = 0 if t ∈ (0, ˜ ) ∪ (T -˜ , T ), η(t) = 1 if t ∈ ×(2˜ , T -2˜ ).
(3.4) Denote also

y = u -u, y 0 = χηy, y 1 = ∂ t y 0 , y 2 = ∂ t y 1 , z = v -v, z 0 = χηz, z 1 = ∂ t z 0 and z 2 = ∂ t z 1 .
Note that (y 0 , z 0 ) satisfies

   ∂ t y 0 -∆y 0 + ay 0 + bz 0 = ρ 1 := ( b -b)χη v + (∂ t η)χy -(∆χ)ηy -2∇χ • ∇(ηy) in Q L , ∂ t z 0 -∆z 0 + cy 0 + dz 0 = ρ 2 := ( c -c)χη u + (∂ t η)χz -(∆χ)ηz -2∇χ • ∇(ηz) in Q L , y 0 = z 0 = 0 on ∂Ω L × (0, T ). (3.5) and (y 1 , z 1 ), (y 2 , z 2 ) satisfy    ∂ t y 1 -∆y 1 + ay 1 + bz 1 = ∂ t ρ 1 in Q L , ∂ t z 1 -∆z 1 + cy 1 + dz 1 = ∂ t ρ 2 in Q L , y 1 = z 1 = 0 on ∂Ω L × (0, T ) and    ∂ t y 2 -∆y 2 + ay 2 + bz 2 = ∂ 2 t ρ 1 in Q L , ∂ t z 2 -∆z 2 + cy 2 + dz 2 = ∂ 2 t ρ 2 in Q L , y 2 = z 2 = 0 on ∂Ω L × (0, T ).
• First step: Applying (3.5) for t = T 2 , if we denote

J := Ω L e 2sφ( T 2 ) χ 2 [|c -c| 2 | u( T 2 )| 2 + |b -b| 2 | v( T 2 )| 2 ] dx then we get J ≤ Ce 2sd2 F 0 ( T 2 ) + C Ω L e 2sφ( T 2 ) (|∂ t y 0 ( T 2 )| 2 + |∂ t z 0 ( T 2 )| 2 ) dx with F 0 (T /2) = z 0 (T /2) 2 H 2 (Ω L ) + z(T /2) 2 H 1 (Ω L ) + y 0 (T /2) 2 H 2 (Ω L ) + y(T /2) 2 H 1 (Ω L ) . Note that F 0 (T /2) ≤ CF (T /2) with F (T /2) = y(T /2) 2 H 2 (Ω L ) + z(T /2) 2 H 2 (Ω L )
. Moreover, since ∂ t y 0 = y 1 , ∂ t z 0 = z 1 and 1 ≤ φ, using Lemma 3.1, we obtain

J ≤ Ce 2sd2 F (T /2) + Cs Q L e 2sφ φ 3 (|y 1 | 2 + |z 1 | 2 ) dx dt + C s Q L e 2sφ φ 3 (|y 2 | 2 + |z 2 | 2 ) dx dt. (3.6)
• Second step: Now we evaluate J with the Carleman inequalities (2.5) for y i and z i , i = 1, 2. Note that all the terms in e sφ Ay i 2

L 2 (Q L ) or e sφ Az i 2 L 2 (Q L )
with derivatives of χ or η will be bounded above by Ce 2sd1 with C a positive constant. Therefore, for s sufficiently large, there exists a positive constant C such that

I(y i ) + I(z i ) ≤ C Q L e 2sφ χ 2 [|c -c| 2 + |b -b| 2 ] dx dt + C Q L e 2sφ (|y i | 2 + |z i | 2 ) dx dt + Ce 2sd1 +Cs 3 e 2sd1 ( y i 2 H 2,1 (Q L ) + z i 2 H 2,1 (Q L ) ) + Cs γ L ×(0,T ) e 2sφ (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt.
Since e 2sφ ≤ e 2sφ(T /2) , we deduce that

I(y i ) + I(z i ) ≤ C Ω L e 2sφ(T /2) χ 2 [|c -c| 2 + |b -b| 2 ] dx dt + Cs 3 e 2sd1 +Cs γ L ×(0,T ) e 2sφ (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt. Thus s 3 Q L e 2sφ φ 3 (|y i | 2 + |z i | 2 ) dx dt ≤ C Ω L e 2sφ(T /2) χ 2 [|c -c| 2 + |b -b| 2 ] dx +Cs 3 e 2sd1 + Cs γ L ×(0,T ) e 2sφ (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt. (3.7)
Therefore, from (3.6) and (3.7), we get for s sufficiently large

J ≤ Ce 2sd2 F (T /2) + C s 2 s 3 e 2sd1 + Ω L e 2sφ(T /2) χ 2 [|c -c| 2 | + |b -b| 2 ] dx +s γ L ×(0,T ) e 2sφ 2 i=1 (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt .
So we have

J ≤ Ce 2sd2 G(T /2) + Cse 2sd1 + C s 2 Ω L e 2sφ(T /2) χ 2 [|c -c| 2 | + |b -b| 2 ] dx (3.8)
with

G(T /2) = F (T /2) + γ L ×(0,T ) 2 k=0 (|∂ ν ∂ k t y| 2 + |∂ ν ∂ k t z| 2 ) dσ dt.
• Third and last step: In this step, we come back to the coefficients b -b and c -c. First, from the hypothesis (3.2) we derive from (3.8), for s sufficiently large

Ω L e 2sφ(T /2) χ 2 (| b -b| 2 + | c -c| 2 ) dx ≤ Ce 2sd2 G(T /2) + Cse 2sd1 . (3.9) 
Moreover, since e 2sd0 ≤ e 2sφ(T /2) in Ω l and χ = 1 in Ω l , we deduce from (3.9) that

e 2sd0 ( b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) ) ≤ Ce 2sd2 G(T /2) + Cse 2sd1
. This last inequality can be rewritten in the following form for s sufficiently large (s

≥ s 2 ) b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) ≤ C(e 2s(d2-d0) G(T /2) + se 2s(d1-d0) ). (3.10)
Note that if G(T /2) = 0, since (3.10) holds for any s ≥ s 2 and d 1 -d 0 < 0 we get (3.3). Now if G(T /2) = 0, we recall from (2.4) that d 1 -d 0 < 0 and d 2 -d 0 > 0 and optimize (3.10) with respect to s. Indeed denote f (s) = e 2s(d2-d0) G(T /2) + e 2s(d1-d0) and g(s) = e 2s(d2-d0) G(T /2) + se 2s(d1-d0) .

