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Abstract—Biometrics testing has for objective to determine the
performance of a biometric system in order to guarantee security
and user experience requirements. Providing trust in biometric
systems is a key for many manufacturers. The performance is
usually measured through the computation of matching scores
between legitimate and impostor samples from a given database.
Different bias in particular those linked to the environmental
conditions can modify the performance of a biometric system.
In this paper, we study the impact of acquisition conditions on
fingerprint systems considering at the same time the quality
and accuracy. We defined an own-made database controlling
the acquisition conditions and we observe the behavior of three
different matchers on these biometric data. Experimental results
allow us to quantify their impact on performance and draw
conclusions for testing biometric systems.

Index Terms—Real-life biometric testing, certification of finger-
print systems, acquisition conditions, environmental conditions,
biometric performance.

I. INTRODUCTION

Biometrics is now a daily life technology to secure our
devices for logical access control or payments. Experience has
shown us that some interoperability issues appear when the
product is used under non-expected environmental conditions.
In some particular environments, the behavior of products
can differ from what is calculated by testing laboratories.
The standard certifications include performance testing by
computing legitimate and impostor scores on a test database
using pre-defined environmental parameters linked to final
environments (temperature, light, humidity. . . ) [1]. Final de-
ployment of the product may be done in multiple different
environmental conditions. This may introduce a bias which
can have impact on interoperability by reducing security and
user experience performance. For example, Payment systems
using biometrics as Biometrics Sensor On Cards (BSOC) need
to maintain high security and user experience in different parts
of the world. Payment schemes have their own test plans for
biometric products. Having a specific way to evaluate the im-
pact of performance including variation of the environmental
condition could help to increase trust on payment systems.
Face and fingerprint based systems are mostly the firsts we
might thought of. Indeed, we may observe some difficulties to
be identified by a face recognition system when the light is not
“good” (i.e., not close to experimental setup) or when there are
some disturbing elements like non-desired source of light or
people in the background. There are other uncontrolled factors

such as the overexposure, tremors, misplaced finger during the
acquisition, and so on. Some researchers investigated how to
anticipate some of these unseen situations by training their
algorithms on databases within particular situations [2, 3].
For fingerprint systems, the security and user experience is also
affected when environmental conditions like temperature and
humidity change. Annex C of ISO/IEC 19795-1 [4] gives a list
of parameters that can be significant when testing a biometric
system. Among other factors, environment is designated to
impact the performance of a biometric system. It has been
proven that matching rates are affected when we change the
verification environment [3].
One of the motivations of this work is to address the two
following questions:

• How acquisition conditions influence the performance,
the security, the user experience and finally the trust of
fingerprint systems?

• Are all fingerprint matchers impacted in a similar way?
The paper is organized as follows. Section II briefly describes
the related works that studied the impact of acquisition con-
ditions to fingerprint systems. In section III, we present the
designed experimental methodology. Experimental results are
provided and discussed in sections IV and V. We conclude and
give some perspectives of this study in section VI.

II. RELATED WORK
In the literature, to the best of our knowledge, very few

works have studied the performance of biometric systems
through different climatic environments. We can cite a recent
work for finger veins [5]. Tan et al. [3] have shown that
biometric matchers can have different behaviors through
different environments. The study is more focusing on the
PAIs (Presentation Attack Instruments) and the way they are
detected with different PAD (Presentation Attack Detection)
algorithms. Grosz et al. [6] give a module-by-module
certification of a biometric process taking in consideration
the moisture of the skin. Krishnasamy et al. [7] made a
very interesting work for the recognition of fingerprints in
wet conditions by building a wet and wrinkled fingerprint
database available on demand. The study concludes that
the error increases when matching a wet finger against a
dry one. As clearly underlined by Fernandez-Saavedra et
al. [8], the existing certification schemes such as FIDO
alliance[1] or Common Criteria [9] are more focusing on



the methodology and protocol of testing the performance
of a biometric application under lab conditions, and/or ask
biometric technology developers to include information on
environmental influence and ways of reducing them.
Even if they point out the impact of environmental factors, all
these standards and test methods only recommend defining
and reporting the conditions of the tests which are naturally
the lab conditions. Fernandez et al. [8] propose a full test
protocol including the use of a climatic chamber to control
the test conditions.

We propose in this paper to study the impact of both humidity
and temperature on the performance of fingerprint systems.
The proposed process is detailed in the next section.

III. PROPOSED METHOD

Based on our observations, texture of fingerprints change
accordingly to the acquisition conditions. Those changes may
badly influence quality of images and matching scores. Thus,
we decided to analyze such bias and the effects that the
environmental conditions could have on the performance of
fingerprint systems. In this paper, we investigate if this as-
sumption can align with experimental observations. This study
can help some certification schemes for reducing interoper-
ability risks by including evaluation of the bias linked to the
acquisition environment of biometric products. Despite the
good matching performance that we can have inside a testing
laboratory using target application conditions, the perception
of the end-user and the security can differ if product is used
under unusual environmental conditions. In order to verify
our assumption, a database has been created to simulate the
uncontrolled environment.

