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ABSTRACT 

Model-Based Systems Engineering (MBSE) is a development approach aiming to build correct-by-construction 
systems, provided the use of clear, unambiguous and complete models to describe them along the design process. The 
approach is supported by several engineering tools that automate the development steps, for example the production of 
code, documentation, test cases and more. 

TASTE [1] is pragmatic MBSE toolset supported by ESA that encapsulates several technologies to design a system 
(data modelling, architecture modelling, behaviour modelling/implementation), to automatically generate the binary 
application(s), and to validate it. One topic left open in TASTE is the formal verification of a system design with respect 
to specified properties. In this paper we describe our approach based on the IF model-checker [4] to enable the formal 
verification of properties on TASTE designs. The approach is currently under development in the ESA MoC4Space 
project. 

1. INTRODUCTION 

Developing space systems is a difficult task, where the engineers need to address two challenges: (1) how to design 
large and complex systems with minimal effort and cost, and (2) how to ensure that the designed system is correct with 
respect to its requirements. Model-Based Systems Engineering (MBSE) is an adopted development approach aiming to 
address the above challenges by enabling correct-by-construction system design from which the implementation could 
be generated and deployed on the target platforms.  

More specifically, MBSE allows to produce unambiguous, consistent and coherent designs of the system which can be 
subject to validation and verification with respect to system properties during the development cycle. By design we 
understand system architecture, behaviour and data types, as well as deployment strategy. By validation and verification 
we understand an assortment of techniques including design review, testing, interactive simulation and model-checking. 
While the first three methods allow to detect errors within the design in a lightweight manner (i.e., only a subset of the 
system’s behaviours are evaluated), model-checking exhaustively analyses the system’s behaviour and gives a verdict 
for property satisfaction. 

TASTE [1] is an MBSE toolset supported by ESA which enables system design and validation. Several languages are 
available for system design: ASN.1 for data types, a flavour of AADL for hierarchical architecture, SDL for behaviour 
modelling, and Ada/C/C++ when manual coding is needed. The toolset offers as features static type analysis, real-time 
scheduling analysis, code generation and binary applications generation for target platforms, as well as simulation, 
debugging and testing. A feature not yet supported by the toolset is the formal verification of the system design with 
respect to system properties.  

The ESA Model-Checking for Formal Verification of Space Systems (MoC4Space) project  aims to develop and 1

integrate in TASTE various model-checking tools to automate the formal verification of system properties. In the 
following we describe the approach considered and the development status.   

2. MODEL-CHECKING TASTE DESIGNS 

2.1. Overview 

The proposed model-checking approach for a TASTE design and related properties, consists of the following steps as 
illustrated in the workflow from Figure 1:  

1) The user designs the system with TASTE. The design consists of data view (ASN.1 data types), interface view 
(AADL hierarchical system architecture), SDL state machines/C implementation/GUI function (system behaviour). 

2) The user specifies with TASTE the safety properties the system shall fulfil. Properties can be specified in three 
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ways, from the least to the most expressive: Boolean stop conditions, 
Message Sequence Chart properties, and dynamic observer properties.  

3) The user invokes the model-checker. The user selects the properties to be 
checked from those specified and sets the configuration of the model-
checker. The model-checker works on the system design and the specified 
properties. The system behaviour is explored and the properties satisfaction 
is checked on all possible behaviours. A result is provided to the user: 
either the properties are validated and a message is displayed, or a property 
is violated and diagnostic traces are produced.  

4) The user checks the result provided by the model-checker. If the properties 
are satisfied, then the workflow stops. If the property is not satisfied, the 
obtained diagnostic traces are played in TASTE and assessed individually. 
If the diagnostic trace shows a valid behaviour for the system, then the 
defect is corrected and the process starts again. If the diagnostic trace shows 
an invalid behaviour, the next available diagnostic trace is analysed or the 
process stops. (Note that the model-checker will intentionally explore a 
superset of the system’s executions, in particular by relaxing certain 
scheduling constraints. In consequence, diagnostic traces can show invalid 
behaviours.) 

2.2. Tool Design 

To enable the workflow explained above, the following extensions are required: 
(1) property specification in TASTE, (2) model-checker for TASTE designs and 
properties and (3) seamless integration of the approach in the TASTE GUI. 