We have f (s) ∼ g(s) at infinity. Moreover the function f has a minimum in

s 3 = 1 2(d 2 -d 1 ) ln( d 0 -d 1 (d 2 -d 0 )G(T /2)
) and f (s

3 ) = K G(T /2) κ with κ = d0-d1 d2-d1 and K = ( d0-d1 d2-d0 ) d 2 -d 0 d 2 -d 1 + ( d0-d1 d2-d0 ) d 1 -d 0 d 2 -d 0 . Finally the minimum s 3 is sufficiently large (s 3 ≥ s 2 ) if the following condition G(T /2) ≤ δ 0 , with δ 0 = d0-d1 (d2-d0)e 2s 2 (d 2 -d 1 )
, is satisfied. Then we get our result (3.3) and so we complete the proof of Theorem 3.1.

Remark 1. • Note that the hypothesis (3.2) is quite usual (cf [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF][START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF] for a parabolic system in a bounded domain) and is removed in [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF] by the control theory and in [START_REF] Cristofol | Inverse problems for a 2x2 reaction diffusion system using a Carleman estimate with one observation[END_REF] by conditions on a, b, c, d, u 0 , v 0 , h 1 , h 2 , g 1 , g 2 . In some cases, one can also diagonalise the coupling matrix of the coefficients (see [START_REF] Cosner | Sign-definite solutions in some linear elliptic systems[END_REF]) then use a parabolic positivity result (see [START_REF] Daners | Abstract Evolution Equations, Periodic Problems and Applications[END_REF]Theorem 13.5]) for the decoupling system. Of course we could obtain the same result as (3.3) for any coefficient in each equation of (1.1). But if we want to determine the coefficients b and d for example, we only have to assume that

| v(., T 2 )| ≥ R in Ω L for some R > 0, instead of (3.2). • In fact we can obtain in the right-hand side of (3.3) the term γ L ×(0,T ) 2 k=1 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2 ) dσ dt instead of γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2
) dσ dt if we slightly modify d 1 (if we define d 1 = sup O L,˜ φ, the inequalities (2.4) still hold and all the terms inside the integrals on γ L with derivatives of η are therefore bounded above by e 2sd1 ). 

, v 0 , g 1 , g 2 , h 1 , h 2 ) (resp. ( a, b, c, d, u 0 , v 0 , g 1 , g 2 , h 1 , h 2 ))
. Assume that all the coefficients a, b, c, d, a, b, c, d belong to Λ(M 0 ). For our second main result, first we need the following lemma inspired from Klibanov and Timonov ([11]). Recall that χ and η are defined by (3.4). Lemma 3.2. There exists a positive constant C such that

Q L e 2sφ φχ 2 η 2 t T /2 f (ξ) dξ 2 dx dt ≤ C s e 2sd1 + Q L e 2sφ χ 2 η 2 f 2 dx dt , for all s > 0 and f ∈ L 2 (0, T, L 2 (Ω L )) ∩ L ∞ (Q L ).
Proof. By the Cauchy-Schwarz inequality, we have

Q L φχ 2 η 2 e 2sφ t T /2 f (x, ξ) dξ 2 dx dt ≤ Q L φχ 2 η 2 e 2sφ |t - T 2 | t T /2 f (x, ξ) 2 dξ dx dt ≤ Ω L T /2 0 φχ 2 η 2 e 2sφ ( T 2 -t) t T /2 f (x, ξ) 2 dξ dxdt+ Ω L T T /2 φχ 2 η 2 e 2sφ (t- T 2 ) t T /2 f (x, ξ) 2 dξ dxdt. (3.11) Note that ∂ t (e 2sφ ) = -4sλ(t - T 2 )φe 2sφ .
For the second integral of the right hand side of (3.11), since η(T ) = 0, by integration by parts we have

Ω L T T /2 φχ 2 η 2 e 2sφ (t - T 2 ) t T /2 f (x, ξ) 2 dξ dx dt = - 1 4sλ Ω L T T /2 χ 2 η 2 ∂ t (e 2sφ )( t T /2 f (x, ξ) 2 dξ) dx dt = - 1 4sλ Ω L χ 2 η 2 e 2sφ ( t T /2 f (x, ξ) 2 dξ) t=T t=T /2 dx + 1 4sλ Ω L T T /2 e 2sφ χ 2 η 2 f 2 dx dt + 1 2sλ Ω L T T /2 e 2sφ χ 2 η∂ t η( t T /2 f (x, ξ) 2 dξ) dx dt = 1 2sλ Ω L T T /2 e 2sφ χ 2 η∂ t η( t T /2 f (x, ξ) 2 dξ) dx dt + 1 4sλ Ω L T T /2 e 2sφ χ 2 η 2 f 2 dx dt.
(3.12)

The first integral of (3.12) is bounded above by C s e 2sd1 due to the derivative of η. Therefore

Ω L T T /2 φχ 2 η 2 e 2sφ (t - T 2 ) t T /2 f (x, ξ) 2 dξ dx dt ≤ C s e 2sd1 + Q L e 2sφ χ 2 η 2 f 2 dx dt .
We obtain a similar result for the first integral of (3.11) and this concludes the proof of Lemma 3.2.

Now we can state our second main result in view to obtain a stability estimate of the four coefficients of (1.1) with nearly the same observations that we obtained in Theorem 3.1 (see the right-hand sides of (3.3) and (3.15)).

