
HAL Id: hal-03436037
https://hal.science/hal-03436037

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Applying MDE to ROS Systems: A Comparative
Analysis

Mickaël Trezzy, Ileana Ober, Iulian Ober, Raquel Oliveira

To cite this version:
Mickaël Trezzy, Ileana Ober, Iulian Ober, Raquel Oliveira. Applying MDE to ROS Systems:
A Comparative Analysis. Scientific Annals of Computer Science, 2021, 31 (1), pp.111 - 144.
�10.7561/sacs.2021.1.111�. �hal-03436037�

https://hal.science/hal-03436037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Applying MDE to ROS Systems:

A Comparative Analysis

Mickaël Trezzy, Ileana Ober, Iulian Ober and Raquel Oliveira1

Abstract

The Robot Operating System (ROS) is one of the most used software
framework to develop robot applications. Although it is possible to
reuse packages and code from other ROS projects, ROS applications
remain low level and reasoning at a higher level of abstraction is
not possible. Using Model-Driven Engineering (MDE) in the context
of ROS applications would allow to increase the accessibility of ROS,
leverage the reusability of packages and supply validation of the software
earlier in the design, using formal methods. For instance, formal
verification methods would improve the overall dependability of robotic
systems. Our view is that we should increase the abstraction of the
systems through models using MDE methodology in order to enable
the use of formal methods on ROS applications. In this paper we do
a first step toward this and propose a comparative study of existing
modeling alternatives aiming to help roboticists to smoothly adopt
MDE. This study compares the use of modeling in ROS systems in
three different ways: by means of direct UML modeling, a ROS UML
profile and a ROS Domain-Specific Language. That allows us to pick
the solution that better fits our needs.
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1 Introduction

Nowadays, robotic systems are complex by the number of sensors and
actuators they embed, as well as the complex tasks they are performing,
under various conditions and environments. Additionally, the need of real-
time constraints, distributed software and the fact that robotic systems are
used in a wide variety of software components, some with potential safety
hazards, are other factors increasing the overall complexity. Consequently,
the development of such a project needs expertise in the robotics field, as
well as software skills capable to handle the heterogeneity generated by the
assembly of software embedded in multiple pieces of hardware, issued from
various providers often using various programming languages.

One classical technique to deal with such a heterogeneity is Model-Driven
Engineering (MDE). In MDE, a model offers an abstract representation
of the real system, that abstracts away irrelevant details and focuses on
the important information, depending on the purpose of the model. This
abstraction allows a better understanding of the problem and the obtained
model can be used to perform some reasoning and early validation, by means
for instance of formal verification of properties. Complex systems can be
designed by the use of models in order to reduce the risk of making costly
errors before undertaking the effort of its development [2].

MDE can provide huge benefits in the software development, such
as faster software development or early validation and verification. The
abstraction of some hardware details allows to focus on the software level
and to reuse pieces of models from one project to another. It can improve
the safety and security of the systems through the use of verification and
validation by means of formal methods such as model checking.

Various strategies can be applied in order to use MDE in the field of
robotics. While it is clear that MDE would offer benefits for robotics software
development, it is essential that this comes with as much as possible concern
towards the current practice of robotics field engineers. Including MDE in
the development of robotics systems should alter as little as possible the
current way of developing robotic applications. Moreover, in order to take
full advantage of the use of models it is important that the MDE setting
can offer support for early verification.

In this paper we propose a study of three alternative approaches to use
models in robotics. We define a set of research goals that will orient our
analysis and we will use metrics that allow us to study how well our research
goals are achieved, and to compare the three alternatives. The goal of this
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study is to find what MDE approach to use in order to model application
for the ROS [21] framework. One of our main focus is to find the approach
that can open the way to formal verification, which is particularly important
in safety-critical contexts.

The rest of the paper is organised as follows: in Section 2 we introduce
the robotics application development and discuss the benefits of using MDE
in this field, while in Section 3 we present some related work on applying
MDE to robotics. Section 4 present ROS and the use cases used in the
comparison. Section 5 quickly overviews the three approaches and the three
tools used in this paper. Section 6 overviews the three modeling choices we
propose, followed by Section 7 where we present our comparison approach
and we introduce the research goals, as well as the metrics that we will use
to analyse them. Section 8 compares the different approaches presented
before. Section 9 discusses the results of this study and finally Section 10
overviews the contributions of the paper and gives future directions.

2 Introducing Abstraction in Robotics Applica-
tions

A typical robotics application has to handle a large variety of hardware
components, potentially issued from various providers, some of which coming
with their own software libraries. In the context of robotics applications the
issues of composability and reusability are critical. A step towards offering
a solution to this problem is the emergence of ROS, a framework that aims
at giving a common development environment for various robotics drivers,
packages and tools shared over the internet. Although this is helping a lot
in the development of robotic systems since it might be possible to find the
package needed to your own project, it might also be difficult to use it due
to low level compatibility issues with your own project, such as namespaces,
topics and services names, messages types, etc. The composability between
different packages is not straightforward and even complex since some ROS
details are rarely clearly specified in the package, such as what topics are
used, with what name, namespace and with what message types, etc. This
must be found in the source code, if provided, or in runtime execution. All
of this means that the development stays at a very low abstraction level.

In order to add some abstraction in the development of robotics appli-
cations using ROS, we argue that MDE would offer an effective help. This
methodology emphasis on abstract representations rather than on the coding
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details. It consists in creating and manipulating models of (components of)
the application. Additionally, it offers the advantage of paving the way to
automation (code generation) and improving the analysis capabilities for
early-verification with model checking and state exploration. Since robotic
systems are more and more complex and sophisticated, it seems legitimate
to use MDE techniques as a mechanism to develop them and to enable early
Verification & Validation.