2.2.1. Property Specification in TASTE 

Three types of properties are considered for model-checking: Boolean stop conditions (BSC), Message Sequence Charts 
(MSC), and dynamic observers.  

Boolean stop conditions describe invalid behaviour of the system, e.g., stop if (battery_level < 10). These properties are 
Boolean expressions that express system invariants (through their negation) and that should not evaluate to true at any 
point during the execution.  Informally, the satisfaction of the Boolean condition means that an undesired state has been 
reached, and therefore the system design is not correct. Such properties are modelled in TASTE as dynamic observers in 
OpenGEODE (see below). The user will select BSC property from a dedicated menu in the TASTE GUI, and an SDL 
observer (with 2 states and 1 decision) is generated and displayed using OpenGEODE. Then the user can directly 
specify the condition with the available SDL syntax for observers. 

MSC properties describe the (un)desired behaviour of the system as a sequence of I/O events happening between the 
system’s functions. Such properties are specified using the MSC editor available in TASTE. The user will select MSC 
property from the dedicated TASTE GUI menu, and the MSC editor is opened for the user to specify the property. The 
meaning of an MSC as a system property depends of specific annotations: property type: search [[from-start|nonstrict]] 
((intended|unintended)) or property type: verify [[from-start]] intended, where [[ ]] denotes an optional part and | 
denotes a choice. Search indicates that the model-checker will look for a system execution complying with the MSC. 
Verify indicates that all system executions must comply with (a prefix of) the MSC. From-start indicates that the MSC 
shall be matched from the beginning of the execution between the specified functions. Nonstrict indicates that other I/O 
events that are not specified can happen between the functions. Intended indicates that the MSC is a desired execution 
sequence, while unintended indicates that the MSC is an undesired sequence. Then the model-checker will provide a 
result consistently with the type of property indicated by the user. 

Dynamic observers describe both desired and undesired behaviour of the system in the form of state machines. They are 
the most expressive properties considered, as they can monitor the system execution, but also alter it for example to 
guide the verification process. Observers are represented as SDL state machines in OpenGEODE. The user will select 
the Observer property in the dedicated TASTE GUI menu, and OpenGEODE will be displayed in which the property is 
modelled. The user has then access to the SDL extensions for observers that allow them to observe (1) the state of the 
TASTE system at a point in its execution (specifically, the values of variables and state machine location for the 
functions) and (2) the events that occurred during the last atomic transition taken by one of the SDL functions of the 
TASTE system. The user specifies whether the execution is desired or undesired by labelling the states of the observer 
with success or error accordingly. Then the model-checker will correctly assess the property on the system executions. 



Figure 2. Examples of properties with TASTE: (a) Boolean stop condition / dynamic observer modelling an error if the battery level 
is lower than 10 units, (b) MSC property modelling that if the battery level drops below 15 the FDIR stops the system. 

2.2.2. Integrated Model-Checking 

Model-checking ([2], [3]) is a well-known formal verification technique for the system correctness with respect to a set 
of properties. It consists in building a finite state-space model of the system under analysis and checking the properties 
on this model. The check itself amounts to a complete or partial exploration of the state space, potentially guided by the 
properties. The main advantage of model-checking is that it can be fully automated. Moreover, it allows for the 
production of diagnostic traces when a property is not verified, that can help the engineer to correct the design. The 
main drawback is, however, the potential size of the state-space model which depends on the system complexity and 
which could make model-checking infeasible. 

Several solutions can be considered for developing a model-checker for TASTE: (1) re-use of an existing off-the-shelf 
model-checker (e.g., IF [4], UPPAAL [5]), (2) re-use an existing open model checker platform (e.g., LTSmin [6]) or (3) 
develop a dedicated model-checker. From the trade-off analysis of the different options, we have selected to re-use the 
IF toolset as model-checking back-end.  

The IF toolset [4] is an environment for modelling and validating real-time systems, characterised by the following key 
features: (1) a modelling formalism (also called IF) based on extended Timed Automata with urgencies and 
asynchronous FIFO-based communication, syntactically and semantically close to SDL, (2) properties specification to 
be validated on models as dynamic observers, (3) combined use of various validation techniques including model-
checking, static analysis of the IF model representation and simulation, (4) generation of diagnostic traces in the case of 
property violations, and (5) support for high level modelling with formalisms such as SDL, UML, SysML used in 
industrial CASE tools, through translation of high level models into the IF notation. 

