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Pricing Bermudan options using Regression Trees /
Random Forests

Zineb El Filali Ech-chafiq ∗ Pierre Henry Labordère † Jérôme Lelong ‡

June 22, 2023

Abstract

The value of an American option is the maximized value of the discounted cash flows from
the option. At each time step, one needs to compare the immediate exercise value with the
continuation value and decide to exercise as soon as the exercise value is strictly greater than
the continuation value. We can formulate this problem as a dynamic programming equa-
tion, where the main difficulty comes from the computation of the conditional expectations
representing the continuation values at each time step. In (Longstaff and Schwartz, 2001),
these conditional expectations were estimated using regressions on a finite-dimensional vector
space (typically a polynomial basis). In this paper, we follow the same algorithm; only the
conditional expectations are estimated using Regression trees or Random forests. We discuss
the convergence of the LS algorithm when the standard least squares regression is replaced by
regression trees. Finally, we expose some numerical results with regression trees and random
forests. The random forest algorithm gives excellent results in high dimensions.

keywords: Regression trees, Random forests, Bermudan options, Optimal stopping

1 Introduction
Bermudan options are very widespread in financial markets. Their valuation adds a challenge of
optimal stopping determination in comparison to European options. Bermudan options offer the
investor the possibility to exercise his option at any date of his choice among a certain number
of dates prior to the option expiry, called exercise dates. Naturally, the option holder will have
to find the most optimal date to exercise. To do so, at each exercise date, he will compare the
payoff of the immediate exercise to the expected value of continuation of the option and decide
to exercise only if the immediate exercise value is the highest. We can formulate this problem as
a dynamic programming equation, where the main difficulty comes from the computation of the
conditional expectation representing the expected continuation value of the option. Many papers
have discussed this issue, starting with regression-based algorithms; see for example (Tsitsiklis and
Van Roy, 1999) and (Carriere, 1996). Also, in this category falls the most commonly used method
for pricing Bermudan options which is the Least Squares Method (LSM) presented by Longstaff
and Schwarz in (Longstaff and Schwartz, 2001) where the conditional expectation is estimated by
a least squares regression of the post realized payoffs from continuation on some basis functions of
the state variables (usually polynomial functions). Alternatively, an approximately optimal but
interpretable policy can be obtained as the solution to a sample average approximation problem,
see Ciocan and Mišić (2022). Another class of algorithms focuses on quantization approaches, see
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for example (Bally et al., 2005). The algorithm consists in computing the conditional expectations
by projecting the diffusion on some optimal grid. We also have a class of duality based methods
that give an upper bound on the option value for a given exercise policy by adding a quantity
that penalizes the incorrect exercise decisions made by the sub-optimal policy, see for example
(Rogers, 2002), (Andersen and Broadie, 2004) and (Lelong, 2018). The last class of algorithms
is based on machine learning techniques. Deep learning has been widely used to solve stochastic
control problems Han and E (2016) or their PDE formulation Han et al. (2018). Neural networks
can also be used to estimate the continuation values as in (Kohler et al., 2010; Han et al., 2018;
Lapeyre and Lelong, 2021) or the boundary (Reppen et al., 2022). The continuation value can
also be approximated using Gaussian processes as in (Ludkovski, 2018). Our solution falls in this
last category of algorithms. We examine Bermudan options’ prices when the continuation values’
estimation is done using regression trees or random forests.

Let X,Y be two random variables with vales in [0, 1]d and R respectively. A regression tree
approximates the conditional expectation E [Y |X] with a piecewise constant function. The tree
is built recursively, generating a sequence of partitions of [0, 1]d that are finer and finer. The
approximation value on each set in the partition can be seen as a terminal leaf of the tree. This
algorithm is very simple and efficient. However, it can easily over-fit the data, which results in high
generalization errors. To solve this issue, we use ensemble methods to aggregate multiple trees,
which means that we create multiple trees and then combine them to produce improved results.
We suggest using random forests (see (Breiman, 2001)). This method consists in averaging a
combination of trees where each tree depends on a random vector sampled independently and
identically for each tree in the forest. This vector will allow to differentiate the trees in the
random forest and can be chosen in different ways. For example, one can draw for each tree a
sub-sample of training from the global training data without replacement (this method is called
bagging and is thoroughly studied in (Breiman, 1999)). A second method is random split selection,
where at each node, the split is selected at random from among the K best splits, see (Dietterich,
2000). Other methods for aggregating regression trees into random forests can be found in the
literature, see for example (Breiman, 2001) or (Ho, 1998).
The structure of the paper will be as follows. First, we present the regression trees algorithm and
the algorithm of least squares using regression trees. Then, we proceed to present some convergence
results for regression trees and study the convergence of the LS algorithm when regression trees
are used to estimate the continuation values. We prove two results: the convergence of the
regression solution for infinite sample size as the depth of the regression tree goes to infinity and
the convergence of the empirical price as the number of samples go to infinity for a fixed depth.
Then, we briefly talk about Random Forests before we finally study some numerical examples.

2 Regression trees
Let X be a r.v with values in [0, 1]d and Y a squared integrable real-valued r.v. We want to
approximate the conditional expectation E[Y |X]. Throughout this paper, we will consider for
computational convenience that X has a density fX in [0, 1]d w.r.t the Lebesgue measure. We
assume given a training sample DM = {(X1, Y1), . . . , (XM , YM ) ∈ [0, 1]d ×R} where the (Xi, Yi)’s
are i.i.d random variables following the law of (X,Y ). An approximation using a regression tree
consists in writing the conditional expectation as a piecewise constant function of X. Each domain
where the function is constant can be seen as a terminal leaf of a tree. Let us start with the one-
dimensional case (d = 1). Consider the function

mM : yl ∈ R, yr ∈ R, x ∈ [0, 1] 7−→ 1

M

M∑
i=1

(Yi − yl1{Xi≤x} − yr1{Xi>x})
2.

With probability q > 0, choose x as the midpoint x = 1
2 and solve the minimization prob-

lem infyl,yr mM (yl, yr,
1
2 ). With probability 0 < 1 − q < 1, solve the minimization problem
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infyl,yr,xmM (yl, yr, x). For a fixed x∗, the optimal values of yl and yr are given by

y∗r =

∑M
i=1 Yi1{Xi>x∗}∑M
i=1 1{Xi>x∗}

; y∗l =

∑M
i=1 Yi1{Xi≤x∗}∑M
i=1 1{Xi≤x∗}

. (1)

The problem infyl,yr,xmM (yl, yr, x) may admit more than one minimizer. To make the tree unique,
we choose the minimizer (y∗l , y

∗
r , x
∗) with the minimal third component, ie any solution (yl, yr, x)

to infyl,yr,xmM (yl, yr, x) satisfies x > x∗.
Once the threshold x∗ is determined, we split the samples into two groups following the sign

of Xi − x∗ and repeat the process for each group. We stop the process if introducing a new leaf
does not improve the MSE (ie when x∗ is on the boundary of the interval on which we solve the
minimization problem) or when enough iterations have been made. In the end, we have a tree
that approximates the conditional expectation with a piecewise constant function. The regression
trees are an algorithmic tool to find an adapted partition and the corresponding weights of this
piecewise constant function.
In the multi-dimensional case, we choose the direction (the index along which the optimization is
performed) uniformly for each new split. Then, the process is iterated as in the one-dimensional
case.

We denote the resulting tree by T̂ Mp (X) where p represents the depth of the tree, i.e., the
number of iterations done in the process described above. A tree of depth p has 2p leaves.
When the size of the training data is infinite, we use the same procedure as above but with
expectations rather that empirical means. Consider the function

m : yl ∈ R, yr ∈ R, x ∈ [0, 1] 7−→ E
[
(Y − yl1{X≤x} − yr1{X>x})2

]
.

Equation (1) becomes
y∗r = E [Y |X > x∗] ; y∗l = E [Y |X ≤ x∗] .

Again, when we optimize the value of x∗, we choose the minimizer (y∗l , y
∗
r , x
∗) with the minimal

third component. We denote the tree of depth p obtained with an infinite data set by Tp(X).