Several approaches are traditionally adopted when using MDE: (i)
directly using a general purpose modeling language, such as UML, for
representing the application, (ii) using a slightly adapted version of UML,
by means of a UML profile or (iii) defining a stand alone Domain-Specific
Language (DSL) specifically designed for the needs of the targeted application
field, in our case ROS applications. All these strategies have in common
a shift of the focus from the low level details of the application to a more
abstract view of it, which would enable high level analysis such as early
validation. Each of the strategies for introducing MDE has its advantages
and drawbacks. To support a more informed choice we will analyse these
three alternatives and compare them with respect to a set of criteria we
define in the context of this work.

3 Related Work

There have been other MDE studies comparing DSLs with UML in general [1,
15, 17]. For example [1] evaluated DSL and UML-based approaches for
Performance Testing Modeling. Although the work provides an interesting
basis to choose among these two alternatives, it lacks on analysing the effort
required to design a performance testing model with either a DSL or an
UML profile. They could also draw some advantages and disadvantages
from both candidates. For instance, UML has the advantage to be already
known and there are tons of documentation on the Internet, while a DSL is
usually initially unknown. On the other hand, the DSL was promoting code
reuse in all modeling phases, it was more intuitive and easier to use, with an
interface easy to understand. However, their work does not focus on ROS
applications, while the goal of this paper is to compare the three candidates
cited in the previous section specifically in the context of ROS.

In [5] the authors present a survey that classifies 63 selected papers of
existing model-based approaches in robotics. They provide a set of categories
to classify these papers, for instance, which kind of model transformation
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the paper addresses (when applied), i.e., model-to-model or model-to-text
transformation, which model and metamodel language is used, if the approach
is tool supported, etc. Although such a classification is useful for identifying
which approach can be applied in which context, they do not compare them
in terms of modeling techniques. In this study, we compare specifically three
modeling techniques vastly used in MDE (using UML, using a UML profile
or using a DSL), here applied to robotics.

There are several research work applying MDE on robotic middlewares,
each one taking one or the other of these three modeling techniques. In [13]
the authors show the interest in using a model-driven approach for robotic
application in the context of ROS, allowing component reusability and com-
posability and giving the opportunity to generate ROS code from models. It
follows the AutomationML standard [7]. Such benefits are also possible with
HyperFlex [3, 9] a model-driven engineering environment, whose approach
and toolchain enable the explicit representation of robot system architec-
tures. It aims at supporting the development of software product lines for
autonomous robots based on robotic component frameworks, such as ROS
and Orocos. The modeling of robot system architectures is done at design
time with HyperFlex. The ReApp (Reusable Robot Applications for Flexible
Robot Plants Based on Industrial ROS) project [27] does model-based design
of robot applications too. It can compose and reuse components with a
workbench (development environment) based on ROS.

Some approaches are using one of the technological environments we
use in our work (UML profiles), and that we are going to analyse in the
next sections. RobotML [6] is a Robotic Modeling Language, based on a
UML profile that enables the design of robotic applications and their simu-
lation and deployment to multiple target execution platforms. Its domain
model is composed of architecture (properties, robotic specific concepts, ...),
communication (ports and connectors), behaviour (finite state machines)
and deployment (a set of constructs used by the code generator to get the
information about the platform of execution). One of its goals is to let field
engineers spend more time on design instead of dealing with low level details.
The architecture is explicitly modeled, and it is possible to switch from one
target platform to another easily.

The same benefits are claimed by ROS Model [12, 11], a DSL allowing
to design robot applications. Its main platform target is ROS, but it allows
the possibility to switch target later. One interesting feature is to be able to
do some limited validation at design-time, by checking the interconnection
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between the components (ROS nodes). It is also possible to do reverse
engineering, generating a ROS model that can be used in their framework
from ROS source code. This reverse engineering is made with the help of the
static analyzer of ROS software: High Assurance ROS (HAROS) [23]. It can
perform static analysis of C++ source code and build visual representation of
the components of a ROS system. This was used by [22] for ensuring proper
implementation of the safety design rules in the architecture of a robotic
system for the agriculture domain and adding validation and improvement
of the safety of the application. Another feature of HAROS is the static
code analysis to improve the format of the code by providing feedback about
format, rules or metrics to correct and help to better structure the code.
In [19] the authors applied it to a complete stack of ROS-based software
powering a mobile manipulator operating in an industrial environment and
iteratively improve the code quality in order to enhance the safety of the
system. Using this static analysis, they could for example detect an issue
with floating point potentially dangerous for the mobile manipulator. All
these different approaches for applying MDE to ROS applications picks one
or the other modeling technique. However, none presented an objective
analysis of the reasons why. In order to better support such choice, we
conduct a comparative study between three modeling techniques (using
UML, a UML profile or a DSL) applied to robotic applications. We aim to
overview what MDE approach would suit better roboticists who want to
start using MDE and could be interested in verification.

In terms of verification, some efforts have been made to apply formal
verification on ROS applications. In [4] the authors propose a model checking
technique to verify message-passing system-wide safety properties, deployed
as a plug-in for HAROS. It is based in the formalization of ROS architectural
models and node behaviour in Electrum [16], a formal specification language
based on first-order linear temporal logic. Applied on a case study, they
could verify some configuration properties such as velocity boundaries or
values restricted to modes of the robot. Other work has been done on
the verification of safety for ROS applications through model checkers,
such as [26] with the model checker SPIN or [10] with the model checker
Uppaal. The latter used Uppaal to represent message transmission through
ROS topics. The publisher and subscriber processes are modeled by timed
automata, and different parameters are available, such as the transmission
time, the frequency of sending messages or the processing time of callbacks.
The formal verification allows to check if messages transiting through the
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topic may be lost. It allows to define parameters to the publishers and
subscribers preventing message loss. Our view would be to apply verification
on models of robotic applications in order to be able to analyse the behaviour
and to check properties of the system at the model level, allowing early
verification on a high-level system.

4 Context and Case Studies

In this section we quickly overview the Robot Operating System, ROS, then
we introduce the use cases that we will base our comparative analysis on.

