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ABSTRACT

The value of an American option is the maximized value of the discounted cash flows from the
option. At each time step, one needs to compare the immediate exercise value with the continuation
value and decide to exercise as soon as the exercise value is strictly greater than the continuation
value. We can formulate this problem as a dynamic programming equation, where the main difficulty
comes from the computation of the conditional expectations representing the continuation values at
each time step. In (Longstaff and Schwartzl [2001), these conditional expectations were estimated
using regressions on a finite-dimensional vector space (typically a polynomial basis). In this paper,
we follow the same algorithm; only the conditional expectations are estimated using Regression
trees or Random forests. We discuss the convergence of the LS algorithm when the standard least
squares regression is replaced with regression trees. Finally, we expose some numerical results with
regression trees and random forests. The random forest algorithm gives excellent results in high
dimensions.

Keywords Regression trees, Random forests, Bermudan options, Optimal stopping

1 Introduction

Bermudan options are very widespread in financial markets. Their valuation adds a challenge of optimal stopping
determination in comparison to European options. Bermudan options offer the investor the possibility to exercise his
option at any date of his choice among a certain number of dates prior to the option expiry, called exercise dates.
Naturally, the option holder will have to find the most optimal date to exercise. To do so, at each exercise date, he will
compare the payoff of the immediate exercise to the expected value of continuation of the option and decide to exercise
only if the immediate exercise value is the highest. We can formulate this problem as a dynamic programming equa-
tion, where the main difficulty comes from the computation of the conditional expectation representing the expected
continuation value of the option. Many papers have discussed this issue, starting with regression-based algorithms;
see for example (Tsitsiklis and Van Royl, [1999) and (Carrierel [1996). Also, in this category falls the most commonly
used method for pricing Bermudan options which is the Least Squares Method (LSM) presented by Longstaff and
Schwarz in (Longstaff and Schwartz| 2001)) where the conditional expectation is estimated by a least squares regres-
sion of the post realized payoffs from continuation on some basis functions of the state variables (usually polynomial
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functions). Another class of algorithms focuses on quantization approaches, see for example (Bally et al.| |2005). The
algorithm consists in computing the conditional expectations by projecting the diffusion on some optimal grid. We
also have a class of duality based methods that give an upper bound on the option value for a given exercise policy
by adding a quantity that penalizes the incorrect exercise decisions made by the sub-optimal policy, see for example
(Rogers, 2002), (Andersen and Broadie, [2004) and (Lelong, [2018]). The last class of algorithms is based on machine
learning techniques. For example, using Neural networks to estimate the continuation values in (Kohler et al., 2010)
or more recently in (Lapeyre and Lelong|, [2021)), or using Gaussian process regression as in (Ludkovski, 2018). Our
solution falls in this last category of algorithms. We examine Bermudan options’ prices when the continuation values’
estimation is done using regression trees or random forests.

Let X,Y be two random variables with vales in [0, 1]% and R respectively. A regression tree approximates the condi-
tional expectation E [Y/ X] with a piecewise constant function. The tree is built recursively, generating a sequence of
partitions of [0, 1]¢ that are finer and finer. The approximation value on each set in the partition can be seen as a termi-
nal leaf of the tree. This algorithm is very simple and efficient. However, it can easily over-fit the data, which results
in high generalization errors. To solve this issue, we use ensemble methods to aggregate multiple trees, which means
that we create multiple trees and then combine them to produce improved results. We suggest using random forests
(see (Breiman), 2001))). This method consists in averaging a combination of trees where each tree depends on a random
vector sampled independently and identically for each tree in the forest. This vector will allow to differentiate the trees
in the random forest and can be chosen in different ways. For example, one can draw for each tree a sub-sample of
training from the global training data without replacement (this method is called bagging and is thoroughly studied in
(Breiman, |1999))). A second method is random split selection, where at each node, the split is selected at random from
among the K best splits, see (Dietterich, [2000). Other methods for aggregating regression trees into random forests
can be found in the literature, see for example (Breiman, [2001)) or (Ho\|1998)).

The structure of the paper will be as follows. First, we present the regression trees algorithm and the algorithm of
least squares using regression trees. Then, we proceed to present some convergence results for regression trees and
study the convergence of the LS algorithm when regression trees are used to estimate the continuation values. Then,
we briefly talk about Random Forests before we finally study some numerical examples.

2 Regression trees

Let X be a r.v with values in [0,1]? and Y a real-valued r.v. We want to approach the conditional expecta-
tion E[Y/X]. Throughout this paper, we will consider for computational convenience that X has a density fx
in [0,1]¢ w.r.t the Lebesgue measure. So, Va € [0,1]¢,P(X = a) = 0. We assume given a training sample
Dy = {(X1,Y1),...,(Xar, Yar) € [0,1]% x R} where the (X;,Y;)’s are i.i.d random variables following the law
of (X,Y). An approximation using a regression tree consists in writing the conditional expectation as a piecewise
constant function of X. Each domain where the function is constant can be seen as a terminal leaf of a tree. Formally,
let us first consider the one-dimensional case (d = 1) and let

i N _ ) Yr, Vo >2*
f(w)_{ Yy, Ve < z*

where 2, YR and Y7, are chosen as follows: with probability 0 < 1 — ¢ < 1 the parameters are chosen to minimize
&= Zf\il (f(X;)—Y;)? and with probability g, the threshold =* is the midpoint and we only minimize over Y7, and Y.
We made the choice of taking the midpoint from time to time only for technical reasons. in fact, this choice simplifies
some mathematical demonstrations. Either we take the midpoint or optimise over x*, we can express the optimal Y7,
and Yx as a function of 2* as follows:

M
Vi — Zi:l Yil{Xi>x*}
R = M
Zi:l 1{Xi>I*} (1)
v, = Tt Yilpxicey
T =

M
>zt Lixi <oy

As a matter of fact, Y, Y7, are solution to the problem
M

inf Z (yz - (yl{Xz>x*} + yll{Xifz*}))Q :

’
Y,y i—1
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Once the threshold x* is determined, we split the samples into two groups following the sign of X; — z* and repeat
the process for each group. We stop the process if introducing a new leaf does not improve the MSE or when enough
iterations have been made. In the end, we have a tree that approximates the conditional expectation with a piecewise
constant function. The regression trees are an algorithmic tool to find an adapted partition and the corresponding
weights of this piecewise constant function.