3 LS algorithm with regression trees

3.1 Notation
For p ∈ N, let A =

(∏d
j=1

[
ai−1
p (j), aip(j)

))
1≤i≤2p

be a partition of [0, 1]d with 2p elements. We

write [
ai−1
p , aip

[
:=

d∏
j=1

[
ai−1
p (j), aip(j)

[
For (αip)1≤i≤2p ∈ R2p , we define Pp as the piecewise constant function on the partition A with
values αip. For x ∈ [0, 1]d,

Pp(x, (aip)0≤i≤2p , (α
i
p)1≤i≤2p) =

2p∑
i=1

αip1{x∈[ai−1
p ,aip)}

If A denotes the partition obtained in the regression tree Tp, and we choose

αip = E
[
Y |X ∈

[
ai−1
p , aip

)]
,

then the regression tree Tp(X) can be written as follows

Tp(X) = Pp(X, (aip)0≤i≤2p , (α
i
p)1≤i≤2p) (2)
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Similarly, if AM =
([
ai−1,M
p , ai,Mp

))
1≤i≤2p

denotes the partition obtained in the regression tree

T̂ Mp and

αi,Mp =

∑M
m=1 Ym1{Xm∈[ai−1

p ,aip)}∑M
m=1 1{Xm∈[ai−1,M

p ,ai,Mp )}
,

then the regression tree T̂ Mp (X) can be written as follows

T̂ Mp (X) = Pp(X, (ai,Mp )0≤i≤2p , (α
i,M
p )1≤i≤2p) (3)

3.2 Description of the algorithm
Let T be a fixed maturity, and consider the filtered probability space (Ω,F , (Ft)0≤t≤T ,P) where
P is the risk neutral measure. Consider a Bermudan option that can be exercised at dates 0 =
t0 < t1 < t2 < · · · < tN = T . When exercised at time tj , the option’s discounted payoff is given
by Ztj = hj(Xtj ) with (Xtj )j being an adapted Markov process taking values in [0, 1]d such that
for every j, Xtj has a density f jX on [0, 1]d uniformly bounded from below on any compact set of
]0, 1[d by a strictly positive number. The discounted value (Utj )0≤j≤N of this option is given by

Utj = esssup
τ∈Stj ,T

E
[
Zτ |Ftj

]
, (4)

where Stj ,T is the set of all stopping times taking values in {tj , . . . , T}. Using the Snell envelope
theory, we know that U solves the dynamic programming equation{

UtN = ZtN
Utj = max

(
Ztj ,E

[
Utj+1

|Ftj
])

for 1 ≤ j ≤ N − 1.
(5)

This equation can be rewritten in terms of optimal policy as follows{
τN = tN = T
τj = tj1{Ztj≥E[Zτj+1

|Ftj ]} + τj+11{Ztj<E[Zτj+1
|Ftj ]} for 1 ≤ j ≤ N − 1 (6)

where τj is the smallest optimal stopping time after tj . As we are in a Markovian setting,
we can write E

[
Zτj+1|Ftj

]
= E

[
Zτj+1

|Xtj

]
. The main difficulty in solving this equation comes

from the computation of the continuation value E
[
Zτj+1

|Xtj

]
. In the Least Squares approach

presented by (Longstaff and Schwartz, 2001), this conditional expectation is estimated by a linear
regression on a countable set of basis functions of Xtj . In our approach, we suggest to estimate it
using a regression tree of depth p. Let T jp (Xtj ) be the regression tree approximating E

[
Zτj+1 |Xtj

]
with an infinite data set. The algorithm solves the following policy{

τpN = tN = T
τpj = tj1{Ztj≥T jp (Xtj )} + τj+11{Ztj<T jp (Xtj )} for 1 ≤ j ≤ N − 1. (7)

We sample M paths of the model X(m)
t0 , . . . , X

(m)
tN along with the corresponding payoff paths

Z
(m)
t0 , . . . , Z

(m)
tN , m = 1, . . . ,M . For each date j = 1, . . . , N − 1 we approximate the conditional

expectations E[Zτj+1 |Xtj ] on the path m using the regression tree T̂ j,Mp (X
(m)
tj ) built with the

samples (X
(m)
tj , Zm

τ̂
p,(m)
j+1

)1≤m≤M where τ̂
p,(m)
N = tN = T

τ̂
p,(m)
j = tj1{Z(m)

tj
≥T̂ j,Mp (X

(m)
tj

)
} + τ̂

(m)
j+11{

Z
(m)
tj

<T̂ j,Mp (X
(m)
tj

)
} for 1 ≤ j ≤ N − 1.

(8)

Finally, the time-0 price of the option is approximated by

Up,M0 = max

(
Z0,

1

M

M∑
m=1

Z
(m)

τ̂
p,(m)
1

)
. (9)
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4 Convergence of the algorithm

4.1 Notation
For each time step 1 ≤ j ≤ N − 1, let θpj = ((api,j)0≤i≤2p , (α

p
i,j)1≤i≤2p) be the parameters of T jp

and θ̂p,Mj = ((ap,Mi,j )0≤i≤2p , (α
p,M
i,j )1≤i≤2p) be the parameters of T jp,M . Note that with this notation

and Equations (2) and (3), we have

T jp (Xtj ) = Pp(Xtj , θ
p
j ) (10)

T̂ j,Mp (X
(m)
tj ) = Pp(X(m)

tj , θ̂p,Mj ) (11)

where for te sake of conciseness we have shrunk the partition and weight parameters of the tree
into a single multi-dimensional parameter.

We introduce the vector ϑ of the coefficients of the successive expansions ϑp = (θp1 , . . . , θ
p
N−1)

and ϑ̂p,M = (θ̂p,M1 , . . . , θ̂p,MN−1).

Let tp = (tp1, . . . , t
p
N−1) ∈

(
([0, 1]d)2p+1

)N−1
be a deterministic parameter, z = (z1, . . . , zN ) ∈ RN

and x = (x1, . . . , xN ) ∈ ([0, 1]d)N be deterministic vectors. Following the notation of (Clément
et al., 2002), we define the function F = (F1, . . . , FN ) taking values in RN by{

FN (tp, z, x) = zN
Fj(t

p, z, x) = zj1{zj≥Pp(xj ,t
p
j )} + Fj+1(tp, z, x)1{zj<Pp(xj ,t

p
j )}, for 1 ≤ j ≤ N − 1.

Fj(t
p, z, x) only depends on tpj , . . . , t

p
N−1 and not on the first j − 1 components of tp. Using (10),

we have

Fj(ϑ
p, Z,X) = Zτpj ,

Fj(ϑ̂
p,M , Z(m), X(m)) = Z

(m)

τ̂
p,(m)
j

.

Moreover, we clearly have that for all tp ∈ (([0, 1]d)2p)N−1:

|Fj(tp, Z,X)| ≤ max
k≥j
|Ztk |. (12)

4.2 Convergence of the conditional expectations
4.2.1 Preliminary results

We define

Jp
(
a0
p, . . . , a

p
p

)
:= E

∣∣∣∣∣
p∑
i=1

αip1{X∈[ai−1
p −aip)}

− E [Y |X]

∣∣∣∣∣
2
 .

with αip = E[Y |X ∈ [ai−1
p −aip)]. We will use the following standard lemma to prove the convergence

of random tree estimators.

Lemma 4.1. Let X be a r.v with a density fX w.r.t to the Lebesgue measure on [0, 1]d and Y
be a real valued square integrable random variable. Let

(([
ai−1
p , aip

))
1≤i≤p

)
p∈N

be a sequence of

partitions of [0, 1]d such that lim
p→∞

max
1≤i≤p

max
1≤j≤d

∣∣aip(j)− ai−1
p (j)

∣∣ = 0. Then,

lim
p→∞

Jp
(
a0
p, . . . , a

p
p

)
= 0.

Theorem 4.2.
lim
p→∞

E
[
|Tp(X)− E[Y |X]|2

]
= 0.
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Proof. With probability 1
d , the index j is chosen for optimisation. In the other d− 1 cases, we do

not even cut along that direction, in which case the interval length is at most equal to the length
of the largest interval at step p− 1. When the index j is chosen: with probability q, the length of
the interval is cut in two, and with probability 1− q, it is cut to optimize the MSE. In that case,
the interval length is at most equal to the length of the largest interval at step p− 1.

For all 1 ≤ j ≤ d

E

[
max

1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣]
≤ 1

d

[
q

1

2
E

[
max

1≤i≤2p−1

∣∣aip−1(j)− ai−1
p−1(j)

∣∣]+ (1− q)E
[

max
1≤i≤2p−1

∣∣aip−1(j)− ai−1
p−1(j)

∣∣]]
+
d− 1

d
E

[
max

1≤i≤2p−1

∣∣aip−1(j)− ai−1
p−1(j)

∣∣]
≤ (1− q

2d
)E

[
max

1≤i≤2p−1

∣∣aip−1(j)− ai−1
p−1(j)

∣∣]
≤ (1− q

2d
)2p

Since
∞∑
p=0

(1− q
2d )2p < ∞, so is

∞∑
p=0

E

[
max

1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣]. As max
1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣ is non
negative for all p, using Tonelli’s theorem we conclude that E

[
∞∑
p=0

max
1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣] <∞.

As a result, the series
∞∑
p=0

max
1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣ converges a.s. Then, lim
p→∞

max
1≤i≤2p

∣∣aip(j)− ai−1
p (j)

∣∣ =

0 a.s for all j and lim
p→∞

max
1≤i≤2p

max
1≤j≤d

∣∣aip(j)− ai−1
p (j)

∣∣ = 0.

Let G be the σ-field generated by the splitting strategy (direction choice and threshold strat-
egy). Conditioning by G allows us to consider the partition

(
[ai−1
p − aip)

)
1≤i≤2p

deterministic and
we can apply Lemma 4.1 to prove

lim
p→∞

E
[
|Tp(X)− E [Y |X]|2|G

]
= 0 a.s.

Note that

E
[
|Tp(X)|2|G

]
≤ E

[
2p∑
i=1

E
[
Y 2|X ∈ [ai−1

p , aip)
]

1{X∈[ai−1
p ,aip)}|G

]

≤
2p∑
i=1

E
[
E
[
Y 21{X∈[ai−1

p ,aip)}|X ∈ [ai−1
p , aip)

]
|G
]

≤
2p∑
i=1

E
[
Y 21{X∈[ai−1

p ,aip)}|G
]

≤ E
[
Y 2|G

]
Then,

E
[
|Tp(X)− E [Y |X]|2|G

]
≤ 2E

[
|Tp(X)|2|G

]
+ 2E

[
E [Y |X]

2
]

≤ 2
(

E
[
Y 2|G

]
+ E

[
E [Y |X]

2
])

Using Lebesgue’s bounded convergence theorem,

lim
p→∞

E
[
|Tp(X)− E[Y |X]|2

]
= lim
p→∞

E
[
E
[
|Tp(X)− E[Y |X]|2|G

]]
= 0.
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Once the partition of the tree is computed, the values associated to each element of the partition
are uniquely determined by a global optimization problem

Proposition 4.3. Let A =
(∏d

j=1

[
ai−1
p (j), aip(j)

))
1≤i≤2p

denote the partition associated to Tp.
Then,

E
[
(Tp(X)− E[Y |X])

2
]

= inf
(αip)1≤i≤2p

E
[(
Pp(X, (aip)0≤i≤2p , (α

i
p)1≤i≤2p)− E[Y |X]

)2]
and moreover the right hand side admits a unique minimizer given by

αip = E
[
Y |X ∈

[
ai−1
p , aip

)]
.

Proof. Since the function Pp is linear w.r.t the parameter α, the function

α ∈ R2p+1 7−→ E
[(
Pp(X, (aip)0≤i≤2p , (α

i
p)1≤i≤2p)− E[Y |X]

)2]
is strongly convex. Hence, it admits a unique minimizer defined by the first order optimality
condition stating that for all 0 ≤ i ≤ 2p + 1,

E
[(
Pp(X, (aip)0≤i≤2p , (α

i
p)1≤i≤2p)− E[Y |X]

)
1{X∈[ai−1

p ,aip)}
]

= 0

E
[(
αip − E[Y |X]

)
1{X∈[ai−1

p ,aip)}
]

= 0

αip = E
[
Y |X ∈

[
ai−1
p , aip

)]
.

A similar result holds for T̂ Mp by replacing the conditional expectations by empirical conditional
expectations.

4.2.2 Approximation of the conditional expectations with regression trees

The following result proves that the approximation of the Bermudan price produced by our algo-
rithm converges to the true Bermudan price.

Proposition 4.4.

lim
p→∞

E
[
Zτpj |Ftj

]
= E

[
Zτj |Ftj

]
in L2(Ω) for 1 ≤ j ≤ N (13)

Proof. We proceed by induction.
For j = N , the proposition is true since τpN = τN = T . Assume that the result holds for j+ 1, Let
us prove that it still holds for j:

E
[
Zτpj − Zτj |Fjj

]
= Ztj

(
1{Ztj≥T jp (Xtj )} − 1{Ztj≥E[Zτj+1

|Ftj ]}
)

+ E
[
Zτpj+1

1{Ztj<T jp (Xtj )} − Zτj+1
1{Ztj<E[Zτj+1

|Ftj ]}|Ftj
]

= (Ztj − E[Zτj+1 |Ftj ])
(

1{Ztj≥T jp (Xtj )} − 1{Ztj≥E[Zτj+1
|Ftj ]}

)
+ E[Zpτj+1

− Zτj+1 |Ftj ]1{Ztj<T jp (Xtj )}
= Apj + E[Zpτj+1

− Zτj+1
|Ftj ]1{Ztj<T jp (Xtj )}

Where Apj is defined by

Apj = (Ztj − E[Zτj+1
|Ftj ])

(
1{Zjk≥T jp (Xtj )} − 1{Ztj≥E[Zτj+1

|Ftj ]}
)

7



On one hand, since the conditional expectation is an orthogonal projection, we have

E

[∣∣∣E [Zτpj+1
− Zτj+1 |Ftj

]∣∣∣2] ≤ E

[∣∣∣E [Zτpj+1
− Zτj+1 |Ftj+1

]∣∣∣2]
and using the induction assumption E

[
Zτpj+1

− Zτj+1 |Ftj+1

]
→ 0 in L2(Ω) when p → ∞. On the

other hand,

∣∣Apj ∣∣ =
∣∣Ztj − E[Zτj+1

|Ftj ]
∣∣∣∣∣1{Ztj≥T jp (Xtj )} − 1{Ztj≥E[Zτj+1

|Ftj ]}
∣∣∣

≤
∣∣Ztj − E[Zτj+1

|Ftj ]
∣∣ ∣∣∣1{E[Zτj+1

|Ftj ]>Ztj≥T
j
p (Xtj )} − 1{T jp (Xtj )>Ztj≥E[Zτj+1

|Ftj ]}
∣∣∣

≤
∣∣Ztj − E[Zτj+1

|Ftj ]
∣∣ ∣∣∣1{|Ztj−E[Zτj+1

|Ftj ]|≤|T jp (Xtj )−E[Zτj+1
|Ftj ]|}

∣∣∣
≤
∣∣T jp (Xtj )− E

[
Zτj+1 |Ftj

]∣∣
≤
∣∣∣T jp (Xtj )− E

[
Zτpj+1

|Ftj
]∣∣∣+

∣∣∣E [Zτpj+1
|Ftj

]
− E

[
Zτj+1 |Ftj

]∣∣∣.
Using the induction assumption, the second term goes to zero in L2(Ω) when p → ∞. Let

([ai−1(p), ai(p)))1≤i≤2p be the partition generated by T jp . We define

T̄ jp (Xtj ) =

2p∑
i=1

E
[
Zτj+1

|Xtj ∈ [ai−1(p), ai(p))
]

1{Xtj∈[ai−1(p),ai(p))}.

Note that T̄ jp uses the partition given by T jp (Xtj ) but the coefficients αi(p) are given by the
conditional expectations of Zτj+1

w.r.t Xtj and not those of Zτpj+1
. Using Proposition 4.3, we have

the following inequality stating that T̄ jp (Xtj ) is sub-optimal compared to T jp (Xtj )

E

[∣∣∣T jp (Xtj )− E
[
Zτpj+1

|Ftj
]∣∣∣2]

≤ E

[∣∣∣T̄ jp (Xtj )− E
[
Zτpj+1

|Ftj
]∣∣∣2]

≤ 2E
[∣∣T̄ jp (Xtj )− E

[
Zτj+1

|Ftj
]∣∣2]+ 2E

[∣∣∣E [Zτj+1
|Ftj

]
− E

[
Zτpj+1

|Ftj
]∣∣∣2] .

The second term goes to 0 using the induction assumption. As for the first term, note that the
partition obtained with T jp verifies the conditions of Lemma 4.1. Then, using the same arguments
as in the proof of Theorem 4.2, we can show that the first term also goes to 0.

4.3 Convergence of the Monte Carlo approximation
In this section, the depth p of the trees is fixed and we study the convergence with respect to the
number of samples M . We assume that, for all dates j, the trees T jp (Xtj ) and T̂ j,Mp (Xtj ) are built
using the same splitting strategy (ie the same splitting directions and threshold strategies).