4.1 Robot Operating System (ROS)

ROS is a popular, widely used open source framework for developing robot
software systems. It aims to reduce the difficulties of the development process
with a set of libraries and tools. It has been initiated in 2006 and was an
attempt to avoid the situation in which robotics was stuck reinventing the
wheel. ROS provides a common interface to any robot, allowing programs to
be reused more easily and it also offers a common interface for real robot
and simulated robot, allowing to develop in simulation. The fundamental
concepts of the ROS implementation are nodes, messages, topics and services.

• Nodes are software modules, typically POSIX processes, sending and
receiving messages. A node is a part of a much larger system, and
nodes communicate with each other through messages.

• Messages are defined by a strictly typed data structure, which can be
standard primitive types, other messages, or arrays of the previously
cited types. Messages are passed from one node to another through
topics or services.

• Topics provide the possibility for nodes to exchange data and infor-
mation asynchronously. Topics have a name and a message type and
implement a publish/subscribe communication mechanism through
TCP connection.

• Services allow nodes to communicate synchronously with each other.
Services are composed of a name and a message type, the message
type is divided into a request part and a response part.
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Figure 1: ROS graph representation of the use case.

4.2 Case Studies

In order to evaluate each of the three alternative modeling solutions that
we will identified in the next section (Section 5), we decided to model three
simple ROS application use cases, using each of the three solutions. Here is
the description of each of the use case:

UC1 Topic Use Case characterised by the presence of a many-to-many
communication schema (two publishers, two subscribers) through a
topic.

UC2 Service Use Case characterised by the presence of ROS message transfer
through services with two clients and one server.

UC3 ROS teleoperated robot Use Case: the description is accompanied by
its ROS graph presented in Figure 1. The use case represents a robot
capable to move by remote control and to detect the distance from an
obstacle in front of itself through a scanner. In this example we have
three ROS nodes: Teleop, Controller and Base, and three ROS topics:
tel, scan, cmd vel. The Teleop node represents inputs provided by a
user as commands to move the robot. The input commands are sent
by the node to the topic tel. The node Controller will receive those
messages, in addition to the messages from the topic scan, indicating
the distance in front of the robot detected by the node Base. With the
information received from the two topics, the node Controller decides
if the movement is authorized or not and send the velocity message
to the topic cmd vel. For example, if the command from the user is
to move forward but the distance detected by the scanner is under
a defined limit, the controller will not send the velocity to the topic
cmd vel. The node Base is in charge of moving the robot depending on
the messages received from the topic cmd vel and to send the distances
detected through the scanner to the topic scan.

We will model each of these three use cases using each of the three
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modeling alternatives that we will present in the following section and we
will evaluate the set of metrics we will identify in Section 7.

5 Modelling Approaches and Tools

This section presents the three MDE modelling approaches used in this
paper along with a tool that fits our needs and that we used during our
experiments.

5.1 General Purpose Modeling Language

Approach The Object Management Group (OMG) promotes, among
other technologies, the Unified Modeling Language (UML), as a general-
purpose modeling language. UML is a graphical language for visualizing,
defining and building software-intensive system artifacts. UML provides a
standard way to express a system’s blueprints, which include both conceptual
items like business processes and system operations and concrete items like
programming language instructions, database schemas, and reusable software
components [20].

Tool IBM Rational Rhapsody 2 is an UML industrial tool integrating
validation capabilities. It supports UML, SysML, UAF and AUTOSAR,
and has great possibilities for the modelisation of the behavior with the
possibility to do simulation of the model with symbolic execution. It is
possible to create models, prototype, simulate and execute designs for early
validation. It can also generate code for C++, C, Java and Ada.

5.2 UML Profiles

Approach A UML profile [24] provides a generic extension mechanism for
customizing UML models for particular domains and platforms.

UML profiles are defined using stereotypes, tag definitions and con-
straints, applied to specific model elements, like Classes, Attributes or
Operations. Stereotypes are used to customise the standard UML to the
needs of specific application domains without altering the standard meta-
model and while allowing some compatibility with generic UML tools. For

2https://www.ibm.com/products/systems-design-rhapsody
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the purpose of our study, we focus on a tool that offers a very good coverage
of profile-based extensions: Papyrus [8].

Tool Papyrus [8] is an open source modeling environment based on
Eclipse, supporting UML, SysML and DSL. From a UML profile, it is
possible to create a model with model execution and code generation enabled.
Papyrus supports model-based techniques, such as model-based simulation,
model-based formal testing, safety analysis, performance/trade-offs analysis,
and architecture exploration.

5.3 Domain-Specific Languages (DSL)

Approach DSLs are a key part of MDE that offer the possibility to address
specific application domains using constructs specific to these domains. DSLs
aim at being accessible to field engineers that have little or no knowledge
of computer science and they make this possible by offering a high level of
abstraction.

Tool Sirius 3 is an open-source software project of the Eclipse Foundation.
It allows to create a DSL with a high level of customization, for example,
models can be represented as diagrams, tables, matrices, trees, etc. It does
not have validation capabilities or code generation, but those can be added
using additional plugins, such as Acceleo or Xtext.

6 Modelling ROS Applications

In this section, we present our solutions for each of the approaches with their
selected tools. The extracts given here are incomplete, but we tried to select
them so that they can be self-contained. Readers can refer to the authors for
more complete versions of these models. The overview of each approach is
divided into a presentation of the meta-level, here we describe the metamodel
used for each of the approaches, followed by the actual modelling of the
use cases. The development of new use cases does not require to redo the
meta-level and only concerns the actual modelling. For the native UML
approach, the meta-level is irrelevant as UML is the standard.

3https://www.eclipse.org/sirius/
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6.1 Native UML: Modelling ROS with Rhapsody

The first solution for modeling ROS applications that we consider in our study
consists in using native UML, which in our study we picked an industrial
UML tool, IBM Rational Rhapsody. This tool offers a complete modeling
solution and some powerful model analysis features.

To represent ROS applications, we are interested with three different
diagrams that are available in IBM Rational Rhapsody.

• The class diagram: To define the static structure of classifiers in the
system, it is a required step in UML to define the nodes, services,
topics, etc. that we will need in the next diagrams.