Theorem 3.2. Let l > 0. Let T > 0, L > l and a ∈ R n \ Ω satisfying the conditions of Proposition 2.1. We make here the following assumptions

| u| ≥ R and |∂ t ( v u )| ≥ R in Q for some R > 0, (3.13) 
and

| v| ≥ R and |∂ t ( u v )| ≥ R in Q for some R > 0. (3.14)
Then there exists a sufficiently small number δ 0 such that if δ ∈ (0, δ 0 ),

1 k=0 ∂ k t (u -u)(., T 2 ) 2 H 2 (Ω L ) + 1 k=0 ∂ k t (v -v)(., T 2 ) 2 H 2 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2 dσ dt ≤ δ
then the following Hölder stability estimate holds

a -a 2 L 2 (Ω l ) + b -b 2 L 2 (Ω l ) + c -c 2 L 2 (Ω l ) + d -d 2 L 2 (Ω l ) ≤ Kδ κ for all δ ∈ (0, δ 0 ). ( 3 
.15) Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M 0 , M 1 , M 2 , T and a.

Proof. As in Thereom 3.1 denote y = u -u and z = v -v. Then (y, z) satisfies

   ∂ t y -∆y + ay + bz = ( a -a) u + ( b -b) v in Q, ∂ t z -∆z + cy + dz = ( c -c) u + ( d -d) v in Q, y = z = 0 on Σ. • First step: Let y 1 = y u and z 1 = z u . Then (y 1 , z 1 ) satisfies    ∂ t y 1 -∆y 1 + ay 1 + bz 1 = f 1 + a -a + ( b -b) v u in Q, ∂ t z 1 -∆z 1 + cy 1 + dz 1 = f 2 + c -c + ( d -d) v u in Q, y 1 = z 1 = 0 on Σ, with f 1 := 1 u (-y 1 ∂ t u + y 1 ∆ u + 2∇y 1 • ∇ u) and f 2 := 1 u (-z 1 ∂ t u + z 1 ∆ u + 2∇z 1 • ∇ u). Denote now y 2 = ∂ t y 1 , z 2 = ∂ t z 1 , y 3 = 1 ∂t( v u ) y 2 and z 3 = 1 ∂t( v u ) z 2 . Then    ∂ t y 2 -∆y 2 + ay 2 + bz 2 = ∂ t f 1 + ( b -b)∂ t ( v u ) in Q, ∂ t z 2 -∆z 2 + cy 2 + dz 2 = ∂ t f 2 + ( d -d)∂ t ( v u ) in Q, y 2 = z 2 = 0 on Σ, and    ∂ t y 3 -∆y 3 + ay 3 + bz 3 = f 3 + b -b in Q, ∂ t z 3 -∆z 3 + cy 3 + dz 3 = f 4 + d -d in Q, y 3 = z 3 = 0 on Σ, (3.16) 
with

f 3 := 1 ∂ t ( v u ) -y 3 ∂ 2 t ( v u ) + y 3 ∆(∂ t ( v u )) + 2∇y 3 • ∇(∂ t ( v u )) + ∂ t f 1 and f 4 := 1 ∂ t ( v u ) -z 3 ∂ 2 t ( v u ) + z 3 ∆(∂ t ( v u )) + 2∇z 3 • ∇(∂ t ( v u )) + ∂ t f 2 .
Finally let y 4 = ∂ t y 3 , z 4 = ∂ t z 3 , y 5 = χηy 4 and z 5 = χηz 4 . Then (3.18) As in Thereom 3.1, all the terms in Q L e 2sφ ((Ay 5 ) 2 + (Az 5 ) 2 ) dx dt with derivatives of η or χ will be bounded above by Ce 2sd1 . So since φ ≥ 1

∂ t y 5 -∆y 5 + ay 5 + bz 5 = χη∂ t f 3 + f 5 in Q L , ∂ t z 5 -∆z 5 + cy 5 + dz 5 = χη∂ t f 4 + f 6 in Q L , (3.17 
Q L e 2sφ ((Ay 5 ) 2 + (Az 5 ) 2 ) dx dt ≤ C Q L e 2sφ (y 2 5 + z 2 5 ) dx dt + Ce 2sd1 +C Q L e 2sφ χ 2 η 2 (|∂ t f 3 | 2 + |∂ t f 4 | 2 ) dx dt ≤ C Q L e 2sφ (y 2 5 + z 2 5 )dxdt + Ce 2sd1 + C Q L φe 2sφ χ 2 η 2 4 i=1 (y 2 i + |∇y i | 2 + z 2 i + |∇z i | 2 )dxdt. (3.19)
Since χηy 4 = y 5 and χηz 4 = z 5 , (3.19) implies

Q L e 2sφ ((Ay 5 ) 2 + (Az 5 ) 2 ) dx dt ≤ C Q L e 2sφ (y 2 5 + z 2 5 + |∇y 5 | 2 + |∇z 5 | 2 ) dx dt + Ce 2sd1 +C Q L φe 2sφ χ 2 η 2 3 i=1 (y 2 i + |∇y i | 2 + z 2 i + |∇z i | 2 ) dx dt. (3.20) 
From (3.18)-(3.20), we get for s sufficiently large

I(y 5 ) + I(z 5 ) ≤ Cs 3 e 2sd1 + C Q L φe 2sφ χ 2 η 2 3 i=1 (y 2 i + |∇y i | 2 + z 2 i + |∇z i | 2 ) dx dt +Cs γ L ×(0,T ) e 2sφ (|∂ ν y 5 | 2 + |∂ ν z 5 | 2 ) dσ dt. ( 3 

.21)