4.3.1 Convergence of optimisation problems

We present three major results to study the convergence of stochastic optimization problems
related to regression trees.

The first result is a uniform strong law of large numbers, see (Leake et al., 1994, Chap. 2,
Lemma. A1), which can be seen as a particular case of the strong law of large numbers in Banach
spaces (Ledoux and Talagrand, 1991, Corollary 7.10, page 189).

Lemma 4.5. Let (ξi)i≥1 be a sequence of i.i.d Rn-valued random vectors and h : Rd × Rn → R be
a measurable function. Assume that

8



(i) For all θ̄ ∈ Rd, the function θ ∈ Rd 7→ h(θ, ξ1) is continuous at θ̄ a.s.,

(ii) ∀C > 0,E
[
sup|θ|≤C |h(θ, ξ1)|

]
<∞.

Then, a.s θ ∈ Rd 7→ 1
n

∑n
i=1 h(θ, ξi) converges locally uniformly to the continuous function θ ∈

Rd 7→ E [h(θ, ξ1)], i.e

∀C > 0, lim
n→∞

sup
|θ|≤C

∣∣∣∣∣ 1n
n∑
i=1

h(θ, ξi)− E [h(θ, ξ1)]

∣∣∣∣∣ = 0 a.s.

This lemma is a slight improvement of (Leake et al., 1994, Chap. 2, Lemma. A1), which was
formulated under the assumption that the function θ ∈ Rd 7→ h(θ, ξ1) is almost surely continuous.
However, looking closely at their proof, it turns that it sufficient to assume (i) for the conclusion
to hold. Condition (i) allows the P−null sets on which the continuity at θ̄ does not hold to depend
on θ̄.

Consider a sequence of real valued functions (fn)n defined on a compact set K ⊂ Rd such that
there exists a sequence of (xn)n satisfying

fn(xn) = inf
x∈K

fn(x).

From (Leake et al., 1994, Chap. 2, Theorem A1), we can derive the following lemma

Lemma 4.6. Assume that the sequence (fn)n converges uniformly on K to a continuous function
f . Let v∗ = infx∈K f(x) and S∗ = {x ∈ K : f(x) = v∗}. Then, fn(xn) → infx∈K f(x) and
d(xn,S∗)→ 0.

Now, we focus on a canonical minimization problem appearing at each node of the regression
tree. Let [a, ā] be a rectangle in [0, 1]. For some index 1 ≤ δ ≤ d, and a real number a in ]aδ, āδ[,
we define the two new rectangles

Rδ,la,ā(a) = {x ∈ [a, ā] : xδ ≤ a}; Rδ,ra,ā(a) = {xδ ∈ [a, ā] : x > a}. (14)

We consider the cost functions

mM : yl ∈ R, yr ∈ R, x ∈ [aδ, āδ] 7−→ 1

M

M∑
i=1

(
Yi − yl1{Xi∈Rδ,la,ā(x)} − yr1{Xi∈Rδ,ra,ā(x)}

)2

(15)

m : yl ∈ R, yr ∈ R, x ∈ [aδ, āδ] 7−→ E

[(
Y − yl1{X∈Rδ,la,ā(x)} − yr1{X∈Rδ,ra,ā(x)}

)2
]
. (16)

Let (ŷMl , ŷ
M
r , x̂

M ) be the solution to

inf
yl,yr,x∈[aδ+ε0,āδ−ε0]

mM (yl, yr, x) (17)

with the smallest third component for some arbitrary small ε0 > 0. It is clear that (17) may not
have a unique solution. Choosing the solution with the minimal third component is a standard
way to get a unique minimizer (see for instance Seijo and Sen (2011)).

Lemma 4.7. Assume that the density fX of X satisfies fX(x) ≥ f > 0 for all x in any compact
set of ]0, 1[d and that the minimization problem

inf
yl,yr,x∈[aδ+ε0,āδ−ε0]

m(yl, yr, x) (18)

has a unique minimizer (y∗l , y
∗
r , x
∗).

Then, (ŷMl , ŷ
M
r , x̂

M ) converges almost surely to (y∗l , y
∗
r , x
∗) and mM (ŷMl , ŷ

M
r , x̂

M ) converges
almost surely to m(y∗l , y

∗
r , x
∗) when M goes to infinity.

9



Proof. Consider the function

h(yl, yr, x, y, ξ) =
(
y − yl1{ξ∈Rδ,la,ā(x)} − yr1{ξ∈Rδ,ra,ā(x)}

)2

Since X has a density on [0, 1]d, the function (yl, yr, x) 7−→ h(yl, yr, x, Y,X) satisfies Condition (i)
of Lemma 4.5. Moreover, for C > 0

E

[
sup

|yl|≤C,|yr|≤C,x∈[aδ+ε0,āδ−ε0]

|h(yl, yr, x, Y,X)|

]
≤ 2E[Z2] + 2C

Hence, we deduce from Lemma 4.5 that mM converges a.s. locally uniformly m. Note that for a
fixed x ∈ [aδ + ε0, ā

δ − ε0], the optimal values of yl and yr are given by

yl = E[Y |X ∈ Rδ,la,ā(x)]

yr = E[Y |X ∈ Rδ,ra,ā(x)]

Observe that for x ∈ [aδ + ε0, ā
δ − ε0]

|E[Y |X ∈ Rδ,la,ā(x)]| ≤
√

E[Y 2]√
P(X ∈ Rδ,la,ā(x))

≤
√

E[Y 2]√
P(X ∈ Rδ,la,ā(aδ − ε0))

The uniform upper bound is uniform is finite thanks to the assumption on the density fX of
f . Hence, as a function of x, yl is uniformly bounded. A similar results holds for yl. Then,
we deduce from Lemma 4.6, that mM (ŷMl , ŷ

M
r , x̂

M ) converges almost surely to m(y∗l , y
∗
r , x
∗) and

(ŷMl , ŷ
M
r , x̂

M ) converges almost surely to (y∗l , y
∗
r , x
∗).

To the best of our knowledge, without the uniqueness assumption on (y∗l , y
∗
r , x
∗), we can only

prove that (ŷMl , ŷ
M
r , x̂

M ) converges in probability to (y∗l , y
∗
r , x
∗). See for instance (Ferger, 2004,

Corollary 1), which yields that for any η > 0, P(x̂M < x∗ + η) → 1. Combining this result with
d((ŷMl , ŷ

M
r , x̂

M ), S∗)→ 0 a.s. yields the convergence in probability of (ŷMl , ŷ
M
r , x̂

M ) to (y∗l , y
∗
r , x
∗).

4.3.2 Strong law of large numbers

In order to prove the almost sure convergence of T̂ Mj,p (X), we slightly modify the design of our
regression trees. At every node, when computing the optimal splitting point x∗, we do not perform
the optimization on the entire cell but we actually a margin to make sure that y∗l and y∗r are
uniformly bounded w.r.t x∗. Consider a node at depth p, the optimal splitting is obtained by
minimizing mM defined in (15) where a and ā were computed at depth p − 1. As in (17), we
search for the optimal value of x∗ in [aδ − εp, āδ − εp] where δ is the coordinate chosen for the
splitting and εp > 0 is a technical security padding decreasing to 0. When there is no room left
for this padding (|aδ − āδ| < 2εp), we stop the splitting procedure.

From (Clément et al., 2002), we have the following result

Lemma 4.8. For every j = 1, . . . , N − 1,

|Fj(a, Z,X)− Fj(b, Z,X)| ≤

 N∑
i=j

|Zti |

N−1∑
i=j

1{|Zti−Pip(Xti ,bi)|≤|Pip(Xti ,ai)−Pip(Xti ,bi)|}

 .

Proposition 4.9. Assume that for all p ∈ N∗, and all 1 ≤ j ≤ N − 1, P(Ztj = Pjp(Xtj , θ
p
j )) = 0.

For all 1 ≤ j ≤ N − 1 and all 1 ≤ i ≤ 2p, the optimization problems

inf
yl,yr,x

E


Zτpj − yl1{

Xtj∈R
δ,l

a
i−1
p ,aip

(x)

} − yr1{
Xtj∈R

δ,r

a
i−1
p ,aip

(x)

}


2
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with x ∈ [ai−1,δ
p + εp, a

i,δ
p − εp] admit a unique solution where δ is the coordinate selected by the

splitting strategy.
Then, for all j = 1, . . . , N − 1, θ̂p,Mj converges a.s. to θpj and Pjp(Xtj , θ̂

p,M
j ) converges a.s. to

Pjp(Xtj , θ
p
j ) as M →∞.