• The component diagram: To define how the classifiers are connected
and how they can interact between each other, we will use it here to
connect the nodes with the topics and services.

• The statechart (or state machine) diagram: To model the dynamic
aspect of a system, it will be useful to describe the behavior of the
ROS nodes.

Using the UML notation, we represent ROS nodes as a class, while
topics and services are modelled using signals and operations. The ROS
topics and services are defined with two ports, one in, one out, to be able
to transfer the information. A node can have a customize number of port
depending on the number of different message types it should receive or
send. According to the UML standard, we need to specify the set of services
that can be conveyed by ports and that can be done using UML Interfaces.
Events are also defined to precise the message type to transfer through a
port. A class RosSystem is required for each ROS application we want to
defined, this class corresponds to the root of the component diagram. All of
these objects are created in a package in the class diagram representing the
ROS application. Figure 2 shows the class diagram of the ROS teleoperated
robot Use Case we defined.

In the component diagram we connect the nodes with ROS topics and
services through their ports to define the structure of the application.

Moreover, we exploit the advanced IBM Rational Rhapsody support
for behaviour modeling of each node through statecharts, that include the
manipulation of signals.
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Figure 2: Class diagram of the use case created with IBM Rational Rhapsody.

We have modeled the three use cases using Rhapsody. Based on these
modelings we evaluated the metrics identified in the previous section and
this will be exploited in the comparison presented in the Section 8.

6.2 UML Profile: Modelling ROS with Papyrus

This subsection presents the UML profile (Figure 3) defined using Papyrus
tool, followed by the implementation of the use case.

Metamodel In Papyrus, a UML profile is defined through a profile diagram.
Stereotypes will extend (using the extension relationship) UML metaclasses.
In our proposed ROS UML profile, we define RosPackage as a stereotype of
metaclass Package. Furthermore we define a RosSystem as a stereotype of
the metaclass Class. It corresponds to a root element in the UML composite
structure diagram. Moreover, we define other stereotypes of the metaclass
Class : RosNode, RosTopic and RosService, corresponding respectively to the
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Figure 3: Papyrus UML Profile solution.
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Figure 4: Class diagram of the use case created with the Papyrus profile.

ROS elements: nodes, topics and services.
In order to model unidirectional interaction points, two stereotypes of

the metaclass Port are defined: PortOut and PortIn. Finally, a stereotype
of the metaclass Signal as RosSignal, and one of the metaclass Operation as
RosOperation. Signals sent through ports are asynchronous, which makes
them a good candidate representation of ROS messages sent through top-
ics. On the contrary, operations calls are synchronous, which makes them
appropriate for representing ROS services that are called by clients. The
stereotypes are connected with association relationship and a multiplicity
constrains this association.

Concrete Model This ROS profile allows us to model the use cases
described in the Section 4. Figure 4 captures the structural model of the
ROS teleoperated robot Use Case. This class diagram shows RosPackage with
three RosNode classes, three RosTopic classes, two Signals, modeling the
velocity and the laser scan messages, and Interfaces for the ports. Moreover,
a RosSystem is also defined for the composite structure diagram.

In the composite structure diagram (Figure 5), RosNode and RosTopic
parts are added into the RosSystem. Ports are added to them and typed with
the corresponding interface. The out ports defined to send the messages are
defined as not conjugated because they provide the interface, in opposition,
the in ports, that have to receive the messages, are defined as conjugated
because they require the interface. The conjugated port are identifiable on
the diagram with the tilde symbol.
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Figure 5: Composite Structure diagram of the use case created with the
Papyrus profile.

The behaviour of RosNodes and RosTopics are specified using relatively
simple state machine diagrams.

The modeling of the use cases has been possible with this UML profile
by defining a metamodel that could be used to create the model of the
application. The model of the application uses the already defined class
diagram, composite structure diagram and state machine diagram. The
profile allows to create elements with a representation that attempts to get
close to the domain of ROS.

6.3 Custom Graphical DSL: Modelling ROS with Sirius

The third modeling alternative consists in defining a custom graphical
Domain-Specific Language. For this we choose to use the Sirius tool, since
it allows to create a DSL with a high level of customization.

Metamodel The implementation of the DSL using Sirius starts with the
definition of a metamodel for ROS. Unlike a UML profile, the DSL is not
based on standards such as UML and has to be specified from scratch. The
effort for defining the DSL metamodel will therefore be more important as
we have to carefully model all the concepts and relationships existing in
ROS.

The root element of our DSL metamodel (Figure 6) is a class Package
since we want to model a ROS package in which we will defined our programs
(nodes), along with their ROS messages. We defined a class Node, which is in
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Figure 6: Sirius metamodel for the ROS DSL.
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a composition relationship with the class Package, and with all the necessary
attributes to parameter a node. An abstract class, Vertex, has a composite
relationship with the class Node. This abstract class is a SuperType for
the classes State, InitialState, CompositeState, HistoryState and FinalState
allowing a representation of the different kinds of state we can have in a
state-machine diagram. The vertex class has a composition with a class
Transition, and two references (To, From) in order to capture the source
and destination of a transition. The transitions have attributes for events,
guards, and actions. These classes allow us to define state-machine behaviour
specifications for the class Node.

The class Package is associated through composition with two other
classes: Topic and Service. These two classes have two references each with
the node class representing the transmission and reception of ROS messages.
This will allow to have separate entities from the nodes, even though, in a
ROS application, topics and services are included in the code source of the
node. With this implementation, the nodes will connect to the ROS topics
and services on which they need to send or receive.

In addition, we defined a set of classes to represent the type of the
ROS messages for the topics and the servers. It allows for a topic to have
several MsgAttributes, which can be a primitive or another MsgAttribute,
and in the same way for a server, but with a separation between the request
(SrvRequest) and the response (SrvResponse) parts of the ROS message.

As we can see, the creation of the graphical DSL is more complex than
for a UML profile, since, as said before, it starts from scratch instead of being
made based on some existing metamodel. However, it offers the possibility to
only define the concepts needed for our application domain and to implement
it as freely as needed.