A. Data collection

The unavailability of a controlled environmental fingerprint
dataset enhanced our desire to build our own for the purpose
of these experiments by setting up a test protocol to build the
database. This database was built with a process respecting
data privacy and security: the purpose of the experiment
was explicitly provided, agreement forms explaining privacy
rights, storage conditions, integrity and confidentiality of the
data has been signed with all participants.

In a controlled climatic chamber, we create different envi-
ronmental conditions with specific values of temperature and
humidity. We collected 990 fingerprint sample images from
17 unique participants from 22 years old to 55 with 65% of
males and 35% of females. For comparison, each set of the
Fingerprint Verification Competition (FVC)[10] is around 880
images. We collected in each environment, 3 fingerprint scans
of thumb, index and middle of both hands using a capacitive
sensor, the Digital Persona’s EikonTouch 700. The details of
the built database is given in Table I.

We collected the fingerprint samples following the steps bel-
low:

• Step 1: Place the fingerprint sensor in the climatic
chamber close to the specific testing hole

• Step 2: Configure Climatic Chamber with the targeted
temperature and humidity conditions

• Step 3: Wait until stabilization
• Step 4: Volunteer puts their hand in the climatic chamber

through the side hole
• Step 5: Remaining space around the hand is obstructed
• Step 6: Wait until stabilization
• Step 7: Capture fingerprint sample

1) Repeat for the 3 fingers of that hand
2) Back to step 4 with the other hand

• Step 8: Change conditions and back to Step 2

TABLE I: Environments considered in this study.

Environ-
ment

Temp
(◦C)

Humidity
(%)

Number
of
fingers

Total
images

#1 15 20 54 162
#2 15 50 42 126
#3 15 80 72 216
#4 25 20 42 126
#5 25 50 48 144
#6 25 80 72 216

B. Validation protocol

First, we score the quality of the acquired biometric samples
in each environment computing the NFIQ2 fingerprint quality
assessment metric [11], in order to be compliant with the
ISO/IEC 29794-4:2017 recommendation [12]. Second, we
need to consider the performance of a fingerprint system for
each environment. We selected three fingerprint matching
algorithms in order to generalize conclusions. We use the
NIST (National Institute of Standards and Technology)
matcher Bozorth 3 [13], the Minutia Cylinder-Code (MCC)
matching algorithm [14, 15, 16, 17] and a commercial
matcher. The commercial matcher uses its own minutiae
extractor whereas for Bozorth 3, we use the MINDTCT [13]
extractor. These extracted templates are converted to MCC
templates.

In this work, we consider the authentication process for the
performance evaluation of the three fingerprint matchers for
the different environments. We compute the AUC values (Area
Under Curve) for each scenario and matcher. The AUC value
can be viewed as a measure ranking which is very useful
and is based on pairwise comparisons between classifications
of two classes. In other words, the AUC value is equal to
the probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative one.
That way, AUC can be considered as a global criterion of the
performance. The higher the AUC is, better is the performance.
We also estimate the confidence intervals (95% confidence)
of AUC results since the used database is not large. It is
computed after a bootstrapping of 1000 times to confine the
AUC value in a confidence interval with 95% of certitude. We



also computes the EER (Equal Error Rate) and the FMR100.
The EER represents the percentage of errors when the system
is set as the false match rate is equal to the false non-match rate
while the FMR100 is the highest achievable value of FNMR
when the FMR is lower than 1%. The lower the EER and
FMR100 are, better is the performance.

IV. EXPERIMENTAL RESULTS

In this section, the statistical analysis of obtained results
are provided in order to evaluate the performance of the trial
biometric systems under different environments.

A. Quality Assessment

The NFIQ2 score is used to assess the quality of
the collected fingerprint samples through the different
environments we created. NFIQ2 is a tool defined by the
NIST which scores the quality of a fingerprint image between
0 to 100% according to the international biometric sample
quality standard ISO/IEC 29794-1:2016. The distribution of
the NFIQ2 scores for each environment is provided in Figure
1. We can observe that the quality scores vary from very low
(values close to 0%) to very high quality (values close to
100%) and cover the whole quality range.
We can also observe that the better average scores are obtained
when the environment is dry for the two trial temperatures
(15°C and 25°C). Usually, when the humidity rate increases
(whatever the considered temperature), we observe that the
quality scores decrease. Indeed, when increasing the humidity,
the sensor struggles to capture the samples because of the
high moisture of the finger skin. People tend to press harder
their finger on the sensor, which favors the decrease of
the quality of the acquired sample. These results show that
humidity deteriorates the quality of fingerprint samples.