Proof. We proceed by backward induction on j with a nested forward induction on p.
Step 1: j = N − 1

• For p = 1, conditionally on splitting at the best point (and not at the midpoint) the new
nodes are obtained by solving

PN−1
1 (XtN−1

, θ̂1,M
N−1) = inf

α,β,a

1

M

M∑
m=1

∣∣∣∣Z(m)
tN − α1{X(m)

tN−1
∈Rδ,l0,1(a)} − β1{X(m)

tN−1
∈[a,1]}

∣∣∣∣2
PN−1

1 (XtN−1
, θ1
N−1) = inf

α,β,a
E

[∣∣∣ZtN − α1{XtN−1
∈Rδ,l0,1(a)} − β1{XtN−1

∈[a,1]}

∣∣∣2]
where a ∈ [ε1, 1− ε1]. We can apply Lemma 4.7 to obtain PN−1

1 (XtN−1
, θ̂1,M
N−1) converges to

PN−1
1 (XtN−1

, θ1
N−1) a.s asM →∞ and so does θ̂1,M

N−1 converge a.s. to θ1
N−1. If the split is at

the midpoint, the conclusion is even easier to obtain as the infimums are only computed w.r.t
α and β but not a. The same situation will occur repeatedly and for the sake of clearness,
we will only treat the case of splitting at the best point which is harder to handle.

• Assume that PN−1
p (XtN−1

, θ̂p,MN−1) converges to PN−1
p (XtN−1

, θpN−1) a.s and that θ̂p,MN−1 con-
verges a.s. to θpN−1 as M →∞ for p ≥ 1, we will prove it for p+ 1. For i ∈ {1, . . . , 2p}, we
consider the computation of the i− th node in T̂ j,Mp+1 at depth p+ 1.

ν̂Mp,N−1(α, β, a) =
1

M

M∑
m=1

∣∣∣∣∣Z(m)
tN − α1{X(m)

tN−1
∈Rδ,l

a
p,M
i−1,N−1

,a
p,M
i,N−1

(a)} − β1{X(m)
tN−1

∈Rδ,r
a
p,M
i−1,N−1

,a
p,M
i,N−1

(a)}

∣∣∣∣∣
2

.

The parameters θ̂p+1,M
N−1 are obtained by computing all the nodes. We also introduce a

modified version of ν̂Mp,N−1 in which we use the splits computed in T jp .

νMp,N−1(α, β, a) =
1

M

M∑
m=1

∣∣∣∣∣Z(m)
tN − α1{X(m)

tN−1
∈Rδ,l

a
p
i−1,N−1

,a
p
i−1,N−1

(a)} − β1{X(m)
tN−1

∈Rδ,r
a
p
i−1,N−1

,a
p
i−1,N−1

(a)}

∣∣∣∣∣
2

.

The random functions νMp,N−1 write as standard empirical means and we will prove they are
close to ν̂Mp,N−1 for M large.

Using Lemma 4.5 along with the arguments of the proof of Lemma 4.7, it is easy to see that
the random function α, β, a 7→ νMp,N−1(α, β, a) converges a.s locally uniformly to the function

α, β, a 7→ E

∣∣∣∣∣ZtN − α1{XtN−1
∈Rδ,l

a
p
i−1,N−1

,a
p
i,N−1

(a)} − β1{XtN−1
∈Rδ,r

a
p
i−1,N−1

,a
p
i,N−1

(a)}

∣∣∣∣∣
2
.

sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂Mp,N−1(α, β, a)− νMp,N−1(α, β, a)
∣∣

≤ 1

M

M∑
m=1

[∣∣∣2Z(m)
tN

∣∣∣+ 4C
]
C

(
1{X(m),δ

tN−1
∈(ap,M,δi−1 ,ap,δi−1)} + 1{X(m),δ

tN−1
∈(ap,M,δi ,ap,δi )}

)
.
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Using the induction assumption on p, ap,Mi (resp. ap,Mi−1 ) converges a.s. to api (resp. api−1).
Let ε > 0,

lim sup
M

∣∣ν̂Mp,N−1(α, β, a)− νMp,N−1(α, β, a)
∣∣

≤ lim sup
M

1

M

M∑
m=1

[∣∣∣2Z(m)
tN

∣∣∣+ 4C
]
C

(∣∣∣∣1{∣∣∣X(m),δ
tN−1

−ap,δi
∣∣∣≤ε}

∣∣∣∣+

∣∣∣∣1{∣∣∣X(m),δ
tN−1

−ap,δi+1

∣∣∣≤ε}
∣∣∣∣)

≤ C(4C + 2E [|2ZtN |])
(

P(
∣∣∣Xδ

tN−1
− ap,δia

∣∣∣ ≤ ε) + P(
∣∣∣Xδ

tN−1
− ap,δi+1

∣∣∣) ≤ ε) .
Since XtN−1

has a density, limε→0 P(
∣∣∣Xδ

tN−1
− ap,δi

∣∣∣ ≤ ε) = P(Xδ
tN−1

= ai,δp ) = 0 and

limε→0 P(
∣∣∣Xδ

tN−1
− ap,δi+1

∣∣∣ ≤ ε) = P(Xδ
tN−1

= ap,δi+1) = 0. As a result,
∣∣ν̂Mp,N−1 − νMp,N−1

∣∣ → 0

a.s. locally uniformly when M → ∞. Thus, the random function ν̂Mp,N−1 converges a.s.
locally uniformly to the function

α, β, a 7→ E

[∣∣∣∣ZtN − α1{XtN−1
∈Rδ,l

a
p
i−1

,a
p
i

(a)} − β1{XtN−1
∈Rδ,r

a
p
i−1

,a
p
i

(a)}

∣∣∣∣2
]
.

Now, we apply Lemma 4.6 along with the same arguments of Lemma 4.7 to conclude that
PN−1
p+1 (XtN−1

, θ̂p+1,M
N−1 ) converges to PN−1

p+1 (XtN−1
, θp+1
N−1) a.s as M → ∞ and that θ̂p+1,M

N−1

converges a.s. to θp+1
N−1.

Step 2: j < N − 1.
So far, we have proved that for all p, PN−1

p (XtN−1
, θ̂p,MN−1) converges to PN−1

p (XtN−1
, θpj ) a.s and

that θ̂p,MN−1 converges a.s. to θpj as M → ∞. Now, suppose that Pkp (Xtk , θ̂
p,M
k ) (resp. θ̂p,Mk )

converges to Pkp (Xtk , θ
p
k) (resp. θpk) a.s as M →∞ for all p and for k = N −1, . . . , j+1.We should

prove that these convergence results hold for j and this will be done by induction on p. Now that
we have understood that considering multidimensional random variables Xtj does not play any
role in the proof, we will make the rest of the proof as if X were having in R in order to use a
little lighter notation

• For p = 1, consider

ν̂M1,j(α, β, a) =
1

M

M∑
m=1

∣∣∣∣Fj+1

(
ϑ̂1,M , Z(m), X(m)

)
− α1{X(m)

tj
∈[0,a)} − β1{X(m)

tj
∈[a,1]

}
∣∣∣∣2

νM1,j(α, β, a) =
1

M

M∑
m=1

∣∣∣∣Fj+1

(
ϑ1, Z(m), X(m)

)
− α1{X(m)

tj
∈[0,a)} − β1{X(m)

tj
∈[a,1]}

∣∣∣∣2.
The function νM1,j writes as the sum of i.i.d random variables. Let C ≥ 0, using Equation (12)

E

[
sup

a∈[0,1]d,|α|≤C,|β|≤C

∣∣∣Fj+1

(
ϑ1, Z,X

)
− α1{Xtj∈[0,a)} − β1{Xtj∈[a,1]}

∣∣∣2]

≤ 2E
[∣∣Fj+1

(
ϑ1, Z,X

)∣∣2]+ 2E

[
sup

a∈[0,1]d,|α|≤C,|β|≤C

∣∣∣α1{Xtj∈[0,a)} + β1{Xtj∈[a,1]}

∣∣∣2]

≤ 2E

[
max
l≥j+1

(Ztl)
2

]
+ 2C2 <∞.

Using Lemma 4.5, α, β, a 7→ νM1,j(α, β, a) converges a.s locally uniformly to the function

α, β, a 7→ E

[∣∣∣Fj+1(ϑ1, Z,X)− α1{Xtj∈[0,a)} − β1{Xtj∈[a,1]}

∣∣∣2]. It remains to prove that
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∀C > 0 sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂M1,j(a, α, β)− νM1,j(a, α, β)
∣∣→ 0 a.s when M →∞.