Using now Lemma 3.2 we have 

Q L φe 2sφ χ 2 η 2 y 2 1 dx dt = Q L φe 2sφ χ 2 η 2 t T /2 ∂ t y 1 (ξ)dξ + y 1 (T /2) 2 dx dt ≤ C s e 2sd1 + C s Q L e 2sφ χ 2 η 2 y 2 2 dx dt + C Q L φe 2sφ χ 2 η 2 y 1 (T /2) 2 dx dt ≤ C s e 2sd1 + C s Q L φe 2sφ χ 2 η 2 y 2 3 dx dt + C Q L φe 2sφ χ 2 η 2 y 1 (T /2) 2 dx dt ≤ C s e 2sd1 + C s Q L φe 2sφ χ 2 η 2 t T /2 ∂ t y 3 (ξ)dξ + y 3 (T /2) 2 dx dt+C Q L φe 2sφ χ 2 η 2 y 1 (T /2) 2 dx dt ≤ C s e 2sd1 + C s 2 e 2sd1 + Q L φe 2sφ χ 2 η 2 y 2 4 dx dt + C Q L φe 2sφ χ 2 η 2 (y 1 (T /2) 2 + y 3 (T /2) 2 ) dx dt ≤ C s e 2sd1 + C s 2 Q L e 2sφ y 2 5 dx dt + Ce 2sd2 Ω L (y 1 (T /2) 2 + y 2 (T /2) 2 ) dx. (3.22) Doing the same for Q L φe 2sφ χ 2 η 2 y 2 i dx dt, Q L φe 2sφ χ 2 η 2 z 2 i dx dt, Q L φe 2sφ χ 2 η 2 |∇y i | 2 dx dt and Q L φe 2sφ χ 2 η 2 |∇z i | 2 dx dt, for i = 1, 2,
γ L ×(0,T ) e 2sφ (|∂ ν y 5 | 2 + |∂ ν z 5 | 2 ) dσ dt +Ce 2sd2 Ω L 2 i=1 (y i (T /2) 2 + z i (T /2) 2 + |∇y i (T /2)| 2 + |∇z i (T /2)| 2 ) dx. (3.23)
Note that (3.23) can be rewritten on the following form

I(y 5 ) + I(z 5 ) ≤ Cs 3 e 2sd1 + Cse 2sd2 γ L ×(0,T ) 2 k=0 (|∂ ν ∂ k t y| 2 + |∂ ν ∂ k t z| 2 ) dσ dt +Ce 2sd2 Ω L 1 k=0 (∂ k t y(T /2) 2 + ∂ k t z(T /2) 2 + |∇∂ k t y(T /2)| 2 + |∇∂ k t z(T /2)| 2 ) dx
and so

I(y 5 ) + I(z 5 ) ≤ Cs 3 e 2sd1 + Cse 2sd2 F 1 (T /2) (3.24) with F 1 (T /2) = γ L ×(0,T ) 2 k=0 (|∂ ν ∂ k t y| 2 + |∂ ν ∂ k t z| 2 ) dσ dt + 1 k=0 ( ∂ k t y(T /2) 2 H 1 (Ω L ) + ∂ k t z(T /2) 2 H 1 (Ω L ) ).
• Second step: Now we evaluate (3.16) at T /2. We have

Ω L e 2sφ(T /2) χ 2 (| b-b| 2 +| d-d| 2 ) dx ≤ C Ω L e 2sφ(T /2) χ 2 (|∂ t y 3 (T /2)| 2 +|∂ t z 3 (T /2)| 2 ) dx+Ce 2sd2 F 2 (T /2) with F 2 (T /2) = 2 i=1 ( y i (T /2) 2 H 2 (Ω L ) + z i (T /2) 2 H 2 (Ω L ) ).
So, since η(T /2) = 1,

Ω L e 2sφ(T /2) χ 2 (| b-b| 2 +| d-d| 2 ) dx ≤ C Ω L e 2sφ(T /2) (|y 5 (T /2)| 2 +|z 5 (T /2)| 2 ) dx+Ce 2sd2 F 2 (T /2).
(3.25) Now let ψ 1 = e sφ y 5 and ψ 2 = e sφ z 5 . Calculate

J 1 = Ω L T /2 0 ∂ t ψ 1 (t)ψ 1 (t) dx dt and J 2 = Ω L T /2 0 ∂ t ψ 2 (t)ψ 2 (t) dx dt. Since η(0) = 0, we get J 1 = 1 2 Ω L ψ 1 (T /2) 2 dx = 1 2 Ω L e 2sφ(T /2) y 5 (T /2) 2 dx and J 2 = 1 2 Ω L e 2sφ(T /2) z 5 (T /2) 2 dx.
Therefore (3.25) becomes

Ω L e 2sφ(T /2) χ 2 (| b -b| 2 + | d -d| 2 ) dx ≤ Ce 2sd2 F 2 (T /2) +C Ω L T /2 0 1 s ∂ t ψ 1 (t)sψ 1 (t) dx dt + C Ω L T /2 0 1 s ∂ t ψ 2 (t)sψ 2 (t) dx dt. (3.26)
Using Young inequality, we deduce from (3.26)

Ω L e 2sφ(T /2) χ 2 (| b -b| 2 + | d -d| 2 ) dx ≤ C s (I(y 5 ) + I(z 5 )) + Ce 2sd2 F 2 (T /2). (3.27)
From (3.24) and (3.27) we get

Ω L e 2sφ(T /2) χ 2 (| b -b| 2 + | d -d| 2 ) dx ≤ Cs 2 e 2sd1 + Ce 2sd2 (F 1 (T /2) + F 2 (T /2)). (3.28)
Proceeding as in Theorem 3.1, we obtain from (3.28)

Ω l (| b -b| 2 + | d -d| 2 ) dx ≤ Cs 2 e 2s(d1-d0) + Ce 2s(d2-d0) F 3 (T /2) (3.29) with F 3 (T /2) = 1 k=0 ( ∂ k t y(T /2) 2 H 2 (Ω L ) + ∂ k t z(T /2) 2 H 2 (Ω L ) ) + γ L ×(0,T ) 2 k=0 (|∂ ν ∂ k t y| 2 + |∂ ν ∂ k t z| 2 ) dσ dt.
Notice that in the first and second steps of this proof, we have only used the hypothesis (3.13).