In the multi-dimensional case, we choose the direction (the index along which the optimization is performed) uni-
formly for each new split. Then, the process is iterated as in the one-dimensional case. We denote the resulting tree
by 7;M : [0,1]* — R where p represents the depth of the tree, i.e., the number of iterations done in the process of
optimization. A tree of depth p has 2P leaves

When the size of the training data is infinite, Equation () writes

{ Yr =E[Y/X > 2*]
Y, =E[Y/X <z*]
v

and the optimisation problem writes inf E [( f(X) - In this case we obtain the regression tree 7, (.X).

3 LS algorithm with regression trees
3.1 Notation

For p € N, let (HJ L e (), a;(j))) i be a partition of [0, 1]¢ with p elements. We write

[y ap) = ] T (a7 (), a3()

J=1

and

a; =E[Y/X € [a?l a)].

»Yp
The regression tree 7, (X ) can be written as follows

217
To(X) = 0L xe[e_ fab()—ai (1)}
=1

with ([a}~!, al) |<i<gp fOrming a partition of [0, 1]4.

Remark 3.1. In the following, when there is no confusion we will continue to simply write T,(X ) respectively 7A;,M (X),

otherwise we write T,(X, 0P), respectively ’7;M(X7 g2 M) where 9P = (ad,..., a%p) e ([0,1)H2°+ and g»-M =
(a)™M, ... a2 M) e ([0,1])2

3.2 Description of the algorithm

Let T be a fixed maturity, and consider the filtered probability space (2, F, (F;)o<i<1, P) where P is the risk neutral
measure. Consider a Bermudan option that can be exercised at dates 0 = t) < t; < t3 < ... < ty = T. When
exercised at time ¢, the option’s discounted payoff is given by Z;, = h;(X,) with (X3,); being an adapted Markov
process taking values in R?. The discounted value (U;)o<j<n of this option is given by

Uy, = sup E [Z /F, ] )
7'67;

Using the Snell envelope theory, we can know that U solves the dynamic programming equation

v ®
Uy, =max (th,E [Utj+1/‘th]) for1<j<N-1.

This equation can be rewritten in terms of optimal policy as follows
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™ =in=T 4)
Ti - tjl{zthE[ZTHl/]:tj]} * Tj+1l{ztj <E[Z*j+1/]:tj]} forl<j=siN-1

where 7; is the smallest optimal stopping time after t;. As we are in a Markovian setting, we can write
E [Z Ti+1/ .7-}]] =E [ZTJ. / th]. The main difficulty in solving this equation comes from the computation of the

continuation value E [ZTj w/ th] . In the Least Squares approach presented by (Longstaff and Schwartz, 2001), this
conditional expectation is estimated by a linear regression on a countable set of basis functions of Xy,. In our ap-

proach, we suggest to estimate it using a regression Tree of depth p, 7;] . The algorithm solves for the following
policy

(&)

We sample M paths of the model Xt(g"), . 7Xt(;n) along with the corresponding payoff paths Zt(:)n)7 o 2 m =
1,..., M. For each path we compute the conditional expectations E[Z,,,, /X¢ ] for j = 1,..., N — 1 and we deduce
the 7;’s. The final approximation of the optimal policy, in which the truncated expansion is computed using a Monte
Carlo approximation is given by the following equation

f'i,’(m) =tn=T

=

; forl1<j<N-—1. ©)

(M) 5 70, M [ 5 (m) +7m (m) 3, M (5 (m)
{zim>mg ™)} T 2 < T M (x (M)}

Finally, the time-0 price of the option is approximated by
1
p,M __ (m)
Uy = max (ZO, — mgﬂ Z%f’“’”) . @)

4 Convergence of the algorithm

4.1 Notation

Note that the paths 7] ’(m), e ,TIZ\}’(m) form = 1,..., M are identically distributed but not independent. In fact, the
estimation of 7,/ (X, ) uses all the paths. For each time step j, let 6% = (a, ;... ab, ;) be the coefficients of the tree

77 and é;’ M (dg:;-\/[ S &g;{\? ) the coefficients of the tree 7A;j’M . Following the notation of (Clément et al., 2002),

we introduce the vector ¥ of the coefficients of the successive expansions ¥ = (6f,...,60%_,) and its Monte Carlo
counterpart 97M = (g2 GRAM ),

Let t? = (th,...,t% ) € ([0,1]9)%*! be a deterministic parameter, 2 = (z1,...,2y) € RY and 2 =
(w1,...,7x5) € ([0,1]%)" be deterministic vectors. We define the vector field F' = Fy,..., Fiy by

FN(tp,Z,.’E) = ZN
Fj(tp,z,x) = Zjl{zjzﬁ(xj,tg’)} + Fj+1(tp,Z,J?)l{zj<7—(xj’t1;)}, forl1<j<N-—-1.

F;(t?, z, z) only depends on t? ,...,th_, and not on the first j — 1 components of t*. Moreover,
F;(0°,Z,X)=Z»,
J
Fy (M 20 xm) = 77

~p,(m)*
7j

Moreover, we clearly have that for all t” € ([0, 1]%)%":
|Fj(tpvz’X)| SmaX|Ztk" 3
k>j

4.2 Convergence of the conditional expectations

4.2.1 Some preliminary results

We define
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p 2

Z aél{Xe[a;’l—a;)} - E[Y/X]
i=1

Jp(ao ap) =E

p’ »p

Lemma 4.1. Let X be a r.v with a density hx w.rt to the Lebesgue measure on [0,1]¢ and Y be a real valued

square integrable random variable. Let (([a;_l, a;)) 1< <p> . be a sequence of partitions of [0,1] such that

pe

: () i1 —
pli}ngo lglggplrgfgd!ap(]) at=1(j)| = 0. Then,

pli_)rrol0 JIp (ag, cee ag) =0.