The graphical representation of the ROS package can be defined with
Sirius. Sirius offers many possibilities in the design of the representation, it is
possible to adapt the notation as needed for the domain and all the elements
of the graphical representation depends on the metamodel created previously.
We created the graphical representation of a component diagram to define the
structure of the robotic system, with nodes, topics, services and connections
among them. In addition, we defined the graphical representation of state-
machine diagram associated to each node to determine its behaviour. This
simple state-machine diagram allows the user to define states and transitions
and to associate events, guards and actions to transitions as well as actions to
states. The state-machine is event-based, so the transitions will be triggered
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Figure 7: Component diagram of the use case created with the ROS DSL.

by topic or service messages (this is comparable to the signal reception in the
UML state machines). From the models, we can then generate the complete
code of the ROS packages using the Eclipse plugin Xtext. We defined rules
in the Xtend language that will be used during the transformation. The
models are parsed and depending on the rules, they are transform into text,
generating the C++ or Python code. The next paragraph presents the
implementation of the use cases.

Concrete Model The use cases have been modeled using the graphical
representation of our DSL. The abstraction level is similar to the one obtained
with the previous UML based modelings. However, there is no need of a class
diagram, the elements are directly instantiated in the component diagram
(Figure 7 for the ROS teleoperated robot Use Case), where it is possible to
provide all the necessary information for them. Another difference with the
UML tools is that it is not necessary to create state machine diagrams for
the topic or service elements. Indeed, the behaviour of a topic or a service is
always the same, according to the ROS definition. If it receives a message it
has to send it to the node that are subscribed/client into it. With the UML
tools it was necessary to create the diagrams for them to follow the notation
and be able to have several publishers/subscribers or servers/clients on one
topic/service. In the case of the DSL we can abstract it, as soon as a node
is connected to a topic or service, it is known that it can receive or send a
ROS message through it.

In addition to the use cases modeling, we were able to generate the
complete code of the ROS packages.
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7 Comparison Technique

Various approaches can be used to model ROS applications and several tool
candidates are available. In order to choose between the various alternatives,
as objectively as possible, we identified three promising yet conceptually
different alternatives: (i) using UML language to model ROS applications –
here we use IBM Rational Rhapsody tool, (ii) using a UML profile to extend
the UML standard with the few concepts needed to better capture ROS
applications primitives – for this purpose we use the Papyrus tool, and (iii)
creating a custom graphical DSL targeting ROS applications – Sirius offers
an effective help in this direction.

As mentioned in Section 3, other approaches for applying MDE to ROS
applications exist in the literature and these approaches took one or the
other of these directions, however, none presented an objective analysis
of the reasons why. In order to better support such choice, we conduct a
comparative study between these three approaches. Our study consists in
identifying a set of metrics, meaningful in the context of our study, that will
allow us to compare the three modeling alternatives, then actually perform
a ROS modeling using each of these approaches on a case study and finally,
evaluate the obtained results using the previously identified metrics.

7.1 Scientific Goals

In this section, we present the scientific goals that we use as comparison
criteria. The goals we identify here are very specific to the context of our
future project. Variations on the set of scientific objectives could affect the
outcome of the comparison. In order to conduct the comparison, the goals
are evaluated using metrics, each metric being related to a specific scientific
goal.

SG1. It should be possible to represent and manipulate all the fundamental
ROS primitives. In order to analyse the satisfiability of this goal we
will use the following metrics:

M1. Completeness (domain model) [18]: The metamodel should cover
all necessary elements of the ROS domain, which we identify
as the list of the following concepts: Node, Topic, Service and
Message. Covering all of these concept would allow to manipulate
the fundamental ROS primitives. In addition, to cover the domain
closely, details for each of these concepts must be possible to add:
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for each node a name, the publish rate, the queue size of the
outgoing and incoming messages. For each topic and service, a
name and the type of message it will have to handle. For each
ROS message, a name, if the message refers to an existing message
type in ROS or if the message is a custom messages with the
corresponding definition (the primitives it is made of).

M2. Completeness (design level) [18]: The metamodel should cap-
ture at design level all details for code generation, such as the
connections between the nodes, topics and services, the pack-
ages descriptions or the custom ROS messages type. The aim of
this level of details is to be able to achieve a code generation as
complete as possible.

SG2. The obtained modeling should allow early verification and validation,
both as static structural checks and as behaviour validation in terms of
liveness or safety properties. With respect to this goal we will analyse
whether the following aspects are covered:

M1. Behaviour modeling : The obtained model should cover the be-
haviour modeling, using for instance finite-state machines. The
finite-state machines should include among others: transitions
with events, guards and actions, states with actions executable
at entry, or exit time, as well as while residing in a state. In the
context of state machines, composite states would be a plus for
better structuring the behaviour.

M2. Model checking : The tool used for modeling should offer model
checking capabilities or an interface with existing model checking
tools. The model can be subject to model checking analysis of
liveness or safety properties. Liveness properties allow to show
that a state is infinitely often activated, e.g., it is always possible
to go back to this state. A safety property can express that two
states cannot be activated at the same time, allowing for example
to show that the robot cannot move if it is not in a secure position.

M3. Model execution: The tool used for modeling should offer fine
behaviour analysis functionalities, such as step-by-step state-
machine execution, allowing to have a simulation of the be-
haviours with functionalities such as message passing from one
state-machine to another representing the exchange between nodes
through topics or services.
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M4. Model diagnostic: The model can be subject to validation and
diagnostic with respect to structural properties. The tool used
for modeling provides warnings and errors whether the elements
in the diagrams are build and combined properly or not.