• Third step: Finally using the hypothesis (3.14), we can proceed exactly as before and obtain 

Ω l (| a -a| 2 + | c -c| 2 ) dx ≤ Cs 2 e 2s(d1-d0) + Ce 2s(d2-d0) F 3 (T /2). ( 3 
Ω L e 2sφ( T 2 ) χ 2 |z(T /2)| 2 dx ≤ Cs Q L e 2sφ φ 2 χ 2 η 2 |z| 2 dx dt + C s e 2sd1 + C s Q L e 2sφ χ 2 η 2 |∂ t z| 2 dx dt, for all z ∈ H 1 (0, T ; L 2 (Ω L )).
Moreover, if we did so, since we had to give up the end of the first step of the proof of Theorem 3.2, we'd rather follow the ideas of the proof of Theorem 3.1. Therefore, when in the second step we evaluated (3.16) for t = T /2, with the above inequality we would have to estimate

Ω L e 2sφ(T /2) χ 2 |∂ t y 3 (T /2)| 2 dx and Ω L e 2sφ(T /2) χ 2 |∂ t z 3 (T /2)| 2 dx; thus we could obtain Q L e 2sφ χ 2 η 2 |∂ t y 4 | 2 dx dt and Q L e 2sφ χ 2 η 2 |∂ t z 4 | 2 dx
dt in the right-hand side of the estimates. Then we would have to apply the Carleman estimates for χηy 4 , χηz 4 , χη∂ t y 4 , χη∂ t z 4 and so we would obtain a third derivative in time for the observation terms.

• Third the assumptions (3.13) and (3.14) are equivalent to

| u| ≥ R, | v| ≥ R and |det( u ∂ t u v ∂ t v | ≥
R with R a positive constant. For example, if n = 2 and ω = (r 1 , r 2 ) with r 1 > 0, let α(x 1 ) be a positive and bounded function in C 2 (R) such that min x1∈R α(x 1 ) > 2r 2 2 . Then u(x, t) = α(x 1 )t+x 2 and v(x, t) = tx 2 + 1 are solutions of the system (1.1) with

g 1 = g 2 = 0, a(x) = α (x1)+α(x1)x2 α(x1)-x 2 2 , b(x) = -x2α (x1)-α(x1) 2 α(x1)-x 2 2 , c(x) = x 2 2 α(x1)-x 2 2 , d(x) = -x2α(x1) α(x1)-x 2 2
, and satisfy the conditions (3.13)-(3.14).

• Finally note that the above results remain valid for the system (1.2) when all the coefficients a, b, c, d, A 1 , A 2 , A 3 , A 4 are bounded (a, b, c, d ∈ Λ(M 0 ) and A 1 , A 2 , A 3 , A 4 ∈ (Λ(M 0 )) n ). We obtain a stability result of at least two coefficients between a, b, c, d with the same observations in the right-hand sides of (3.3) or (3.15). In the next section we study the inverse problem of determining at least one of the coefficient A 1 , A 2 , A 3 , A 4 , for example A 3 if we assume that this coefficient has the form A 3 = ∇g.

3.3. The third result. Consider now (u, v) (resp. ( u, v)) a strong solution of (1.2) associated with (a, b, c, d, A 1 , A 2 , A 3 , A 4 , u 0 , v 0 , g 1 , g 2 , h 1 , h 2 ) (resp. (a, b, c, d, A 1 , A 2 , A 3 , A 4 , u 0 , v 0 , g 1 , g 2 , h 1 , h 2 )). Assume that all the coefficients a, b, c, d belong to Λ(M 0 ), A 1 , A 2 , A 3 , A 4 , A 3 belong to (Λ(M 0 )) n ∩ (H 1 (Ω)
) n and that there exist functions g, g such that

A 3 = ∇g, A 3 = ∇ g in Ω.
(3.31)

The Assumption (3.31) implies conditions on A 3 , A 3 :

if t A 3 = (c 1 , • • • , c n ), it means that for all i, j = 1, • • • , n, ∂ xi c j = ∂ xj c i , in other words rot(A 3 ) = 0 if n = 3.
Now following an idea developed in [START_REF] Yu | An inverse problem for the dynamical Lamé system with two set of boundary data[END_REF] for Lamé system in bounded domains, also used for example in [START_REF] Cardoulis | A stability result for the diffusion coefficient of the the heat operator defined on an unbounded guide[END_REF], we obtain the following result Lemma 3.3. Assume that the following assumption

|∇d • ∇ u(T /2)| ≥ R in Ω L for some R > 0 (3.32)
holds. Consider the first order partial differential operator P f = ∇f • ∇ u(T /2). Then there exist positive constants s 4 > 0 and C > 0 such that for all s ≥ s 4 ,

s 2 Ω L e 2sφ(T /2) |f | 2 dx ≤ C Ω L e 2sφ(T /2) |P f | 2 dx,
for all f ∈ H 1 0 (Ω L ). Proof. The proof follows [START_REF] Cardoulis | A stability result for the diffusion coefficient of the the heat operator defined on an unbounded guide[END_REF]. Let f ∈ H 1 0 (Ω L ). Denote w = e sφ(T /2) f and Qw = e sφ(T /2) P (e -sφ(T /2) w). So we get Qw = P w -sw∇φ(T /2) • ∇ u(T /2). Therefore we have

Ω L |Qw| 2 dx ≥ s 2 Ω L w 2 |∇φ(T /2) • ∇ u(T /2)| 2 dx -2s Ω L (P w)w(∇φ(T /2) • ∇ u(T /2)) dx Ω L |Qw| 2 dx ≥ s 2 λ 2 Ω L w 2 (φ(T /2)) 2 |∇d • ∇ u(T /2)| 2 dx -2sλ Ω L (∇w • ∇ u(T /2))wφ(T /2)(∇d • ∇ u(T /2)) dx. So Ω L |Qw| 2 dx ≥ s 2 λ 2 Ω L w 2 (φ(T /2)) 2 |∇d • ∇ u(T /2)| 2 dx -sλ Ω L φ(T /2)(∇d • ∇ u(T /2))(∇(w 2 ) • ∇ u(T /2)) dx.

Thus integrating by parts

Ω L |Qw| 2 dx ≥ s 2 λ 2 Ω L w 2 (φ(T /2)) 2 |∇d • ∇ u(T /2)| 2 dx +sλ Ω L w 2 ∇ • (φ(T /2)(∇d • ∇ u(T /2))∇ u(T /2)) dx and Ω L e 2sφ(T /2) |P f | 2 dx = Ω L |Qw| 2 dx ≥ s 2 λ 2 Ω L e 2sφ(T /2) f 2 (φ(T /2)) 2 |∇d • ∇ u(T /2)| 2 dx +sλ Ω L e 2sφ(T /2) f 2 ∇ • (φ(T /2)(∇d • ∇ u(T /2))∇ u(T /2)) dx.
And we can conclude for s sufficiently large.