Then, using Equation (12) and Lemma 4.8

sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂M1,j(a, α, β)− νM1,j(a, α, β)
∣∣

≤ sup
a∈[0,1]d,|α|≤C,|β|≤C

1

M

M∑
m=1

∣∣∣Fj+1

(
ϑ̂1,M , Z(m), X(m)

)
− Fj+1

(
ϑ1, Z(m), X(m)

)∣∣∣∣∣∣∣Fj+1

(
ϑ̂1,M , Z(m), X(m)

)
+ Fj+1

(
ϑ1, Z(m), X(m)

)
− 2α1{X(m)

tj
∈[0,a)} − 2β1{X(m)

tj
∈[a,1]}

∣∣∣∣
≤

M∑
m=1

2

(
max
l≥j+1

∣∣∣Z(m)
tl

∣∣∣+ 2C

) ∣∣∣Fj+1

(
ϑ̂1,M , Z(m), X(m)

)
− Fj+1

(
ϑ1, Z(m), X(m)

)∣∣∣
≤ 1

M

M∑
m=1

2

(
max
l≥j+1

∣∣∣Z(m)
tl

∣∣∣+ 2C

) N∑
i=j+1

∣∣∣Z(m)
ti

∣∣∣ N−1∑
i=j+1

1{
∣∣∣Z(m)
ti
−T i1 (X

(m)
ti

)
∣∣∣≤∣∣∣T̂ i,M1 (X

(m)
ti

)−T i1 (X
(m)
ti

)
∣∣∣}
 .

Using the induction assumption on j, T̂ i,M1 (X
(m)
ti ) converges a.s. to T i1 (X

(m)
ti ) for all N−1 ≥

i ≥ j + 1. Let ε < 0.

lim sup
M

sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂M1,j(a, α, β)− νM1,j(a, α, β)
∣∣

≤ 1

M

M∑
m=1

2

(
max
l≥j+1

∣∣∣Z(m)
tl

∣∣∣+ 2C

) N∑
i=j+1

∣∣∣Z(m)
ti

∣∣∣ N−1∑
i=j+1

1{
∣∣∣Z(m)
ti
−T i1 (X

(m)
ti

)
∣∣∣≤ε}

 .

Since P(Z
(m)
tj = T jp (X

(m)
tj )) = 0, then limε→0 1{

∣∣∣Zm)
ti
−T i1 (X

(m)
ti

)
∣∣∣≤ε} = 0 a.s and we conclude

that a.s.
∣∣ν̂M1,j(a, α, β)− νM1,j(a, α, β)

∣∣ converges to zero uniformly. Thus, ν̂M1,j converges a.s

uniformly to the function a, α, β 7→ E

[∣∣∣Fj+1(ϑ1, Z,X)− α1{Xtj∈[0,a)} − β1{Xtj∈[a,1]}

∣∣∣2].
Then, we apply Lemma 4.5 and the arguments of the proof of Lemma 4.7 to deduce that
Pj1(Xtj , θ̂

1,M
j ) converges to Pjj (Xtj , θ

j
j ) a.s and that θ̂j,Mj converges a.s. to θpj as M →∞.

• We assume that Pkp (Xtk , θ̂
p,M
k ) (resp. θ̂p,Mk ) converges to Pkp (Xtk , θ

p
k) (resp. θpk) a.s as

M →∞ for some p and for k = N − 1, . . . , j. We will probe that it holds for p+ 1.
Let i ∈ {1, . . . , 2p} and consider

ν̂Mp,j(α, β, a) =
1

M

M∑
m=1

∣∣∣∣Fj+1(ϑ̂p,M , Z(m), X(m))− α1{X(m)
tj
∈[ap,Mi−1,j ,a)} − β1{X(m)

tj
∈[a,ap,Mi,j )}

∣∣∣∣2.
νMp,j(α, β, a) =

1

M

M∑
m=1

∣∣∣∣Fj+1(ϑp, Z(m), X(m))− α1{X(m)
tj
∈[api−1,j ,a)} − β1{X(m)

tj
∈[a,api,j)}

∣∣∣∣2
The function νMp,j writes as the sum of i.i.d random variables. Let C ≥ 0,

E

[
sup

a∈[0,1]d,|α|≤C,|β|≤C

∣∣∣∣Fj+1

(
ϑp, Z(m), X(m)

)
− α1{X(m)

tj
∈[api−1,j ,a)} − β1{X(m)

tj
∈[a,api,j)}

∣∣∣∣2
]

≤ 2E

[∣∣∣Fj+1

(
ϑp, Z(m), X(m)

)∣∣∣2]+ 2C2

≤ 2E

[
max
l≥j+1

(Ztl)
2

]
+ 2C2 <∞.
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We conclude using Lemma 4.5 that a.s νMp,j converges locally uniformly to the function

α, β, a 7→ E

[∣∣∣Fj+1(ϑp, Z,X)− α1{Xtj∈[api−1,j ,a)} − β1{Xtj∈(a,api,j)}

∣∣∣2] .
Let C > 0,

sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂Mp,j(α, β, a)− νMp,j(α, β, a)
∣∣

≤ sup
a∈[0,1]d,|α|≤C,|β|≤C

1

M

M∑
m=1

(
2 max
l≥j+1

∣∣∣Z(m)
tl

∣∣∣+ 4C

)
 N∑

i=j+1

∣∣∣Z(m)
ti

∣∣∣
 N−1∑
i=j+1

1{
∣∣∣Zti−T ip (X

(m)
ti

)
∣∣∣≤∣∣∣T̂ i,Mp (X

(m)
ti

)−T ip (X
(m)
ti

)
∣∣∣}


+

∣∣∣∣α1{X(m)
tj
∈[api−1,j ,a

p,M
i−1,j)}

+ β1{X(m)
tj
∈[ap,Mi,j ,api,j ]}

∣∣∣∣] .
Using the induction assumption on p, limM→∞ ap,Mi−1,j = api−1,j and limM→∞ ai,Mp = aip a.s
and using the induction assumption on j, limM→∞ T̂ i,Mp (X

(m)
ti ) = T ip (X

(m)
ti ) ∀i ≥ j + 1. Let

ε < 0,

lim sup
M

sup
a∈[0,1]d,|α|≤C,|β|≤C

∣∣ν̂Mp,j(α, β, a)− νMp,j(α, β, a)
∣∣

≤ lim sup
M

1

M

M∑
m=1

(
2 max
l≥j+1

∣∣∣Z(m)
tl

∣∣∣+ 4C

)
C (1{

∣∣∣X(m)
tj
−api−1,j

∣∣∣≤ε} + β1{
∣∣∣X(m)

tj
−api,j

∣∣∣≤ε}
)

+

 N∑
k=j+1

∣∣∣Z(m)
tk

∣∣∣
 N−1∑
k=j+1

1{
∣∣∣Z(m)
tk
−T kp (X

(m)
tk

)
∣∣∣≤ε}

 .
Since limε→0 1{

∣∣∣Zti−T ip (X
(m)
ti

)
∣∣∣≤ε} = limε→0

∣∣∣∣α1{
∣∣∣X(m)

tj
−api−1,j

∣∣∣≤ε} + β1{
∣∣∣X(m)

tj
−api,j

∣∣∣≤ε}
∣∣∣∣ = 0, we

conclude that a.s
∣∣ν̂Mp,j(α, β, a)− νMp,j(α, β, a)

∣∣ → 0 locally uniformly when M → ∞, and
thus the random function ν̂Mp,j converges a.s locally uniformly to the function α, β, a 7→

E

[∣∣∣Fj+1(ϑp, Z,X)− α1{Xtj∈[ai−1
p ,a)} − β1{Xtj∈(a,aip)}

∣∣∣2]. Then we apply Lemma 4.6 along

with the arguments of the proof of Lemma 4.7 to conclude that Pkp+1(Xtk , θ̂
p+1,M
k ) (resp.

θ̂p+1,M
k ) converges to Pkp+1(Xtk , θ

p
k) (resp. θp+1

k ) a.s as M → ∞ for k = N − 1, . . . , j. This
completes the induction.

Theorem 4.10. Assume that for all p ∈ N∗, and all 1 ≤ j ≤ N − 1, P(Ztj = T jp (Xtj )) = 0.
Then, for α = 1, 2 and for every j = 1, . . . , N ,

lim
M→∞

1

M

M∑
i=1

(
Z

(m)

τ
p,(m)
j

)α
= E

[
(Zτpj )α

]
a.s.