Using the IF model-checker as back-end requires that bidirectional transformation are defined between TASTE and IF. 
These transformations cover (1) generating the IF system model from the TASTE design views, (2) generating the IF 
observers from the TASTE system properties, and (3) generating TASTE MSC representation from the model-checker 
diagnostic traces. An overview of the tool architecture in provided in Figure 3.  

 
Figure 3. TASTE model-checking tool architecture. Boxes in red represent new/enhanced modules, black arrows existing information/

dependency flow, and red arrows new information/dependency flow. 

Model transformation implies obtaining an IF representation from the TASTE design. This module is composed of 
several components. ASN2IF transforms the ASN.1 datatypes specified in the TASTE data view to IF datatypes. 
AADL2IF transforms the system structure specified in the TASTE interface view to an IF model. This component also 
handles the specific transformation for GUI functions (modelling the environment), C functions behaviour and timers 
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specified in the interface view. SDL2IF transforms the behaviour of SDL functions modelled as state machines to IF 
processes. 

Property transformation implies obtaining an IF observer for each TASTE system property. A dynamic SDL observer is 
transformed to an IF observer (OBS2IF) in mostly the same way as an SDL state machine is transformed to an IF 
process. In fact, the OBS2IF component is an extension of SDL2IF component with the specific handling of the 
observers’ syntax and semantics. A BSC property is modelled as an SDL observer, so the same OBS2IF component is 
used for obtaining an IF observer from them. Finally, an MSC property is also transformed into an SDL observer 
(MSC2OBS). This transformation has the benefit of obtaining and displaying graphically the property to be checked 
into another formalism known by the user, i.e., SDL. Also, the user has the possibility of enhancing the property 
represented as SDL observer as desired, since observers are more expressive than MSC properties. Then the OBS2IF is 
called on the SDL observer representation of the MSC to obtain the corresponding IF property that will be checked. 

Diagnostic transformation implies obtaining an MSC from the diagnostic traces provided by IF (SCN2MSC). The IF 
model-checker provides diagnostic traces as a sequence of IF transitions steps, each including labels of the actions 
executed (inputs, outputs, process creation, deletion, etc.). MSC is the most usable formalism to visualize such 
diagnostic traces and to replay them in the TASTE environment, thus easing the understanding of the result(s). 

To provide a seamless integration in TASTE of the model-checker, the TASTE GUI is extended with a model-checker 
configurator and launcher (see Figure 3). The configurator allows to specify the environment of the system under 
validation, the properties to be checked and the model-checker options (e.g., number of diagnostic traces generated, 
number of states explored), The launcher allows to call and stop the IF model-checker. The TASTE build system is also 
extended to invoke the above-mentioned transformations and model-checker. 

2.3. Tool Validation 

The TASTE model checking approach is validated on two industrial case studies: the IXV mission and the ERGO 
planetary scenario [7]. The IXV mission aimed to define the basic needs for re-entry from Low Earth Orbit. The case 
study considered in this activity is a subset of the fully-automated on-board software that focuses in the flaps control 
system. The ERGO planetary scenario is inspired by the Mars Sample Return (MSR) mission that covers the concepts 
and requirements of the Martian Long Range Autonomous Scientist. The case study considered in this activity consists 
of a subset of functionalities, “simulating” (simplified) traverse and sample collection, image acquisition, as well as 
system commanding in E1 (telecommanding) and E4 (goal commanding) autonomy modes. Both case studies have 
been modelled in TASTE with the concepts supported by the model-checker and several properties of each type have 
been defined for both (the complete TASTE design is available at [8]). The model-checking approach will be used to 
check the correctness of the modelled systems with respect to their properties. Also, errors are specifically introduced in 
the system design to validate the model-checking results. 

3. DISCUSSION 

The MoC4Space project aims to develop formal verification system designs and properties modelled with TASTE. The 
model-checking approach has been defined, as well as the tool architecture based on the existing IF model-checker as 
backend. The implementation of the integrated model-checking tool (property modelling editors, ASN2IF and SDL2IF) 
is ongoing. The approach and tool are validated and will be used to verify two space systems case studies fully 
developed with TASTE for the purpose of the activity. 
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