The strong positivity assumption (3.32) is frequently involved in inverse problems and is removed in [START_REF] Cardoulis | A stability result for the diffusion coefficient of the the heat operator defined on an unbounded guide[END_REF] for one equation by the construction of an adapted control. Now we state the third result. Theorem 3.3. Let l > 0. Let T > 0, L > l and a ∈ R n \ Ω satisfying the conditions of Proposition 2.1. Assume that Assumptions (3.31) and (3.32) hold. We also make the following hypothesis

| v(., T 2 )| ≥ R in Ω L for some R > 0. (3.33)
If g = g and A 3 = A 3 on ∂Ω ∩ ∂Ω L , then there exists a sufficiently small number δ 0 such that if δ ∈ (0, δ 0 ),

1 k=0 ∂ k t (u -u)(., T 2 ) 2 H 2 (Ω L ) + 1 k=0 ∂ k t (v -v)(., T 2 ) 2 H 3 (Ω L ) + γ L ×(0,T ) 2 k=0 (|∂ ν (∂ k t (u -ũ))| 2 + |∂ ν (∂ k t (v -ṽ))| 2 dσ dt ≤ δ then the following Hölder stability estimate holds b -b 2 L 2 (Ω l ) + A 3 -A 3 2 (L 2 (Ω l )) n ≤ Kδ κ for all δ ∈ (0, δ 0 ). (3.34) 
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, r, L, l, M 0 , M 1 , M 2 , T and a.

Proof. As in Theorem 3.1 denote

y = u -u, y 0 = χηy, y 1 = ∂ t y 0 , y 2 = ∂ t y 1 , z = v -v, z 0 = χηz, z 1 = ∂ t z 0 and z 2 = ∂ t z 1 .
Then (y 0 , z 0 ) satisfies 

   ∂ t y 0 -∆y 0 + ay 0 + bz 0 + A 1 • ∇y 0 + A 2 • ∇z 0 = ξ 1 in Q L , ∂ t z 0 -∆z 0 + cy 0 + dz 0 + A 3 • ∇y 0 + A 4 • ∇z 0 = ξ 2 in Q L ,
ξ 2 := χη( A 3 -A 3 ) • ∇ u + (∂ t η)χz -(∆χ)ηz -2∇χ • ∇(ηz) + ηyA 3 • ∇χ + ηzA 4 • ∇χ. Then ξ 2 = η∇(χ( g -g)) • ∇ u -η( g -g)∇χ • ∇ u + (∂ t η)χz -(∆χ)ηz -2∇χ • ∇(ηz) + ηyA 3 • ∇χ + ηzA 4 • ∇χ.
• First step: We evaluate (3.35) for t = T 2 and we get ∂ t y 0 (T /2) -∆y 0 (T /2) + ay 0 (T /2)

+ bz 0 (T /2) + A 1 • ∇y 0 (T /2) + A 2 • ∇z 0 (T /2) = χ( b -b) v(T /2) -(∆χ)y(T /2) -2∇χ • ∇y(T /2) + y(T /2)A 1 • ∇χ + z(T /2)A 2 • ∇χ (3.36) and ∂ t z 0 (T /2) -∆z 0 (T /2) + cy 0 (T /2) + dz 0 (T /2) + A 3 • ∇y 0 (T /2) + A 4 • ∇z 0 (T /2) = P (χ( g -g))-( g -g)∇χ•∇ u(T /2)-(∆χ)z(T /2)-2∇χ•∇z(T /2)+y(T /2)A 3 •∇χ+z(T /2)A 4 •∇χ
(3.37) with P the operator defined in Lemma 3.3. From (3.36) we have

Ω L e 2sφ( T 2 ) χ 2 |b -b| 2 | v( T 2 )| 2 dx ≤ C Ω L e 2sφ( T 2 ) |∂ t y 0 ( T 2 )| 2 dx +Ce 2sd2 ( z 0 (T /2) 2 H 1 (Ω L ) + y 0 (T /2) 2 H 2 (Ω L ) + y(T /2) 2 H 1 (Ω L ) + z(T /2) 2 L 2 (Ω L ) ). So Ω L e 2sφ( T 2 ) χ 2 |b -b| 2 | v( T 2 )| 2 dx ≤ Ce 2sd2 F 1 (T /2) + C Ω L e 2sφ( T 2 ) |∂ t y 0 ( T 2 )| 2 dx with F 1 (T /2) = y(T /2) 2 H 2 (Ω L ) + z(T /2) 2 H 1 (Ω L ) . Then, applying Lemma 3.1 we get Ω L e 2sφ( T 2 ) χ 2 |b-b| 2 | v( T 2 )| 2 dx ≤ Ce 2sd2 F 1 (T /2)+Cs Q L e 2sφ φ 3 |y 1 | 2 dx dt+ C s Q L e 2sφ φ 3 |y 2 | 2 dx dt.
(3.38) Moreover using Lemma 3.3 for (3.37) we have

s 2 Ω L e 2sφ(T /2) χ 2 ( g -g) 2 dx ≤ C Ω L e 2sφ(T /2) |P (χ( g -g))| 2 dx ≤ Ce 2sd1 + C Ω L e 2sφ( T 2 ) |∂ t z 0 ( T 2 )| 2 dx +Ce 2sd2 ( z 0 (T /2) 2 H 2 (Ω L ) + y 0 (T /2) 2 H 1 (Ω L ) + y(T /2) 2 L 2 (Ω L ) + z(T /2) 2 H 1 (Ω L ) ). Applying again Lemma 3.1 we get s 2 Ω L e 2sφ(T /2) χ 2 ( g -g) 2 dx ≤ Ce 2sd1 + Ce 2sd2 F 2 (T /2) + Cs Q L e 2sφ φ 3 |z 1 | 2 dx dt + C s Q L e 2sφ φ 3 |z 2 | 2 dxdt (3.39) with F 2 (T /2) = y(T /2) 2 H 1 (Ω L ) + z(T /2) 2 H 2 (Ω L ) . From (3.38)-(3.39) we obtain Ω L e 2sφ( T 2 ) χ 2 |b -b| 2 | v( T 2 )| 2 dx + Ω L e 2sφ(T /2) χ 2 ( g -g) 2 dx ≤ C s 2 e 2sd1 + Ce 2sd2 F 3 (T /2) + Cs Q L e 2sφ φ 3 (|y 1 | 2 + |z 1 | 2 )dxdt + C s Q L e 2sφ φ 3 (|y 2 | 2 + |z 2 | 2 )dxdt (3.40) with F 3 (T /2) = y(T /2) 2 H 2 (Ω L ) + z(T /2) 2 H 2 (Ω L )
. Using now Assumption (3.33), we get from (3.40) and for s sufficiently large