Proof. Consider the function
f:00,1]4 =R
x> EY/X = 1]

and define a piecewise constant approximation of f

-

z— fP(z) =

1
TS Ry s)ds | 1, 1 i1
g g0 Bt

aél{ze[a;_l,a;)}

(2

I
.M"@

s
Il
-

with y the Lebesgue measure. First, we consider that f is continuous on [0, 1]¢. Then, it is uniformly continuous on
the compact set [0, 1]¢. So,

Ve > 0,3n > 0stVa,yst|z —y| <n,|f(z) - fly)] <e

Let e > 0 and n > O satisfying the above condition. For a large enough p

max max ’a;(j) — ai_l(j)| <2

1<i<p 1<j<d P d
So,
d
. i— i i i—1/7\(2
Vl S t Sp’ ’a’p ! _ap’ = Z’a‘p(]) _a’p 1(])‘ < 7.
j=1
Then,
@ (x)|” @ (|
£ Uf(X)—fp x| } =/[ - 1) e
0,1
p 1 2
:Z/ fx) = ﬁ/ f(s)ds| hx(z)dz
im1 /oy a w(lap ~, ap)) lap™ " al]
P 1 )
< / 2,7/ |f(z) = f(s)|"dshx(x)dx
; it az) #([ap s ab)) Jiaita
p
< Z ‘ hx(z)dr < €.
i=1 [“;;17‘1;;]
Finally,
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The set of continuous functions on [0, 1]¢ being dense in L? ([0, 1]%), the result still holds without the continuity
assumption, which ends the proof. O

Theorem 4.2.
lim E [|7;(X) - E[Y/X]|2] —0.

p—00
Proof. Forall1 < j<d

i i1
E[lgggphp(])—ap (J)|]

<1[q;E[ max ya;‘,l(j)—a;_ﬁ(j)\]ﬂl—q)E[ max \azl(j)—a;_ﬁ(j)!”

—d 1<i<2p—1 1<i<2p—1

d—1 i . i—1
RS G

q i . i—1/:
< (-5 L%%J%—l@) - “pl“"]
q \or
< P —

In fact, with a probability é, the index j is chosen for optimisation. In the other d — 1 cases, we do not even cut along
that direction, in which case the interval length is at most equal to the length of the largest interval at step p — 1. When
the index j is chosen: with probability g, the length of the interval is cut in two, and with probability 1 — ¢, it is cut to
optimize the MSE. In that case, the interval length is at most equal to the length of the largest interval at step p — 1.

o0 o0
. 7121’1. . . 747171 . i'i’i*l"
The series p;o(l ) is finite. Thus, so is pZ::oE [122}§p|%(‘7) aj, (])q Since 12?§P|a”0) a, (5)] is
o . .
non negative for all p, using Tonelli’s theorem we conclude that E lz max ‘a; () — a;‘l(j) ’1 = 0. As a result,
p=0 150527
(o]
: (Y il : G il ~
the series p;@%’ép‘%m at~1(j)| converges a.s. Then, Jim, lggJaP(ﬁ at~1(j)] = 0 as for all j and

; i) i1 —
Jim max max |ap(f) —a, " (7)] = 0.
Let G be the o-field generated by the splitting strategy (direction choice and threshold strategy).

Conditioning by G allows us to consider the partition ([a;_1 — a;)) 1 <j<op deterministic and we can apply Lemma

[]to prove

Jim E [|7;, —E [Y/X]|2/g} ~ 0as.

Note that
or
E[IT,(X)P /9| <E [ZE [Y?/X € lay " a})] 1{X€[a;1,a;,>}/g]
i=1
27 , _
< Z E [E [YQl{Xe[affl,aZ)}/X € [a;_l,a;)} /Q}
i=1
2P
< DE [V xeuiag /9
i=1
<E[Y?/G]
Then,

E ||T, —E[Y/X]1/9) < 2€ [|T,(X)P/g] + 2 [Ev/X]?]
<2 (E [Y?/G] +E [E [Y/X]QD
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Using Lebesgue’s bounded convergence theorem,

lim E [|T E[Y/X]ﬂ — lim E [E [|7;,_ E[Y/X]\Z/QH —0. O

p—o0 p—o

4.2.2 Approximation of the conditional expectations with regression trees
Proposition 4.3.
lim E |22 /Fp, | = € [2:,/Fp,] inL3(Q)for1 <j <N ©)

p—o0

Proof. We proceed by induction.

For j = N, the proposition is true since 7h, = 7y = 7. Assume that the result holds for j + 1, Let us prove that it
still holds for j:

E [Z% - ZTJ-/}—T]} = Zy (1{Zt.27‘g(xt.)} - 1{2,,.2E[ZTH1/I,,J.]})
YE|Z L crpn ~ Zroniliz <tz )

= (%, ~ ElZe 1 JF)) (z smiexy)) ~ Yz el i)
+E[Z, 1 ZTJ+1/ftj}l{Zf,j <Ti(X:;)}
= Ap + E[Zf]+l — ZTJ+1/]:tj]1{th <7—ij(th)}

Where A is defined by

A;) - (th B E[ZT”l/ftjD (1{ij 27};(th)} B 1{th ZE[ZUH/}-%‘]})

]

and using the induction assumption E [ s — Zryn/ ]-"t]} — 0in L2(£2) when p — oco. On the other hand,

On one hand, since the conditional expectation is an orthogonal projection, we have

2
E UE [ZT_}"JH o ZT:‘H/FH} } <E UE [ZT}JH o ZTj+1/th+1}

45 =12, = By P Az, i~ Lol
< |Zt.7' —E T7+1/-7:t' ‘1{E Zorjon | Fe;|> 20, >T (X )} 1{ﬁ(th)>th2E[ZTj+l/]-'tj]}
= | T7+1/}—t | ‘1{‘Zt _E[ J+1/]:tj]‘§|7;’j(th)_E[ZTj+1/]:th}‘
S’ o [ Ty‘+1/‘7:tj”
< \

|:ZTJP+1 /}-ti}

{ZTJ’-’H/}—%} -E [Z‘Fj+1/‘7:tj]