SG3. Ease of use and proximity to the application domain. Since one of
our future objectives is to help ROS field engineers to apply MDE
and formal methods on their ROS project, it is essential that the
framework is accessible to the ROS users. The models must be easily
understandable for the field engineers as well as the customers. The
cognitive load required to address an application should be minimized,
which in our case corresponds to have a number of concepts as close
as possible to the number of concepts present in ROS. The tools for
manipulating these models need to be easy to use. Some metrics that
could help us characterise this are:

M1. Number of modeling elements to handle: Depending on the ap-
proach, the number of modeling elements the user must handle to
build a complete application will vary. The elements of this metric
include for instance classes, signals / events, interfaces, ports for
the UML approaches, and for instance classes (nodes and topics)
and ROS message types for the DSL approach. The more the
number of modeling elements of the resulting models is low, the
more the resulting models are easy to use and understand.

M2. Understandability and modifiability [18]: Depending on the ap-
proach, the number of diagrams and number of components
created to model the application will vary. There should be a
diagram to represent the architecture of the application, easy
to understand and modify. The components should represent
the nodes and topics and there should be a finite-state machine
dedicated for each node in order to separate the behaviours and
make the modification of a specific node easier. We consider
that the less diagrams and components are needed to model an
application, the easier it is to understand the resulting models
and to maintain them later on.

M3. Number of interactions : Number of GUI (graphical user interface)
operations required to build the model. Several measures exist for
evaluating this. As one of the most effective usability assessments,
seems to be the user mouse-based [14], we will use the minimal
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number of mouse clicks required to create the model to evaluate
the interactions. The number of clicks here corresponds to the
minimal number required to create the use case. The user’s skill
is therefore irrelevant, since we consider an optimal case where
no errors are made. This number will mainly depend on the tool,
but it is still relevant on the approach too.

M4. Proximity to the application domain: The approach should allow
to manipulate domain specific concepts, instead of generic model-
ing concepts.Since this allows the models to be better understood
by field engineers.

In our evaluation, we will also consider additional information related
to some generic metrics, such as:

GM1. The operating system the tool is available on: this can have an
influence on the choice of the tool, since ROS is only available on
Linux.

GM2. The tool is open source: depending on the company or the user
who want to apply MDE for robotics, the price of the tool might
have an impact on the choice.

GM3. The tool includes code generation: It is interesting to know if
the tool proposes a direct code generation from the model or
if it is necessary to go through different steps to generate the
code. Going through different steps may add more complexity and
make the framework harder to use. In addition, it is important
to know if the code generator can be customised or if it generates
code automatically from the model. If the generator cannot be
customise it might not include all the details from the model
making it less interesting than a customizable generator that can
be adapted to the needs of the user.

8 Comparison of the Tools and Modeling Approaches

Table 1 compares the metrics from the scientific goal 1 (SG1): The funda-
mental concepts of ROS should be represented in the metamodel. The three
modeling techniques allow one to represent the fundamental concepts of
ROS (metric M1). In UML, the signals and the operators allow to make
the difference about synchronisation at the model level, and the request and
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Table 1: Comparison of the modeling techniques for the scientific goal 1.
SG1: Fundamental ROS primitives
M1 M2

Native UML Yes Yes (but not di-
rectly)

UML Profile Yes Yes

Graphical
DSL

Yes Yes

response mechanisms of ROS services can be modelled in the behaviour of
the nodes. The details such as the names of the nodes are covered using at-
tributes in the classes. The ROS message types of the topics are represented
using interfaces in the profile and in native UML while it is done through
references in the DSL.

Regarding the details in the models at design time (metric M2), using
DSL and UML profiles more details can be added than using native UML,
since Sirius and Papyrus directly allow to provide values to each attribute of
the classes that has been defined in the metamodel, while for IBM Rational
Rhapsody, the attributes need to be added to the classes at the modeling
design time in the class diagram. This makes the model less complete since
it forces the user to add by hand each attributes for each project and can
lead to missing attributes for the complete code generation.

Table 2 follows the scientific goal 2 (SG2): The tool should allow to use
verification methods on the models. In terms of behaviour modeling (M1),
the three approaches allow one to do it. Using UML profiles in Papyrus or
native UML in IBM Rational Rhapsody, behavior can be specified using
the state machines already defined in the standard UML, and the graphical
DSL can do it by creating its own state machine. The state machine we
created with the DSL is simple, but allows one to design a behaviour of node
composed of composite states with history state, states, and transitions with
fields such as on entry, do, on exit or guard to write code behaviour. The
advantage of the profile and native UML is to have a predefined diagram
with already a full set of features. However, the inconvenient is the lack of
flexibility in the diagrams. Using the DSL required more effort to define
the diagram in the metamodel with the features, but it allows a complete
flexibility to change and adapt the diagram to the needs of the domain.
In addition, it allows to make the diagram less strict and authorize the
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Table 2: Comparison of the modeling techniques for the scientific goal 2.
SG2: Early verification and validation

M1 M2 M3 M4

Native UML Yes (using
UML state
machine di-
agrams)

No (possi-
ble through
MMT)

Yes Yes

UML Profile Yes (using
UML state
machine di-
agrams)

No (possi-
ble through
MMT)

Yes (using
the Moka
plugin)

Yes

Graphical
DSL

Yes (with
custom
state ma-
chine
diagrams)

No (possi-
ble through
MMT)

No Yes (but
user must
define rules
in the de-
sign of the
diagrams)

roboticists to not have a high knowledge of UML to use them.

For the model checking capabilities(M2), none of the three approaches
allow natively to use this verification technique, since the three chosen tools
do not include such functionalities. This make us even more confident that
today’s tools are lacking this capability, while it can be very useful in robotics.
One possibility to overcome this issue would be to do a model-to-model
transformation, in order to go from a model of one of the three tools to a
model of a tool allowing model checking. The task might be difficult, since it
requires to find a tool to make the model-to-model transformation (MMT).
Besides, it is also necessary to define a good transformation, understandable
in the verification tool while conserving the target model conform to the
original one. However, the benefits are interesting to make the application
more reliable and secure. In our use case for instance, we could show that
the base node is always publishing the distance message within a specific
time rate, or that the robot will never move if the distance to an obstacle is
too low, even if the user ask to do so through remote control, etc.