Ω L e 2sφ( T 2 ) χ 2 ((b -b) 2 + ( g -g) 2 ) dx ≤ C s 2 e 2sd1 + Ce 2sd2 F 3 (T /2) +Cs Q L e 2sφ φ 3 (|y 1 | 2 + |z 1 | 2 ) dx dt + C s Q L e 2sφ φ 3 (|y 2 | 2 + |z 2 | 2 ) dx dt. (3.41) 
• Second step: As in Theorem 3.1, now we use the Carleman inequalities (2.5) for y i and z i , i = 1, 2. Recall that φ ≤ φ(T /2) so we get for s sufficiently large

I(y i ) + I(z i ) ≤ C Ω L e 2sφ(T /2) (|∇(χ( g -g))| 2 + χ 2 |b -b| 2 ) dx + Cs 3 e 2sd1 +Cs γ L ×(0,T ) e 2sφ (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt. Thus s 3 Q L e 2sφ φ 3 (|y i | 2 + |z i | 2 ) dx dt ≤ C Ω L e 2sφ(T /2) (|∇(χ( g -g))| 2 + χ 2 |b -b| 2 ) dx +Cs 3 e 2sd1 + Cs γ L ×(0,T ) e 2sφ (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt. (3.42)
Therefore, from (3.41) and (3.42), we get for s sufficiently large

Ω L e 2sφ( T 2 ) χ 2 ((b -b) 2 + ( g -g) 2 ) dx ≤ Ce 2sd2 F 3 (T /2) + Cse 2sd1 + C s 2 Ω L e 2sφ(T /2) (|∇(χ( g -g))| 2 + χ 2 |b -b| 2 ) dx + C s γ L ×(0,T ) e 2sφ 2 i=1 (|∂ ν y i | 2 + |∂ ν z i | 2 ) dσ dt.
Thus we have for s sufficiently large

Ω L e 2sφ( T 2 ) χ 2 ((b-b) 2 +( g-g) 2 ) dx ≤ Ce 2sd2 F 4 (T /2)+Cse 2sd1 + C s 2 Ω L e 2sφ(T /2) |∇(χ(g-g))| 2 | dx (3.43) with F 4 (T /2) = F 3 (T /2) + γ L ×(0,T ) 2 k=0 (|∂ ν ∂ k t y| 2 + |∂ ν ∂ k t z| 2 ) dσ dt.
• Third step: We apply the same ideas for ∇(χ( g -g)). For any integer 1 ≤ i ≤ n, taking the space derivative with respect to x i in (3.37), we obtain 

3. 2 .

 2 The second result. Consider now (u, v) (resp. ( u, v)) a strong solution of (1.1) associated with (a, b, c, d, u 0

) with f 5 =

 5 (∂ t η)χy 4 -(∆χ)ηy 4 -2η∇χ • ∇y 4 and f 6 = (∂ t η)χz 4 -(∆χ)ηz 4 -2η∇χ • ∇z 4 . Due to the truncation functions, we can apply the Carleman estimates for y 5 and z 5 and now we estimate I(y 5 ) + I(z 5 ) with (2.5). We have I(y 5 )+I(z 5 ) ≤ C Q L e 2sφ ((Ay 5 ) 2 +(Az 5 ) 2 )dxdt+Cs 3 e 2sd1 +Cs γ L ×(0,T ) e 2sφ (|∂ ν y 5 | 2 +|∂ ν z 5 | 2 )dσdt.

  3 we get from (3.21)-(3.22) and for s sufficienlty large I(y 5 ) + I(z 5 ) ≤ Cs 3 e 2sd1 + Cs

2 .

 2 .30) From (3.29)-(3.30) we end the proof of Thereom 3.Remark 2. • First note that our stability results (3.3) and (3.15) are obtained on Ω l for the lefthand term while the observation data G(T /2) and F 3 (T /2) are required on Ω L for the right-hand term of (3.3), (3.15). • Second we have used Lemma 3.2 instead of Lemma 3.1 in the proof of Theorem 3.2 in order to avoid a third derivative with respect to t in the observation terms. Indeed, if we no longer used Lemma 3.2 in the proof of Theorem 3.2, we could use a modified version of Lemma 3.1: applying (3.1) with w = e sφ χηz, we could obtain the following inequality

  y 0 = z 0 = 0 on ∂Ω L × (0, T ) (3.35) with ξ 1 := χη( b -b) v + (∂ t η)χy -(∆χ)ηy -2∇χ • ∇(ηy) + ηyA 1 • ∇χ + ηzA 2 • ∇χ and

∂ 2 Ω 2 Ω 2 Ω(|∇z j | 2 +L e 2sφ 2 j=1 (z 2 j + y 2 j2sφ 2 j=1(|∂ ν z j | 2 + 2 Ω L e 2sφ(T / 2 )) e 2sφ 2 j=1(|∂ ν z j | 2 +Therefore for s sufficienlty large s 2 Ω2sφ 2 j=1(|∂ ν z j | 2 +