Using the induction assumption, the second term goes to zero in L*(Q2) when p — oo. Let ([ai—1(p), ai(P)))1<;<o»
be the partition generated by 7;{ We define

7;] Xt ZE T]+1/Xt [ai-1(p), al(p))} 1{th€[a7:—1(l’)vai(l’))}
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Note that 7_;j uses the partition given by 7;{ but the coefficients «;(p) are given by the conditional expectations of
Z. w.I.t th and not those of ZTp+1. Clearly,
]

Ti+1
2
J=¢|

|
2 [|77(X0,) — E [Zry.0 /7, )] + 2B UE 20,0/ F) ~E | Zer, /7] 1

j+1
The second term goes to 0 using the induction assumption. As for the first term, note that the partition obtained with
T, verifies the conditions of Lemma Then, using the same arguments as in the proof of Theorem we can
show that the first term also goes to 0.

TJ(X,) —E|Z /7]

T(X,,) —E|Z /7]

IN

4.3 convergence of the Monte Carlo approximation

For this section, the depth p of the trees is fixed. We study the convergence with respect to the number of samples M.

4.3.1 Convergence of optimisation problems

We recall here two important results on the convergence of a sequence of optimization problems. Consider a sequence
of real valued functions ( f,,),, defined on a compact set K C R%. Define,

- T

and let x,, be a sequence of minimizers
= inf .

From (Leake et al., {1994, chap. 2), we have the following result:
Lemma 4.4. Assume that the sequence (fy), converges uniformly on K to a continuous function f. Let v* =
infyer f(x) and 8* = {x € K : f(x) = v*}. Then v,, — v* and d(z,,,S*) — 0 a.s
We will also use the following result which is a statement of the law of large numbers in Banach spaces. See (Leake
et al.|[1994] lemma. A1) or (Ledoux and Talagrand} 1991} Corollary 7.10, page 189)
Lemma 4.5. Let (&;);>1 be a sequence of i.i.d R"-valued random vectors and h : R? x R™ — R be a measurable

function. Assume that

s as, 0 € R h(0,&) is continuous,

* VC > 0,E [sup|9‘gc|h(9,§1)|} < 0o0.
Then, as® c R?— %L S h(6,&) converges locally uniformly to the continuous function 6 € R® — E [h(6, &)],
ie

% Z h(0,&) —E[h(0,61)]| =0 as.

lim sup

4.3.2 Strong law of large numbers

From (Clément et al.,|2002), we have the following result

Lemma 4.6. Foreveryj=1,...,N —1,

N N-1
|Fj(a, 2, X) = F5(b, 2, X)| < ZIZ“ Z Y20, 7350, 00 | <| T3 (K1 a0~ T (X, 00|
1=] 1=3

Proposition 4.7. Assume that for all p € N*, and all 1 < j < N —1, P(Z;; = U(th,0§')) = 0. Then, for all
j=1,...,N—1, 7A;j’M(th,é§-”M) converges to 7?(th,9§) a.sas M — oo.

Proof. We proceed by backward induction on j and forward induction on p .
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e Stepl: =N -1
— Forp =1, let
h:RxRx[0,1]"xR—R
2
o, B,a,x, 2+ |z — alize,a)y — Blizelo}]

We recall that we use the notation of Section [3.1] meamng here that 0 and 1 are d-dimensional. The
random function o, 3, a + h(a, B,a, Xty _,, Zty) is a.s continuous on R x R x [0,1]% (since X;, _,
has a density, P(X;, _, =a) = 0) Let C' > 0,

E [ sup |h(a,ﬁ,a,XTN71,ZtN)|
a€[0,1]¢,|a|<C,|B|<C

2
=E sup ‘Zt al Xt €[0,a ﬁl Xt €la,l }‘
|fl€[071]d704|<075<0 Y Koy, €00} Koy €lonl]

<2E[Z7 ] +2E

2
Sup ‘al{xm_le[om} T ﬁl{xw_le[a,u}(
a€[0.1]4, o <C.[|<C

<2E([Z7,]+2C?

< o0 a.s.

Using Lemma The random function v, 8, a +— ﬁ Z%zl Zt(;l) —al

x oy~ Plix ey

converges uniformly to the function «,3,a — E UZtN — Oél{XtN,le[O,a)} — 61{XtN,1e[a,1]}‘ }

Since 7,V "M ( Xy, 08Y,)) = inf i M Z(m)

a,B,a
_ M .
7le 1(XtN—1’0]1\}—1) = inf, ﬁﬂlE

Lixem efoay ~ Bl{XE;“ile[a,l}}‘ and

2
Ly — al{XtN,le[O,a)} — ﬂl{XtN,le[a,l]}‘ }, we conclude

using Lemmathat TN WM(X,, é}\,]\fl) converges to 7;" (X, _,,0k_1) asas M — oo.

— Suppose that the result holds for p and we will prove it for p + 1.

We write &) = (aQM,....a2"M) e R¥, all = (aQM,....a2"M) € ([0,1]4)*"+1,
ap = (ag,...,affj) € R” and a, = (ag,...,agp) e ([0,1]9)*"+1. Leti € {1,...,2"} and
consider
1M ( 2
= m) _ . _ .
(0 500) = 3 m;ZtN oL cpag gy T Bl cpaaiiny
1M 2
(m)
vpv-1(@:8.0) = 57 > |20 =0l ot oy~ BLix efnay
m=1
Using the same arguments as in the case p = 1, it is easy to see that the random

function «,f3,a + pN 1(a, B,a) converges a.s uniformly to the function «,fB,a

i

Now, it suffices to show that sup |0 (e, Bra) =My _((a,B,a)] — 0 as
a€l0,1]4,|a|<C,|BI<C