Model execution (M3) allows to simulate the execution of the state
machine diagrams and see their evolution from one state to another one in
the different diagrams. We observed in our study that only the native UML
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approach allows one to do it natively, since IBM Rational Rhapsody is able
to do it. It is possible to do so with the profile approach, by integrating
the Moka [25] plugin in Papyrus. However, it is not possible to do so
using Sirius on the DSL approach, since Sirius does not seem to have any
plugin solution to do so. In our use case, with Papyrus/Moka, we could
only execute one state machine at a time, removing the interest to see the
message passing through the different diagrams. In IBM Rational Rhapsody,
we could perform the execution with message passing and we could see the
transitions being triggered depending on the messages.

Profile and native UML approaches allows one to do model diagnostic
(M4), since such functionality is directly implemented in Papyrus and IBM
Rational Rhapsody. DSL approaches also allows one to do so, however, in
Sirius such validation is only possible by defining the rules with conditions
related to the metamodel. Again it requires bigger efforts in the initial
definitions, but more flexibility in the diagnostic.

Table 3: Comparison of the modeling techniques for the scientific goal 3.
SG3: Ease of use and proximity to the applica-
tion domain
M1 M2 M3 M4

UC1 / UC2 / UC3

Native UML Low
(22/18/30)

High (7/6/8
diagrams,
5/4/6 com-
ponents)

Low
(252/220/396
clicks)

No

UML Profile Low
(25/21/30)

High (7/6/8
diagrams,
5/4/6 com-
ponents)

Low
(390/363/527
clicks)

No

Graphical
DSL

High
(6/5/8)

High (5/4/4
diagrams,
5/4/6 com-
ponents)

High
(135/122/176
clicks)

Yes

Table 4: Resume of the use cases
UC1 Topic Use Case

UC2 Service Use Case

UC3 ROS teleoperated robot Use Case
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Table 3 introduces the scientific goal 3 (SG3): Ease of use and proximity
to the application domain. The metric M1, M2 and M3 includes the data
of the UC1. Topic Use Case, the UC2. Service Use Case and the UC3.
ROS teleoperated robot Use Case in their respective order. The number of
elements the users need to handle in order to create the complete model can
indicate whether the environment is easy to use (M1). The elements of the
metric M1 include the classes, the signals / events, the interfaces, the ports
for the UML approaches, the classes (node and topic) and the messages
types for the DSL approach. For our case study, we can see that the profile
and native UML have a high number of elements to handle with the UML
notation. Compared to the DSL approach, the number of elements required
to create the models on these two approaches is high, which decreases the
ease of use of modeling. Using DSLs, the number of modeling elements is
lower, which increases the ease of use and understanding of the resulting
models. Additionally, creating the models on the profile approach requires
much more mouse clicks than on the other approaches (M3). The number of
clicks here corresponds to the minimal number required to create the use
cases, which gives an indication of the complexity of the task in the different
approaches and allows to compare them. The fact that the profile approach
needs more clicks can be explained by the complexity of the Papyrus tool
to create a model following the UML standard, in addition to a complex
user interface. The DSL has very less elements to handle and requires the
least number of clicks. This is due to the fact that we can directly have a
component diagram with the object of the nodes and topics in it. In addition,
the DSL is closer to the domain of ROS and we could make abstraction of
the interfaces, ports and signals. Instead, only a message type is necessary
for the topics and services to refer to.

We chose to measure the metric understandability and modifiability
(M2) by the number of diagrams needed to model the application. For
the profile and native UML approaches, eight diagrams are used for each
approach in the ROS teleoperated robot Use Case (one class diagram, one
composite structure diagram and six state machine diagrams). For the DSL
approach the number of diagrams is slightly smaller: the class diagram is not
needed in the model and there is no state machine diagram for the topics.
On the three approaches the resulting composite structure diagrams have
the same numbers of components (three nodes and three topic in the ROS
teleoperated robot Use Case for instance). This metric highly depends on the
case study, the important point to highlight here is that the three approaches
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Table 5: Generic metrics of the modeling techniques

GM1 GM2 GM3

Native UML Low (Linux,
Microsoft
Windows)

No Yes (C,
C++)

UML Profile High
(Linux,
Microsoft
Windows,
Mac OS)

Yes Yes (Java,
C++)

Graphical
DSL

High
(Linux,
Microsoft
Windows,
Mac OS)

Yes Yes (using
plugins -
Acceleo,
Xtext)

are equivalent in this regard.

In terms of proximity to the application domain (M4), only the DSL
allows to fully design the diagrams as needed, which is an advantage of
graphical Domain-Specific Languages. Using DSL, the component diagram
can be customised to be close to the ROS graph (such as the one illustrated
in Figure 1), making it more understandable for the field engineer. On
the opposite, UML approaches require the field engineers to have previous
knowledge on UML. Moreover, the need to use interfaces and signals/events
in the UML approaches is also a disadvantage compared to DSL, since in
ROS only a message type is needed to interface into a topic.

Table 5 presents qualitative information for the three approaches. The
three tools used to model the approaches are available on Linux and Microsoft
Windows, however, IBM Rational Rhapsody (used for the native UML
approach) is the only one not available on Mac OS (GM1). Papyrus and
Sirius (used for the profile and DSL approaches) are both Open Source
(GM2), while IBM Rational Rhapsody is Closed Source with paid licence.

The three approaches allow one to generate code (GM3). For the profile
approach, Papyrus can natively generate Java and C++ code, and for the
native UML approach, IBM Rational Rhapsody can generate C and C++
code. Code generation is also possible using DSL. Although Sirius does
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not natively allow this functionality, it can be easily done by integrating
plugins compatible with the tool (for instance, Acceleo or Xtext), which
allows to generate source text or models from domain-specific models. Thus,
the advantage of using DSL is that one is not constrained in the choice of
target language and can add all the needed details for the desired target
language in the generation. The preparation of the code generator requires
again bigger efforts compared to the other two approaches, but it leads to
more freedom in the code generation.

9 Discussion

Table 6 summarises the comparison study presented in this paper. For each
metric of the three scientific and the generic goals, we identify whether the
approach completely satisfies the metric, partially satisfies it, or do not
satisfy it.