 2222222222222222 t ∂ xi z 0 (T /2) -∆∂ xi z 0 (T /2) + ∂ xi (cy 0 (T /2) + dz 0 (T /2) + A 3 • ∇y 0 (T /2) + A 4 • ∇z 0 (T /2)) = P (∂ xi (χ( g -g))) + ∇(χ( g -g)) • ∇(∂ xi u(T /2)) -∂ xi (( g -g)∇χ • ∇ u(T /2))-∂ xi ((∆χ)z(T /2) -2∇χ • ∇z(T /2) + y(T /2)A 3 • ∇χ + z(T /2)A 4 • ∇χ).(3.44) We can apply again Lemma 3.3: there exists a positive constant C such that for s sufficiently large,s L e 2sφ(T /2) ∂ xi (χ( g -g)) 2 dx ≤ C Ω L e 2sφ(T /2) (P (∂ xi (χ( g -g)))) 2 dx.Thus, using (3.44) we obtains L e 2sφ(T /2) (∂ xi (χ( g -g))) 2 dx ≤ Ce 2sd2 F 5 (T /2) + Ce 2sd1 + C Ω L e 2sφ(T /2) |∂ xi z 1 (T /2)| 2 dx +C Ω L e 2sφ(T /2) |∇(χ(g -g))| 2 | dx with F 5 (T /2) = z(T /2) 2 H 3 (Ω L ) + y(T /2) 2 H 2 (Ω L ) . So using Lemma 3.1 we get s L e 2sφ(T /2) (∂ xi (χ( g -g))) 2 dx ≤ Ce 2sd2 F 5 (T /2) + Ce 2sd1 + C Ω L e 2sφ(T /2) |∇(χ(g -g))| 2 | dx +Cs Q L e 2sφ (∂ xi z 1 ) 2 dx dt + C s Q L e 2sφ (∂ xi z 2 ) 2 dx dt. (3.45)Moreover by the Carleman inequality (2.5), we have for j = 1, 2,s Q L e 2sφ (z 2 j + |∇z j | 2 ) dx dt ≤ C Q L e 2sφ |Az j | 2 dx dt + Cs 3 e 2sd1 z j 2 H 2,1 (Q L ) +Cs γ L ×(0,T ) |∂ ν z j | 2 e 2sφ dσ dt. Thus s Q L e 2sφ (z 2 j +|∇z j | 2 ) dx dt ≤ C Q L e 2sφ (y 2 j +|∇y j | 2 +z 2 j +|∇z j | 2 ) dx dt+ Q L e 2sφ |∇(χ( g-g))| 2 dx dt +Cs 3 e 2sd1 + Cs γ L ×(0,T ) |∂ ν z j | 2 e 2sφ dσ dt. (3.46)By the same way we obtains Q L e 2sφ (y 2 j +|∇y j | 2 ) dx dt ≤ C Q L e 2sφ (y 2 j +|∇y j | 2 +z 2 j +|∇z j | 2 ) dx dt+ Q L e 2sφ (χ( b-b)) 2 dxdt +Cs 3 e 2sd1 + Cs γ L ×(0,T ) |∂ ν y j | 2 e 2sφ dσ dt. (3.47) From (3.46) and (3.47) we deduces Q L e 2sφ (z 2 j + y 2 j + |∇z j | 2 + |∇y j | 2 )dxdt ≤ C Q L e 2sφ (y 2 j + |∇y j | 2 + z 2 j + |∇z j | 2 )dxdt + Cs 3 e 2sd1 +C Q L e 2sφ (|∇(χ( g -g))| 2 + (χ( b -b)) 2 ) dx dt + Cs γ L ×(0,T ) e 2sφ (|∂ ν z j | 2 + |∂ ν y j | 2 ) dσ dt. (3.48)Since φ ≤ φ(T /2), (3.48) implies for s sufficiently larges Q L e 2sφ (z 2 j + y 2 j + |∇z j | 2 + |∇y j | 2 ) dx dt ≤ Cs 3 e 2sd1 +C Ω L e 2sφ(T /2) (|∇(χ( g -g))| 2 + (χ( b -b)) 2 ) dx + Cs γ L ×(0,T ) e 2sφ (|∂ ν z j | 2 + |∂ ν y j | 2 ) dσ dt |∇y j | 2 ) dx dt ≤ s Q + |∇z j | 2 + |∇y j | 2 ) dx dt ≤ Cs 3 e 2sd1 + Cs γ L ×(0,T ) e |∂ ν y j | 2 ) dσ dt +C Ω L e 2sφ(T /2) (|∇(χ( g -g))| 2 + (χ( b -b)) 2 ) dx. (3.49) Using inequalities (3.45) for 1 ≤ i ≤ n and (3.49), we get s |∇(χ( g -g))| 2 dx ≤ Ce 2sd2 F 5 (T /2)+C Ω L e 2sφ(T /2) [|∇(χ(g -g))| 2 |+|χ(b-b)| 2 ] dx +Cs 3 e 2sd1 + Cs γ L ×(0,T |∂ ν y j | 2 ) dσ dt. L e 2sφ(T /2) |∇(χ( g -g))| 2 dx ≤ Ce 2sd2 F 5 (T /2) + C Ω L e 2sφ(T /2) (χ(b -b)) 2 dx +Cs 3 e 2sd1 + Cs γ L ×(0,T ) e |∂ ν y j | 2 ) dσ dt. (3.50)

• Fourth step: Now we gather (3.43) and (3.50) and we get for s sufficiently large

with F 6 (T /2) = F 4 (T /2) + F 5 (T /2). Moreover, since e 2sd0 ≤ e 2sφ(T /2) in Ω l and χ = 1 in Ω l , we deduce that

). This concludes the proof of Theorem 3.3.

Remark 3. In Theorem 3.3 we have presented the case of determining the coefficients b and A 3 . Of course we could obtain similar results for at least two coefficients between a, b, c, d, A 1 , A 2 , A 3 , A 4 . If we want to determine A 1 and A 3 , we only have to assume that Assumption (3.32) holds intead of (3.32)- (3.33). If we want to estimate the coefficients A 2 and A 3 , we still have to assume the hypothesis (3.32) satisfied but in this case, we should also assume that the following hypothesis

holds. Note also that the last item of Remark 1 still holds for (3.34). To conclude, if we would like to determine more than two coefficients, we could procede with the same method used in Theorem 3.2.