2
Ziy = 0lix, ety — PLixey, claa)] }
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when M — oo

sup
a€l0,1]4,|a|<C,|B|<C

M
< su MZ

a€l0,1]4, Ia\<C’ |Bl<C

|P,N 1( /67 ) pN 1( Ba )|

al,
iy,

—1 'i—l,lu]} + ﬂl

E[G; »ap

” i, M
{x{") elay ,apl}‘

(m) _ o
‘2% @ (1{X<'"> efmin(aiM ai1),max(as M i) T 2Hx | epmax(ai M6l Y, a1}>

- B <1{X<m) E[mln(al M ai),max(a,i’M,a;)]} + 21{X§$11€[a mln(a:, M qi ))}) ‘

< sup ! H2Z m)‘ —|—GC] C (

(m) i i1,y 1, oom) WM )
acfo1]al<csl<c M 4 (GRL Elaphap MY T GRY €yt ap])

tN—-1

Let € > 0, using the induction assumption on p

limsup sup |9]\,/IN—1( /65 ) pN 1(0[ ﬁa )|
M agl0,1]4,]a|<C,|B8|<C

1 m
< lim sup sup HQZ( )‘ —|—6C] C (’
M a€[0,1]4,|a|<C,|8|<C M

)

* ‘ X et <o)

(m)
{‘X —ap tN—1

tIN—1

< C(6C +2E[2Z;, []) (P !Xthl - ap] <€) +P(|Xey_, —ast]) <e).

Since limeo P(| X¢y_, —ab| < €) = P(Xy,_, = a}) = 0and lime_,o P(|X;,_, —ajt?| < ¢) =
P(X¢y_, = a,t™) = 0. As aresult, (e, B,0) =)y (o, B,a)| — O uniformly when M —
00. Thus, the random function «, 5, a +— ﬁé"/[N_l( , B, a) converges uniformly to the function «, 3, a —

2
E UZtN - O‘l{Xf,N_l clai ey — Blixey e[a7a;)}‘ } and using the same arguments as in the step p =
1, we conclude that ﬁﬁ;l(Xthl ,0%M ) converges to 7;+1 (Xin_ 1, 0% _1) asas M — oco.

* So far, we have proved that for all p, 7;N_1(XtN71 , 9?\}1211) converges to 7;,N‘1(XtN71 , 95') asas M — oo.

Now, Suppose that 7,7 (X, , 07" converges to T.F(Xy,,607) as as M — oo for all p and for k = N —
1,...,7 + 1. We should prove that the result still holds for j

— For p = 1, consider

M 2
Vl]( 57 Z

o (91, 200, X0 — a1

S \

ey ~ Plixiean?)

2

Vl]( ﬂa )

E\H
ME 1

1 m m
Fyea (91,200, x00) ~ixomepay T Flixim e
1

3
Il

M

The function vy"; writes as the sum of i.i.d random variables. Let C' > 0, using Equation @)

2
E [ sup ‘Fj+1 (1917Z,X) — CVl{Xf,je[O,a)} — Bl{X,,je[a,l]}’ 1
ae[ovl]dala‘gcv‘ﬁ‘gc

< 26 [|Fyu (97,2, X)[*] + 26

2
sup alix, efo.a)} +51{the[a,1]}‘ ]
a€l0,1]4,|a|<C,|BI<C ' '

< 2E [max (Z4,) } +2C?

>j+1
< Q.

10
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Using Lemma a,B,a — V{‘fj(aﬁ,a) converges a.s uniformly to the function «,f,a
2
E { Fi(0, 2, X) — alix, eoa)} — ﬁl{thG[a,l]}' ]

It remains to prove that YC' > 0 sup M(a,a,B) —vii(a,a,B)] — 0 as
a€l0,1]4,|a|<C[B]<C

when M — oo.
Then, using Equation () and Lemma [4.6|

Sup ’ﬁ%(a,a,ﬁ)—uﬁ(a,a,5)|
a€l0,1]4,|a|<C,|B|<C

M
< sup - . (ﬁlM Z(m) X(m>) Fiis (191 Z(m) X(m))‘
a€[0,1]4,al<C, B|1<C Mmz - o
‘F“ (914, 200, X0 ) + By (7, 207, X ) = 208 50 gy = 2L el
o B . .
< — maX‘Z " ‘+20> )F (1§1=M,Z(m)7X(m)) F, (191 X<m>)‘
a€l0,1]4, |a\<cw<c M 2:: (l>i+1 n Ak Ak
1« (m) |
< sup — 2 (maX‘Z m ‘+ZC’> " ‘ 1 m) ifim iy (m
acl0.1)4 Jaj<c,pl<c M S= " \izj+1 Sl ;1 (|20 =i x| <| )=y

Let € > 0, using the induction assumption on j,

lim sup sup ’ﬁyj(a,a,ﬁ) — V{‘f[j(a,a,ﬂﬂ
M agl0,1]4,]a|<C,|BI<C

M

- 1 (m)

< limsup sup — 2 (max ‘Z ‘ +2C
M acfo.1)dal<cgl<c M mz::l VAL

Z )Z m)‘ Z 1 {2 -Ti (x| <}

i=j+1

Since P(Zt(;n) TJ( ¢ 0”)) = 0, then lim,_,¢ 1{‘2{:”—’r1i(xt‘;">)‘§e} = 0 a.s and we conclude that

a.s. |19{‘)4j(a, a,f) — 1/{\4]» (a,a, B)| converges to zero uniformly. Thus, a, «, 3 +— ﬁf‘j[j(a, a, B) converges
2
a.s uniformly to the function a, @, 3 s E [’Fjﬂwl, Z,X) = al(x, cio.a) — 51{&_6[&,”}’ ]

— We suppose the result is true for p, and let us verify that it still holds for p + 1. We write dﬁ/f =

(&M, ... a2" M) eR¥, all = (a%M .. a2"M) € ([0,1])*" !, oy = (a9,...,0a2") € R and

ap = (al,...,a") € ([0,1]")*"+1. Leti € {1,...,2"} and consider

Py Bra) = 47 Lyl

m=1

1
M E
Vp,j(aa/Baa) = T[ ]

The function 1/%.