Proof. Note that E
[
(Zτpj )α

]
= E [Fj(ϑ

p, Z,X)α)] and by the strong law of large numbers

lim
M→∞

1

M

M∑
m=1

Fj

(
(ϑp, Z(m), X(m))α

)
= E [Fj(ϑ

p, Z,X)α] a.s.
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It remains to prove that

∆FM =
1

M

M∑
m=1

Fj(ϑ̂
p,M , Z(m), X(m))α − Fj(ϑp, Z(m), X(m))α

a.s−−−−→
M→∞

0.

For any x, y ∈ R, and α = 1, 2, |xα − yα| ≤ |x− y|
∣∣xα−1 + yα−1

∣∣. Using Lemma 4.8 and Equation
(12), we have

|∆FM | ≤
1

M

M∑
m=1

∣∣∣Fj(ϑ̂p,M , Z(m), X(m))α − Fj(ϑp, Z(m), X(m))α
∣∣∣

≤ 2
1

M

M∑
m=1

N∑
i=j

max
k≥j

∣∣∣Z(m)
tk

∣∣∣α−1∣∣∣Z(m)
ti

∣∣∣N−1∑
i=j

1{
∣∣∣Z(m)
ti
−T ip (X

(m)
ti

)
∣∣∣≤∣∣∣T̂ i,Mp (X

(m)
ti

)−T ip (X
(m)
ti

)
∣∣∣}.

Using Proposition 4.9, for all i = j, . . . , N − 1,
∣∣∣T̂ i,Mp (Xti)− T ip (Xti)

∣∣∣ → 0 a.s when M → ∞.
Then for any ε > 0,

lim sup
M
|∆FM |

≤ 2 lim sup
M

1

M

M∑
m=1

N∑
i=j

max
k≥j

∣∣∣Z(m)
tk

∣∣∣α−1∣∣∣Z(m)
ti

∣∣∣N−1∑
i=j

1{
∣∣∣Z(m)
ti
−T ip (X

(m)
ti

)
∣∣∣≤ε}

≤ 2E

 N∑
i=j

max
k≥j
|Ztk |

α−1|Zti |
N−1∑
i=j

1{|Zti−T ip (Xti )|≤ε}

 .
We conclude that lim supM |∆FM | = 0 by letting ε go to 0 which ends the proof.

Proving the global convergence of our algorithm amounts to studying the difference

1

M

M∑
i=1

Z
(m)

τ
p,(m)
j

− E
[
(Zτj )

]
=

(
1

M

M∑
i=1

Z
(m)

τ
p,(m)
j

− E
[
(Zτpj )

])
+
(

E
[
Zτpj

]
− E

[
(Zτpj )

])
By Proposition 4.4, the E

[
(Zτpj )

]
− E

[
Zτpj

]
goes to zero when p→∞ independently of M . Even

if Theorem 4.10 proves the a.s. convergence of the first term for any fixed p when M → ∞, its
behaviour seems less clear when both M and p go to infinity. Note that the same difficult already
occurred in Clément et al. (2002) for the more standard least square approach. The main difficulty
stems for the inability to compute the variance of the limiting distribution appearing in the central

limit theorem governing the convergence of 1
M

∑M
i=1

(
Z

(m)

τ
p,(m)
j

)
even in the least square framework.

In particular, we do seem to control the behaviour of the limiting variance with respect to p.

5 Random forests
Regression trees are barely used as standalone estimators but are often aggregated to obtain a
random forest. Considering our training sample DM = {(Xi, Yi)1≤i≤M} of size M . Let Θ be a
random variable independent of DM and used to resample the training set without replacement.
Note that the size of the resampled set is usually smaller that M . Let Θ1, . . . ,ΘB B iid samples
of Θ. For every k = 1, . . . , B, T̂ Mp (X,Θk) denotes the regression tree of depth p computed on the
resampled set obtained from DM by using Θk. Then, the random forest estimator is defined by

HB,p(X) =

B∑
k=1

1

B
T̂ Mp,Θk(X).

We also introduce Hp(X) = EΘ

[
T̂ Mp,Θ(X)

]
= limB→∞HB,p(X).
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Theorem 5.1.
lim
B→∞

E
[
|Y −HB,p(X)|2

]
= E

[
|Y −Hp(X)|2

]
See Theorem 11.1 in (Breiman, 2001).

Theorem 5.2.
E
[
|Y −Hp(X)|2

]
≤ ρ̄EΘ

[
E

[∣∣∣Y − T̂ Mp,Θ(X)
∣∣∣2]]

where ρ̄ is the weighted correlation between the residuals Y − T̂ Mp,Θ(X) and Y − T̂ Mp,Θ′(X) and Θ
and Θ′ are independent. See Theorem 11.2 in (Breiman, 2001)

Theorem 5.2 says that to have a good generalization error in the random forest, one should have
small generalization errors in the basis trees, and the basis trees should not be highly correlated.

6 Numerical results

6.1 Description
This section studies the price of some Bermudan options using regression trees or random forests
to approximate the conditional expectations. We compare the results to some reference prices and
those given by the standard Longstaff Schwarz method with regression on polynomial functions,
which is a basic LSM algorithms. More sophisticated representations can be used to mildly temper
the curse of dimensionality. We use the Scikit-Learn library in Python, (Pedregosa et al., 2011).
For regression trees, this library offers two methods of splitting: “best” to choose the best split,
meaning that the split threshold is the one that minimizes the MSE and the direction for splitting
is the one that gives the lowest MSE among all directions; “random” to choose the best random
split, meaning that the split threshold is the one that minimizes the MSE and the direction for
splitting is chosen randomly. For the following tests, we will use the latter method, which is just
slightly different from what we presented in Section 2 in the way that no mid-point cuts will be
considered. We also use the feature min_samples_leaf which allows us to set a minimum number
of samples in each node. This will allow us to avoid over-fitting. For random forests, we will use
the bootstrapping method (Bootstrap=True), meaning that for each tree in the forest, we will
use a sub-sample drawn randomly and with replacement from the training data. We will also use
the feature max_samples which allows having a specific number of data points or a percentage of
the training data attributed to each tree. Having the trees trained on different data as much as
possible allows us to have a low correlation between the trees which, using Theorem 5.2, should
make the random forest more robust.
Following the work of (Longstaff and Schwartz, 2001), we only use the in-the-money paths to learn
the continuations values, which significantly improves the numerical computations. All the prices
that we show are obtained after resimulation, meaning that the paths used in the estimation of
the conditional expectations are not the same ones used by the Monte Carlo which means that
the prices we show are unbiased.

For small dimensional problems, our algorithm takes approximately the same computation
time as the LSM approach for a comparable accuracy. To measure the computational time of
our algorithm, we take into account both the training and running times. However, note that the
training step over weights the prediction step by a great deal. Once the trees are trained, evaluating
them is straightforward, which makes the resimulation price almost free. The computational time
of the random forest approach linearly depends on the number of regression trees in the forest.

6.2 Black and Scholes
Consider the Black and Scholes model{

dSit = rSitdt+ σiS
i
tdB

i
t,

d < Bi, Bj >t = ρijdt.
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where σi is the volatility of the underlying Si, assumed to be deterministic, r is the interest rate,
assumed constant, and ρij , represents the correlation between the underlyings Si and Sj , assumed
constant.

6.2.1 One-dimensional put option

We consider the Bermudan put option with payoff (K−Sτ )+ with maturity T = 1 year, K = 110,
S0 = 100, σ = 0.25, exercisable at N = 10 different dates. We consider r = 0.1. We have
a reference price for this option of 11.987 computed by a convolution method in (Lord et al.,
2007). The LSM algorithm converges to the correct price with only a polynomial of degree 3.
Figure 1, shows the price of the option when we use regression trees with a random split strategy
(continuous line) or a best split strategy (dotted line) to estimate the conditional expectations.
With the random strategy, the best price we get is 11.89. The case min_samples_leaf=1 and
max_depth=20 gives a price of 10.5, which is far from the reference price. This result is due to
over-fitting. In fact, for this case, the number of degrees of freedom is too big. The tree fits the
training data too well, but it cannot generalize when confronted with new data. For the best split
strategy, we obtain a slightly better price of 11.94. However, depending on the tree parameters,
the price fluctuates, and we can see that the best split strategy is not necessarily better than
the random split strategy. Thus, for the following, we will keep using the random split strategy.
Random forests with basis trees of maximum depth 5 and minimum 100 samples in each leaf
converge to the correct price with only ten trees.