B. Matching comparison

Since in many testing scenarios and in real-life situations,
we perform the enrollment only once, we compare the
collected samples in the climatic chamber against the
reference samples (captured under nominal conditions: 22°C
and 50% of humidity). Two fingerprint samples have been
used for the computation of matching scores. We particularly
have been interested in similarity of the AUC values (as global
metric of the biometric system), EER and FMR100. For each
detected minutiae, we have its coordinates, orientation and
quality.

Table II gives the AUC of the different matchers we used as
well as EER values and FMR100 values. When matching is
done with reference enrolment condition template, we observe
a variation between environments with different intensity.
The two first matchers (Commercial and Bozorth) have a
variation <5% AUC, while MCC has a variation >15% AUC.
Matchers do not react in the same way while under different
environmental conditions.

Fig. 1: Quality comparison of the whole database in different
conditions: first column, Temperature 15°C and second column
Temperature 25°C, Humidity from 20% to 80% on each
column with the average NFIQ2 value in each environment
(vertical red line).

The MCC matcher seems to be more affected by the
difference between the enrollment and the verification
conditions. Indeed, it gives the lowest accuracy among the
three matchers from the three accuracy metrics (AUC, EER
and FMR100).

In addition, we wanted to investigate what would happen if
the enrollment and the verification are performed within the
same conditions. The goal is to evaluate how the performance
less impacted by environmental conditions in this use case.
We compute the performance of the trial matchers when
the test subject performs the enrollment and the verification
in the same environment. Even if for all matchers, AUC is
increased when same conditions are used for enrollment and
verification compared to when enrollment and verification
are not done on the same environments, we notice that the
impact of this increase depends of the matcher. The MCC
matcher seems to be the most affected. For this matcher,
when doing an authentication in the same environment that
we registred, the global performance increases by 24% in
average considering the AUC. The two other matchers are
affected by around 1%. Security and User Experience will
be increased if enrolment can be redone in the targeted
environment when the conditions change.

Table III gives the AUC value, EER and FMR100 of the
different matchers when the enrollment is performed in the
same conditions than the verification task.
To go further, and in order to analyze the influence each pa-



TABLE II: Performance of the three matchers when enrollment is done in a ”normal” environment (Temperature 22°C,
Humidity 50%) and verification in different conditions: AUC in given with confidence interval (the higher is the AUC, better
is the system).

Env. AUC (%) EER (%) FMR100 (%)
Commercial Bozorth3 MCC Commercial Bozorth3 MCC Commercial Bozorth3 MCC

#1 97.83±0.04 96.80±0.06 74.54±0.19 5.58 7.51 33.15 8.02 13.27 65.51
#2 97.39±0.04 95.10±0.08 65.10±0.20 7.27 9.56 39.42 7.14 18.65 75.39
#3 99.08±0.03 98.08±0.05 68.78±0.21 3.26 5.48 38.24 4.16 10.65 68.52
#4 99.45±0.02 97.53±0.05 80.33±0.16 2.35 6.76 28.60 3.17 11.11 49.20
#5 94.75±0.06 95.96±0.08 77.14±0.18 9.08 9.26 30.94 9.03 13.19 60.42
#6 97.83±0.05 95.44±0.08 69.07±0.22 6.68 8.63 37.89 9.72 14.58 70.73

TABLE III: Performance of the three matchers when enrollment and tests are done in the same environment: AUC in given
with confidence interval (the higher is the AUC, better is the system).

Env. AUC(%) EER(%) FMR100(%)
Commercial Bozorth3 MCC Commercial Bozorth3 MCC Commercial Bozorth3 MCC

#1 97.57±0.06 94.55±0.10 94.12±0.14 7.37 10.94 8.90 9.26 14.81 25.92
#2 99.17±0.05 97.53±0.09 98.99±0.03 1.19 3.89 6.39 11.91 10.71 14.28
#3 99.95±0.002 99.08±0.02 96.49±0.11 1.39 5.46 6.70 13.89 7.64 15.27
#4 99.05±0.04 98.89±0.03 97.35±0.08 3.62 6.14 9.29 3.57 10.71 16.66
#5 96.66±0.09 97.70±0.05 95.51±0.11 7.16 7.86 10.50 11.46 11.46 18.75
#6 98.55±0.04 97.12±0.06 97.04±0.09 4.10 7.81 7.59 4.86 13.89 20.93

rameter can have on the global AUC value, we use a statistical
hypothesis test to measure the dependency of acquisitions
conditions with the performance of the fingerprint system.
We compute the p-value of the AUC for each matcher. The
p-values we obtain by observing one parameter at a time
reveal that both humidity and temperature greatly influence the
AUC of the commercial matcher. So, we assume the analyzed
parameter is stationary and observe the p-value when only the
other one is changing.
Tables IV and V give the different p-values through all the
possibilities. As illustration, for the 4th line of Table IV, we
consider the situation when the humidity is static and equals to
50% and compute the p-value of the different AUC supposing
it does not depend on the temperature. For Commercial and
Bozorth 3 matchers, the p-value is <5% meaning that the
temperature has no significant impact. For MCC, the p-value
is >5% meaning that temperature has a significant impact
on the AUC. This p-value method can highlight Security and
User Experience risks for matcher when used under specific
environmental conditions.