j+1 19;), Z(m) X(m)) 7&1{X(m) elab i—1,M

ay ~ P x el

Fj (0P, 20 X)) — a1

{(x{™Melay )} ﬁl{Xt(;n')E[a,a;)}

writes as the sum of i.i.d random variables. Let C > 0,

2
Fii (ﬁp, Z<m>,X<m)) —al

E sup (m) o1,i—1 - Bl i
Le[o,l]d,a|gc,ﬁgc {th €lap ,a)} {th €la,ai)}

sup

2
<2E “Fj+1 (97,20, x0m)| ] +2E
a€[0.114,|a|<C.|8|<C

21

Lixomeraitay TP ixim el

< 2E [max (Z4) } + 207
I>j+1

< 0.
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We conclude that a.s a,8,a — v)%(a,B,a) converges uniformly to the function «,,a
i
7pyles B.a) = vl Bra)|

M

2
Fj_;,_l(ﬁp’Z,X) Ozl{X clait,a)} _Bl{the(a,a;',)}‘ :l LetC >0

IN

M

m=1

Fia (07M, 20 X)) 4 By (97, 20, X ()

- ( X(m)e[mm(a M,a;, 1),max(al 1M a7 MM} + 21{X(m) [max(al L M,a;, b, a]})
-5 ( {x<m>e[mm (ab™ Jai),max(al™ ai)]} + 21{Xt(;_”)E[a,min(a;’hf,a;)))}) ’

<L Z “ o (P 7 x(m) _Fj+1(19p,Z(m)7X(m))‘

’Fj+1(1§p’M, Z(m),X(m)) + Fj1 (0P, Z(m),X(m))‘

+ +21

{X{ €max(ay "M a7 a]})

« (1{X(m>e[m1n(al 1, M7a; 1),max(a; 1, M 1 1))}

o (1{X§_7’€[min<a;M,a Jmas(ay™ o))y T 2L el min(ag '>>}) H

Let C > 0,

sup |ﬁM-(O[7ﬂ,a,)*V%(Ot,ﬂ,a)|
a€l0,1]%,|a|<C,|B|<C

S

1 m
< — 2(max‘Zt(l )‘+3C>
a€0,1]4, |a\<c |8|<C M —1 I>j+1

Z ’Z(m)’ Z 1{|Zf ~THx )<

<| 7 M(X(m)) T X('rn))}
=741
Let € > 0, using the induction assumption on p, limp; o af "M = al~! and limp; o0 a™ = al, as
and using the induction assumption on j, limy; — 007 M(Xt(:”)) = ’7;;(Xf(7m)) Vi. Then
: M M
lim sup sup ’Vp)j(oz, B,a) — vy, B, a)‘
M a€[0,1]4,]al<C,|8|<C
M
< limsup — (max Zt(m)‘ + 3C’>
M aef0,1]4, \a|<cw< M Z 1Zj+1
N 1
c N 1 im |z . "
( xm—ait|<a T 0 s})* Z i Yz x| <a
k=j+1 k= ]+
since lim 1 o (m lim al my il 1 m 0, we
0|z, TI(X‘ )|<e) =0 xm 0t < T ap|<
conclude that a.s | (o, B,a) — M 5, B, )| — 0 uniformly when M — oo, and thus the
random function a7ﬁ7a N 2 ]( ,B,a) converges a.s uniformly to the function «,f,a ~—

2
i1 (WP, 2, X) — al{X clait,a)} ~ Bl{the(a%)}‘ } which concludes the induction.

e[|

12

1 3 m m m m
S |Fa (0P z0m X)) — By (e, 20, X >)+a1{X<m>€[l IM)}+51{X<,,L>€[ i)

{X(m)e[aZ Ui M) +ﬂ1{X§;n)€[az,NI’a;]}

T xm efagap 2y T AL o

|
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O

Theorem 4.8. Assume that for all p € N*, and all1 < j < N — 1, P(Z;; = U(th,ﬁﬁ)) = 0. Then, for a. = 1,2
and foreveryj=1,...,N,

Proof. Note that E [(ZTJP)“} = E[F;(¥?, Z, X)*)] and by the strong law of large numbers

Jim L ﬁ:l F; ((ﬂp, Zm), X<m))a) = E[F;(W7, Z, X)] as.
It remains to prove that
LS~ (i a.s
AFy = o Z—l (Fj(ﬁpﬁM, Z(m)| x(m)ye _ Fj((ﬁp,zth(m))a)) —2 0.
For any z,y € R, and z® —y <|z-— y||x°‘*1 + oyt | Using Lemmaand Equation (8), we have
M

|AFy| < 191? M z(m) X(m)) F;(9P, Z(m),X(m))a

Using Proposition foralli =j,...,N —1,

lim sup|AFy |
M

Z( )‘ ‘Z ‘Zl{\z(”” T[T M )= T )|y

(Xt,) — ﬁ(Xti)‘ — 0 a.s when M — oo. Then for any € > 0,

1 L |21 0 | N
< 2hmbupM Z Zrilza;(‘ztk ‘ ‘Zti ‘ Z 1{|Z§;">—7Z(Xt(;")) <e}
i=3j

N N-1
-1
<2E § ‘r]?g;dztk‘a |Zt1
=7

{120, =T (Xe;)| <e}
We conclude that lim sup,;|AF)s| = 0 by letting € go to 0 which ends the proof. O

5 Random forests

Definition 5.1. A Random Forest is a collection of regression trees {Tpe,,k = 1,...} where the {O} are i.i.d

random vectors. We denote the resulting forest by Hp ,(X) = Zszl %7;,@1« (X) where B is the number of trees in
the forest and p the depth of the trees, and H, = Eg [Tp.0] = limp_,c0 Hp p(X)

Theorem 5.2.
. 2 2
Jim E[IY = M,y (0]] =E[[Y = #,(X) ]
See Theorem 11.1 in (Breiman| 2001)).
Theorem 5.3.
2 _ 2
E[[Y = #,(X)*] < B [E|IY = Tro(X)]]

where p is the weighted correlation between the residuals Y — T, o(X) andY — T, o/ (X) and © and ©' are inde-
pendent. See Theorem 11.2 in (Breiman| |2001))

Theorem [5.3] says that to have a good generalization error in the random forest, one should have small generalization
errors in the basis trees, and the basis trees should not be highly correlated.