First of all, we can see that (not surprisingly) no approach satisfies all
the metrics. Each one of these approaches has its strengths and weaknesses,
and has been used in the literature (and improved) for years now. Having
said that, we can see on the table that, for these criteria, the profile approach
satisfies almost the same number of criteria than the DSL approach, while
native UMLs slightly satisfies less of the criteria. This can be explained by
the fact that both the former approaches tend to be closer to the domain
experts than the latter, which relates most of the criteria in this study.

Another observation that can be extracted from this table is that some
approaches perform better in one scientific goal than in other ones. For
instance, profile and DSL approaches perform better in terms of modeling
ROS primitives (SG1), while profile and native UML approaches perform
better in terms of early verification and validation (SG2). This is not
surprising since profile and native UML approaches already offer support for
verification and validation or interfaces this kind of tools. For the purpose
of this study, in the context of DSL we did not at this stage implemented
interfaces with verification tools. If the overall conclusion is that DSL based
approaches are promising, it will be interesting as a future work to further
investigate on how to add verification and validation capabilities.

However, it is important to stress the fact that these results should
not be interpreted in an absolute way, but they should rather be seeing
as a point of view of the possibilities, strengths and weaknesses of each
modeling technique. Depending on the application, the scientific goals could
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be weighted according to the priority given to them. For instance, if in a
given context early verification and validation (SG2) is crucial, profile or
native UML modeling could be chosen instead of a DSL approach, even
though DSL approaches seem to be overall more beneficial. Alternatively
one should consider enriching DSL approaches with V&V capabilities.

Although for some metrics profile and native UML perform better, we
conclude that DSL approaches provide the most appropriate technique for
our case study, since the robotic engineers would be able to manipulate
concepts closer to their application field. Moreover, with the help offered by
modern MDE environments such as Sirius, the ROS DSL specification can
be used for generating ROS code and for performing early model validation,
which as far as our ROS modeling is concerned, was an important criterion
for comparison.

The results also highly depend on the modeling tools used to create the
models. In this study we used Papyrus, IBM Rational Rhapsody and Sirius,
due to their modeling capabilities and vast usage. Other tools may lead to
other results.

The comparison we provide in this study is generic and could benefit
other domains aiming to use modeling in the early steps on the development
of applications. However it is not definitive. The outcomes of our comparison
are highly dependent on the criteria we set. ROS systems could be modeled
with any modelling approach, but the use of a DSL seems to be more
appropriate in our settings (and in settings with similar priorities as ours)
since DSLs offer more flexibility.



30 Mickaël Trezzy, Ileana Ober, Iulian Ober and Raquel Oliveira

T
ab

le
6:

S
u
m
m
ar
y
of

th
e
m
o
d
el
in
g
te
ch
n
iq
u
es

S
G
1
:
R
O
S

p
ri
m
it
iv
es

S
G
2:

E
ar
ly

V
&
V

S
G
3:

E
as
e
of

u
se

/
p
ro
x
-

im
it
y
to

th
e
d
om

ai
n

G
en

er
ic

m
et
ri
cs

M
1

M
2

M
1

M
2

M
3

M
4

M
1

M
2

M
3

M
4

G
M
1

G
M
2

G
M
3

N
a
ti
ve

U
M
L

U
M
L
P
ro
fi
le

G
ra
p
h
ic
al

D
S
L

Y
es
/H

ig
h

P
ar
ti
al
ly
/L

ow
N
o

T
ab

le
7:

R
es
u
m
e
of

th
e
sc
ie
n
ti
fi
c
go

al
s
an

d
m
et
ri
cs

S
G
1:

R
O
S
p
ri
m
it
iv
es

M
1

C
om

p
le
te
n
es
s
(d
om

ai
n
m
o
d
el
)

M
2

C
om

p
le
te
n
es
s
(d
es
ig
n
le
ve
l)

S
G
2:

E
ar
ly

V
&
V

M
1

B
eh

av
io
u
r
m
o
d
el
in
g

M
2

M
o
d
el

ch
ec
k
in
g

M
3

M
o
d
el

ex
ec
u
ti
on

M
4

M
o
d
el

d
ia
gn

os
ti
c

S
G
3
:
E
as
e
of

u
se

/
p
ro
x
im

it
y
to

th
e
d
om

ai
n

M
1

N
u
m
b
er

of
m
o
d
el
in
g
el
em

en
ts

M
2

U
n
d
er
st
an

d
ab

il
it
y
an

d
m
o
d
ia
b
il
it
y

M
3

N
u
m
b
er

of
in
te
ra
ct
io
n
s

M
4

P
ro
x
im

it
y
to

th
e
ap

p
li
ca
ti
on

d
om

ai
n

G
en

er
ic

m
et
ri
cs

G
M
1

O
p
er
at
in
g
sy
st
em

G
M
2

O
p
en

so
u
rc
e
to
ol

G
M
3

C
o
d
e
ge
n
er
at
io
n



Applying MDE to ROS systems: A comparative analysis 31

10 Conclusion

In this paper we investigate three strategies traditionally adopted for applying
MDE to ROS applications: modeling directly using the standard UML
language, defining a UML profile for ROS applications and defining a Domain-
Specific Language for ROS. We identify a set of comparison criteria divided
on three scientific goals: the first one with two metrics, and the two other
ones with four metrics. Last but not least three generic metrics are proposed,
composing a set of 13 metrics allowing one to evaluate the three modeling
techniques in the context of robotics applications.

The study lead us to conclude that the DSL approach is more suitable
for the settings of our case study, a robotic application describing a robot
capable to move by remote control and to detect the distance from an
obstacle in front of itself through a scanner. The DSL approach we studied
in this paper provided us more flexibility to create the models, and allowed
us to better represent concepts of the application domain.

This comparison study intends to help ROS field engineers to apply
MDE on their ROS project. In addition, one objective of this study was to
better decide which modeling technique would be more suitable for early
validation and an immediate future study direction consists in applying
formal verification and validation on ROS models.
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