V. DISCUSSION

The work presented here deals with the problematic of
fingerprints recognition from a matching point of view when
the environmental conditions change. It brings an eye to a
problematic that is not well underlined in the existing literature
related to fingerpints.
Environmental factors can make biometrics challenging. This
study shows how environmental bias impacts performance
results, mainly by the temperature and humidity. We saw that
some worldwide conditions can be reproduced on climatic
chambers to obtain overview of security risk and user expe-
rience impact. We shown that the three trial matchers have
their own vulnerability to specific conditions. Knowing this
can prevent further challenges when products are deployed

over the world and can help to provide more trust in biometric
systems.
Due to the absence of available datasets, we had to build our
database for the tests. We limited it to capacitive sensing as
almost all the fingerprint sensors on cards are of this type. The
test population is mainly composed of Caucasians at almost
90% which might make the results change when if the test
is repeated. Nevertheless, this paper shows the variability of
matching errors on genuine verification attempts through the
environments and how it changes when the enrollment and the
verification are done in the same conditions compared to doing
the enrollment in a reference environment once and for all. To
be fair, we will reinforce the test protocol to have a more
representative world population by reconsidering the ethnicity
and gender distribution of the test crew.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we present a preliminary work to understand
the impact of acquisition conditions for the recognition of
fingerprints. Experimental results highlighted there was a de-
pendence between the performance of the matching algorithm
and the environmental conditions. The trends of impacts of
environmental conditions are shared between matchers but the
strength of the bias is different. The p-values is usefull to
characterize more precisely the factors linked to high bias
impacts.
The MCC gives the worst performance when the tests sam-
ples are not from the same environment than the enrollment
samples whereas it gives the best results on average when we
perform a verification in the same conditions that we enrolled
the test subject.
Future works will include the building of a larger database with
different scanning technologies and recognition of the acqui-
sition conditions considering a more balanced ethnicity and
gender representation. This aims to find a future simulation



TABLE IV: P-values considering separately the two parameters when enrollment and verification are done in the different
conditions where HT ∈ [20,50,80] with TE and HE temperature and humidity at the enrollment and TT and HT temperature
and humidity during the test (verification)

Parameters Commercial Bozorth 3 MCC
TE = 22◦C,TT = 15◦C, HE =50 and HT ∈ {20,50,80} 2.66×10−5 7.99×10−5 1.6×10−3

TE = 22◦C,TT = 25◦C,HE = 50 and HT ∈ {20,50,80} 2.01×10−4 4.29×10−5 2×10−3

HE = 50%,HT = 20% and TT ∈ {15,25}◦C 5.2×10−3 2.4×10−3 2.38×10−2

HE = HT = 50% and TT ∈ {15,25}◦C 6.7×10−3 2.9×10−3 5.38×10−2

HE = 50%,HT = 80% and TT ∈ {15,25}◦C 4×10−3 8.7×10−3 1.4×10−3

TABLE V: P-values considering separately the two parameters when enrollment and verification are done in the same condition
with TE and HE temperature and humidity at the enrollment and TT and HT temperature and humidity during the test
(verification)

Parameters commercial matcher Bozorth 3 MCC
TE = TT = 15◦C, and (HE ,HT ) ∈ {20,50,80}×{20,50,80} 4.98×10−5 1.88×10−4 1.65×10−4

TE = TT = 25◦C, and (HE ,HT ) ∈ {20,50,80}×{20,50,80} 5.51×10−5 2.84×10−5 3.44×10−5

HE = HT = 20% and (TE ,TT ) ∈ {20,50,80}×{20,50,80} 4.8×10−3 1.43×10−2 8.7×10−3

HE = HT = 50% and (TE ,TT ) ∈ {20,50,80}×{20,50,80} 8.2×10−3 4.49×10−4 1.14×10−2

HE = HT = 80% and (TE ,TT ) ∈ {20,50,80}×{20,50,80} 6.4×10−3 4.5×10−3 1.8×10−3

solution to highlight environmental bias for Security Risk and
User Experience without having to create physically different
test environments.
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