13
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6 Numerical results

6.1 Description

This section studies the price of some Bermudan options using regression trees or random forests to approximate the
conditional expectations. We compare the results to some reference prices and those given by the standard Longstaff
Schwarz method with regression on polynomial functions. We use the Scikit-Learn library in Python, (Pedregosa
et al.,[2011)). For regression trees, this library offers two methods of splitting: "best" to choose the best split, meaning
that the split threshold is the one that minimizes the MSE and the direction for splitting is the one that gives the lowest
MSE among all directions. "random" to choose the best random split, meaning that the split threshold is the one that
minimizes the MSE and the direction for splitting is chosen randomly. For the following tests, we will use the latter
method, which is just slightly different from what we presented in Section [2|in the way that no mid-point cuts will
be considered. We also use the feature min_samples_leaf which allows us to set a minimum number of samples
in each node. This will allow us to avoid over-fitting. For random forests, we will use the bootstrapping method
(Bootstrap=True), meaning that for each tree in the forest, we will use a sub-sample drawn randomly and with
replacement from the training data. We will also use the feature max_samples which allows having a specific number
of data points or a percentage of the training data attributed to each tree. Having the trees trained on different data as
much as possible allows us to have a low correlation between the trees which, using Theorem [5.3] should make the
random forest more robust.

Following the work of (Longstatf and Schwartz, |2001), we only use the in-the-money paths to learn the continuations
values, which significantly improves the numerical computations. All the prices that we show are obtained after
resimulation, meaning that the paths used in the estimation of the conditional expectations are not the same ones used
by the Monte Carlo which means that the prices we show are unbiased.

6.2 Black and Scholes

Consider the Black and Scholes model

dsi — rSidt + 0;SidBi,
d< Bi, BI >y = p”dt

where o; is the volatility of the underlying S% assumed to be deterministic, r is the interest rate, assumed constant,
and p;;, represents the correlation between the underlyings S* and S7, assumed constant.

6.2.1 One-dimensional put option

We consider the Bermudan put option with payoff (K — S,)* with maturity 7" = 1 year, K = 110, Sq = 100,
o = 0.25, exercisable at N = 10 different dates. We consider » = 0.1. We have a reference price for this option
of 11.987 computed by a convolution method in (Lord et al., 2007). The LSM algorithm converges to the correct
price with only a polynomial of degree 3. Figure[I shows the price of the option when we use regression trees with
a random split strategy (continuous line) or a best split strategy (dotted line) to estimate the conditional expectations.
With the random strategy, the best price we getis 11.89. The case min_samples_leaf=1 and max_depth=20 gives a
price of 10.5, which is far from the reference price. This result is due to over-fitting. In fact, for this case, the number
of degrees of freedom is too big. The tree fits the training data too well, but it cannot generalize when confronted
with new data. For the best split strategy, we obtain a slightly better price of 11.94. However, depending on the tree
parameters, the price fluctuates, and we can see that the best split strategy is not necessarily better than the random
split strategy. Thus, for the following, we will keep using the random split strategy. Random forests with basis trees
of maximum depth 5 and minimum 100 samples in each leaf converge to the correct price with only ten trees.

14



A PREPRINT - NOVEMBER 19, 2021

-
-

12,2

12

split=random, keaf=1 11,8
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L
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Figure 1: one dimensional put with regression trees, true price=11.987

6.2.2 Call option on the maximum of two assets

We consider a call option on the maximum of 2 assets with payoff (max(S},S2) — K)*, we use the same set of
parameters as in (Glasserman| 2004), for which we have reference prices of 13.90, 8.08 and 21.34 for S§ = 100, 90
and 110 respectively. The LSM algorithm using a polynomial of degree 5 converges to a price of 13.90, 8.06, 21.34
for the cases K = 100, 90, 110 respectively. This is a small dimensional problem, so the convergence of the LSM is
expected. With regressions trees we have slightly less satisfying results as shown in Figure[2] We can still see the case
of over-fitting when giving the regression trees too many degrees of freedom. Aggregating the regression trees into
random forests immediately improves the results as shown in Figure[3] Note that the lower the percentage of data in
each basis tree, the better the results. This confirms the results of Theorem[5.3].

eaf=1

—— lea=50
edf=100

eaf=200

price
-~

S 0=90, true price = 8,08

r
@
=

depth

eaf=1

—— lez=50
edf=100

eaf=200

price

12 14 16

S_0=100, true price = 13,90

13,6

S 0=110,true price= 21,34

21

13,55
135
13,45 N

erf=1 134
21335
— led=50 a 133

13,25 v
132
13,15
131

4 6 B 10 12 14 16
depth
8 10 12 14 16
depth

Figure 2: Call on the maximum of two assets with regression trees, K = 100, T = 3 years, o = 0.2,7 = 0.05, p;; =
0,9; =0.1, N =9, M = 100, 000
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Figure 3: Call on the maximum of two assets with random forests, K = 100, T = 3 years, o* = 0.2,7 = 0.05, p;; =
0,0; =0.1, N =9, M = 100, 000