Figure 1: one dimensional put with regression trees, true price=11.987

6.2.2 Call option on the maximum of two assets

We consider a call option on the maximum of 2 assets with payoff (max(S1
τ , S

2
τ )−K)+, we use the

same set of parameters as in (Glasserman, 2004), for which we have reference prices of 13.90, 8.08
and 21.34 for Si0 = 100, 90 and 110 respectively. The LSM algorithm using a polynomial of degree
5 converges to a price of 13.90, 8.06, 21.34 for the cases K = 100, 90, 110 respectively. This is a
small dimensional problem, so the convergence of the LSM is expected. With regressions trees we
have slightly less satisfying results as shown in Figure 2. We can still see the case of over-fitting
when giving the regression trees too many degrees of freedom. Aggregating the regression trees
into random forests immediately improves the results as shown in Figure 3. Note that the lower
the percentage of data in each basis tree, the better the results. This confirms the results of
Theorem 5.2 .
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Figure 2: Call on the maximum of two assets with regression trees, K = 100, T = 3 years,
σi = 0.2, r = 0.05, ρij = 0, δi = 0.1, N = 9,M = 100, 000

Figure 3: Call on the maximum of two assets with random forests, K = 100, T = 3 years,
σi = 0.2, r = 0.05, ρij = 0, δi = 0.1, N = 9,M = 100, 000
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6.2.3 Geometric basket option

We consider a Bermudan Put option on a geometric basket of d underlying with payoffK −( d∏
i=1

Siτ

) 1
d

+

.

We test the following option for d = 2, 10, 40 for which we have reference prices from (Cox et al.,
1979) using the CRR tree method. With the LSM algorithm, we converge to the correct price
4.57 for the case d = 2, using only a polynomial of degree 3. For the case d = 10, we can at most
use a polynomial of degree 3 due to the curse of dimensionality. With this parametrization, we
obtain a price of 2.90 for a true price of 2.92. For the case d = 40, we cannot go further than a
polynomial of degree 1, which yields a price of 2.48 for a reference price of 2.52. Figure 4 shows
the results obtained with regression trees. For the case d = 2, the best price we get is 4.47 and, as
expected, the LSM algorithm has a better performance. This is also the case for the cases d = 10
and d = 40 where the best prices we obtain are 2.84 and 2.46 respectively. Notice that even though
these are high dimensional cases, the trees converge with only a depth of 5 or 8. For d = 10, our
algorithm with depth equal 8 and min_samples_leaf equal 200 runs in 3 seconds compared to the
11 seconds needed by the LSM with polynomial degree 3. The running times of the two approaches
are pretty comparable. For d = 40, our algorithm takes the same computational time as the LSM
with degree 1 polynomials. We also notice the importance of the parameter min_samples_leaf.
In fact, letting the trees grow without managing this parameter (case leaf1) leads to a problem of
over-fitting. The results get better when we use random forests as shown in Figure 5. For these
random forests, we used basis trees of max_depth=8 and min_samples_leaf=100. Notice for the
case d = 2, the curve where only 50% of the data is used gives much better results as in this case
the basis trees are the less correlated. For the cases d = 10 and d = 40, the best choice is not
necessarily to use 50% of the data in each tree. As these are larger dimensions, having the trees
trained on a small percentage of the training data maybe not enough. One may consider extending
the size of the training data itself. Furthermore, we notice that once the percentage of data to
use in each tree is chosen, the price of the option converges as the number of trees in the forest
grows. However, note the computational time of the random forest method linearly depends on
the number of trees inside the forest. Although the regression tree approach runs within roughly
the same computational time as the LSM for a similar accuracy, the random forests approach may
take much longer as the number of trees increases.
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Figure 4: Geometric put option with regression trees

Figure 5: Geometric put option with random forests

6.2.4 A put basket option

We consider a put option on the basket of d = 40 asset with payoff
(
K −

∑d
i=1 ωiS

i
T

)+

. We test
this payoff for d = 40 for which we have a reference price from (Goudenège et al., 2019) between
2.15 and 2.22 using the following set of parameters: T = 1, Si = 100,K = 100, r = 0.05, σi =
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0.2, ρij = 0.2, ωi = 1
d and N = 10. With a polynomial of degree 1, we obtain a price of 2.15 using

the LSM algorithm. The results obtained with regression trees are shown in Figure 6.

Figure 6: Put on a basket of 40 asset with regression trees

Even though this example is high dimensional, we do not need a lot of parameters to estimate
the conditional expectations (the trees converge for very small depths). This will not be the case
for the next example which is very non linear. The aggregation into random forests leads to a
price of 2.16 using only 50 trees.

6.2.5 A call on the max of 50 asset

We consider a call option on the maximum of d = 50 asset with payoff
(

max
1≤i≤d

(SiT )−K
)+

with

the following characteristics: K = 100, T = 3 years, Si0 = 100, σi = 0.2, δi = 0.1, ρij = 0 ∀i, j, r =
0.05, N = 9,M = 100000. (Becker et al., 2019) report [69.56, 69.95] as the 95% confidence interval
for the option price. With the LSM algorithm we find a price of 67.88 with a polynomial of
degree 1. This is a difficult example for which bigger trees are needed to approach the conditional
expectations. At maturity, the payoff depends only on one direction (corresponding to the best
performance), if the cuts in the tree never consider that direction, the estimation will not be
correct. As a result, we consider a number of cuts big enough to ensure that each direction is
taken into consideration. We allow the depth to grow while monitoring the min_samples_leaf
in order to have a significant number of samples in each leaf. Table 1 shows the results obtained
with regression trees. As the best price we obtain is given by depth=100 and min_samples_leaf
= 100, we use this set of parameters for the random forest part. Table 2 shows the results that
we obtain with this method.

depth min_samples_leaf price
50 50 66,89
50 100 66.88
100 50 67.13
100 100 67.31
200 50 67.16
200 100 67.28

Table 1: A call option on the maximum of 50 asset with regression trees
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nb_trees max_samples price
10 50% 68,32
10 70% 68,32
10 90% 68,29

Table 2: A call option on the maximum of 50 asset with random forests

Using only regression trees is not enough to have acceptable results. However, as soon as we
aggregate the regressor into random forests, we obtain very satisfying results and with just 10 trees
we converge to a good price. We can also notice in this example that using uncorrelated trees
leads to better results (see the case max_samples= 50% or 70% against the case max_samples =
90%).

6.3 A put in the Heston model
We consider the Heston model defined by

dSt = St(rtdt+
√
σt(ρdW

1
t +

√
1− ρ2dW 2

t ))

dσt = κ(θ − σt)dt+ ξ
√
σtdW

1
t

and we consider a put option with payoff (K − ST )
+. we have no reference price for this option,

so we will just compare the results of regression trees and random forests to the LSM method.
We use the following set of parameters: K = 100, S0 = 100, T = 1, σ0 = 0.01, ξ = 0.2, κ = 2, ρ =
−0.3, r = 0.1, N = 10 and M = 100, 000. The LSM method yields a price of 1.70. Figures 7 and
8 show the results obtained with regression trees and random forests. Both methods converge to
the same price of LSM. We notice for this example the occurrence of the over-fitting phenomenon
for regression trees with max_depth=15 and min_sample_leaf=1. We also have the same behavior
for random forests in function of the percentage of data given to each basis tree.

Figure 7: A put option in the Heston model with regression trees

Figure 8: A put option in the Heston model with random forests
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7 Conclusion
Pricing Bermudan options comes down to solving a dynamic programming equation where the
main trouble comes from the computation of the conditional expectations representing the con-
ditional expectations. We have explored the usage of regression trees and random forests for the
computations of these quantities. We have proved in two steps the convergence of the algorithm
when regression trees are used: first, the convergence of the conditional expectations; Then, the
convergence of the Monte Carlo approximation. This problem was particularly hard to solve
given that the regression trees do not solve a global optimization problem as does the functional
regression used in the LSM algorithm. We have shown through numerical experiments that we
obtain good prices for some classical examples using regression trees. The aggregation of regres-
sion trees into random forests yields even better results. We came to the conclusion that for small
dimensional problems, a simpler algorithm like the LSM is efficient enough. However, for high
dimensional problems, it is interesting to consider using random forests. Instead of using all the
features of the problem, the basis trees in the forest only use a subset of the features which can
help combat the problem of the curse of dimensionality.
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