6.2.3 Geometric basket option

' +
We consider a Bermudan Put option on a geometric basket of d underlying with payoff (K — (11 S;)cll) . We test
i=1

i=
the following option for d = 2, 10, 40 for which we have reference prices from (Cox et al,|1979) using the CRR tree
method. With the LSM algorithm, we converge to the correct price 4.57 for the case d = 2, using only a polynomial of
degree 3. For the case d = 10, we can at most use a polynomial of degree 3 due to the curse of dimensionality. With
this parametrization, we obtain a price of 2.90 for a true price of 2.92. For the case d = 40, we cannot go further than a
polynomial of degree 1, which yields a price of 2.48 for a reference price of 2.52. Figure [ shows the results obtained
with regression trees. For the case d = 2, the best price we get is 4.47 and, as expected, the LSM algorithm has a better
performance. This is also the case for the cases d = 10 and d = 40 where the best prices we obtain are 2.84 and 2.46
respectively. Notice that even though these are high dimensional cases, the trees converge with only a depth of 5 or 8.
We also notice the importance of the parameter min_samples_leaf. In fact, letting the trees grow without managing
this parameter (case leafl) leads to a problem of over-fitting. The results get better when we use random forests as
shown in Figure 5] For these random forests we used basis trees of max_depth=8 and min_samples_leaf=100.
Notice for the case d = 2, the curve where only 50% of the data is used gives much better results as in this case the
basis trees are the less correlated. For the cases d = 10 and d = 40, the best choice is not necessarily to use 50%
of the data in each tree. As these are larger dimensions, having the trees trained on a small percentage of the training
data maybe not enough. One may consider extending the size of the training data itself. Furthermore, we notice that
once the percentage of data to use in each tree is chosen, the price of the option converges as the number of trees in
the forest grows.
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Figure 4: Geometric put option with regression trees
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Figure 5: Geometric put option with random forests

6.2.4 A put basket option

Nt
We consider a put option on the basket of d = 40 asset with payoff ( K — Z?:l wiS}> . We test this payoff for
d = 40 for which we have a reference price from (Goudenége et al.,[2019) between 2.15 and 2.22 using the following
set of parameters: 7' = 1,.5; = 100, K = 100, = 0.05,0; = 0.2, p;; = 0.2,w; = éandN = 10. With a polynomial
of degree 1, we obtain a price of 2.15 using the LSM algorithm. The results obtained with regression trees are shown

in Figure[6]
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price
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depth

Figure 6: Put on a basket of 40 asset with regression trees

Even though this example is high dimensional, we do not need a lot of parameters to estimate the conditional expec-
tations (the trees converge for very small depths). This will not be the case for the next example which is very non
linear. The aggregation into random forests leads to a price of 2.16 using only 50 trees.

6.2.5 A call on the max of 50 asset

+
We consider a call option on the maximum of d = 50 asset with payoff (1I£1a<}<d(5%) — K | with the following
<i

characteristics: K = 100,T = 3 years, S = 100,0; = 0.2,8; = 0.1, p;; = 0 Vi, j,r = 0.05, N = 9, M = 100000.
(Becker et al.,[2019) report [69.56, 69.95] as the 95% confidence interval for the option price. With the LSM algorithm
we find a price of 67.88 with a polynomial of degree 1. This a difficult example and we need to use bigger trees to
approach the conditional expectations. At maturity, the payoff depends only on one direction (corresponding to the
best performance), if the cuts in the tree never consider that direction, the estimation will not be correct. As a result,
we consider a number of cuts big enough to ensure that each direction is taken into consideration. We allow the
depth to grow while monitoring the min_samples_leaf in order to have a significant number of samples in each
leaf. Table[T|shows the results obtained with regression trees. As the best price we obtain is given by depth=100 and
min_samples_leaf = 100, we use this set of parameters for the random forest part. Table[2]shows the results that we
obtain with this method.

depth | min_samples_leaf | price
50 50 66,89
50 100 66.88
100 50 67.13
100 100 67.31
200 50 67.16
200 100 67.28

Table 1: A call option on the maximum of 50 asset with regression trees

nb_trees | max_samples | price

10 50% 68,32
10 70% 68,32
10 90% 68,29

Table 2: A call option on the maximum of 50 asset with random forests

Using only regression trees is not enough to have acceptable results. However, as soon as we aggregate the regressor
into random forests, we obtain very satisfying results and with just 10 trees we converge to a good price. We can also
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notice in this example that using uncorrelated trees leads to better results (see the case max_samples= 50% or 70%
against the case max_samples = 90%).

6.3 A put in the Heston model

We consider the Heston model defined by

dSy = Si(redt + /i (pdW}! + /1 — p2dW}2))
doy = k(0 — op)dt + &/ dW}

and we consider a put option with payoff (K — ST)+. we have no reference price for this option, so we will just
compare the results of regression trees and random forests to the LSM method. We use the following set of parameters:
K =100,5, = 100,7 = 1,09 = 0.01,£ = 0.2,k = 2,p = —0.3,7 = 0.1, N = 10 and M = 100, 000. The LSM
method yields a price of 1.70. Figures [7] and [§] show the results obtained with regression trees and random forests.
Both methods converge to the same price of LSM. We notice for this example the occurrence of the over-fitting
phenomenon for regression trees with max_depth=15 and min_sample_leaf=1. We also have the same behavior for
random forests in function of the percentage of data given to each basis tree.

1,56 —_— =

—lea=1

price
-
™

ea=50
leaf=100
e=f=200 156

1,54

1,52
4 [ 8 10 12 14 16
depth

Figure 7: A put option in the Heston model with regression trees

-40 10 60 110 160 210

nb_trees

Figure 8: A put option in the Heston model with random forests

7 Conclusion

Pricing Bermudan options comes down to solving a dynamic programming equation where the main trouble comes
from the computation of the conditional expectations representing the conditional expectations. We have explored the
usage of regression trees and random forests for the computations of these quantities. We have proved in two steps the
convergence of the algorithm when regression trees are used: first, the convergence of the conditional expectations;
Then, the convergence of the Monte Carlo approximation. This problem was particularly hard to solve given that
the regression trees do not solve a global optimization problem as does the functional regression used in the LSM
algorithm. We have shown through numerical experiments that we obtain good prices for some classical examples
using regression trees. The aggregation of regression trees into random forests yields even better results. We came to
the conclusion that for small dimensional problems, a simpler algorithm like the LSM is efficient enough. However,
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for high dimensional problems, the usage of polynomial regressions becomes impossible as this technique suffers
from the curse of dimensionality. In this case, it is interesting to consider using random forests. Instead of using all

the features of the problem, the basis trees in the forest only use a subset of the features which can help combat the
problem of the curse of dimensionality.
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