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Abstract

We present a novel approach for multiview canonical correlation analysis
based on a variational graph neural network model. We propose a non-
linear model which takes into account the available graph-based geometric
constraints while being scalable to large-scale datasets with multiple views.
This model combines the probabilistic interpretation of CCA with an au-
toencoder architecture based on graph convolutional neural network layers.
Experiments with the proposed method are conducted on classification, clus-
tering, and recommendation tasks on real datasets. The algorithm is com-
petitive with state-of-the-art multiview representation learning techniques,
in addition to being scalable and robust to instances with missing views.
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1. Introduction1

Interconnected societies generate large amounts of structured data that2

frequently stem from observing a common set of objects (or sources) through3

different modalities. Such multiview datasets are also encountered in many4

different fields like computational biology [3], acoustics [4], surveillance [5],5

or social networks [6], to list a few. In many of these applications, datasets6

are structured (in graphs, trees or sequences), large and it is common that7

some of the views have missing entries. Although there exist many tools to8

analyze and study multiview datasets [7], analyzing large-scale structured9

multiview datasets with missing or incomplete views efficiently is still a very10

challenging task.11

Canonical Correlation Analysis (CCA) [8, 9] can be used for multiview12

representation learning, by seeking latent low-dimensional representations13

that are common to the different views. This common representation that14

encodes information from different datasets can be leveraged to improve the15

performance of machine learning tasks, e.g., clustering [10]. There are two16

general approaches to CCA: algebraic or probabilistic.17

The algebraic approaches to CCA were initially proposed for two-view18

data following [8] and they obtain a latent low-dimensional manifold by19

maximizing correlations between the projections of the different views onto20

it. Being nonparametric, these approaches are powerful and versatile but21

do not scale well to large datasets. Nevertheless, there have been numer-22

ous extensions: to the multiview setting, see [9]; or to account for nonlinear23

dependencies (beyond correlations), see Kernel CCA [11, 12], Deep CCA24

[13, 14], or Autoencoder CCA [15]. Despite significant improvements in per-25

formance, many of these approaches suffer from scalability issues [16, 17],26

mainly due to the prohibitive costs of the underlying eigendecomposition on27

which most of such methods rely on, and the difficulty to extent this settings28

beyond two views.29

Alternatively, probabilistic approaches to CCA were developed: CCA30

solves a Bayesian inference problem [18]. As recent advances in variational31

autoencoders [19] made Bayesian inference scalable, the probabilistic CCA32

approaches gained popularity because of their potential (e.g., inference task33

such as generating new dataset samples) and scalability, e.g, see VCCA(p)34

[20], or VPCCA [21]. Using a probabilistic model, these methods scale eas-35

ily to large datasets. However, they are less versatile to adjust to model36

mismatch or to data structure as these methods are model based.37
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Concomitantly to these advances, it was shown in [22, 23] that incor-38

porating the available graph-induced knowledge about the common source39

into multiview CCA improves performance of various machine learning tasks.40

We refer to this graph-aware multiview CCA method from [23] as GMCCA.41

However, GMCCA suffers from the involved eigendecomposition costs. In42

essence, there are no CCA methods that have the advantages of both worlds:43

being able to incorporate prior graph-based structure in the latent space and44

being scalable. Such a method is proposed here. The present work attempts45

to reconcile scalability and versatility for multiview CCA.46

In the following, we develop a scalable multiview variational graph au-47

toencoder for CCA (MVGCCA), which is robust to the presence of instances48

with missing views in multiview datasets. Section 2 recalls some background49

and technical elements for multiview CCA. Section 3 describes the proposed50

approach and its key contributions. In particular, we show how graph struc-51

ture can be enforced in the common latent space while preserving scalability.52

Additionally, we discuss how the proposed method is robust toexistence of in-53

stances with missing views, and how to improve that with the idea of “views54

dropout”. Section 4 describes the datasets that are used for numerical exper-55

iments. These experiments are described and discussed in Section 5. Finally,56

we conclude in Section 6.57

2. Multiview CCA58

Multiview datasets - We consider M -view data X where each instance2 has59

M views, each in space Rdm , m = 1, . . . ,M . We have n instances in X.60

The m-th view of instance i is written as X i
m ∈ Rdm , and the collection of61

views for instance i is denoted as X i = {X i
m}Mm=1. We also introduce the62

data matrix Xm ∈ Rdm×n related the m-th view, whose columns are X i
m,63

1 ≤ i ≤ n. See Figure 1 for an illustration. Not to be confused with data64

X i
m ∈ Rdm , we denote xm any variable vector in Rdm , when needed in the65

text.66

Graph - We assume that each instance is associated to a node in a graph G67

having a structure connecting the different instances. This graph captures68

closeness and similarities between the different instances. The adjacency69

matrix of the graph G is denoted A. We denote the neighborhood of node70

2The instances can be designed as sources of the views.
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i in the graph as V(i) and denote V l(i) as the l hop neighborhood of node.71

We define also the following sets of features on the nodes (which are the72

views of instances) associated to these neighborhoods in the following way:73

Let us write dAi,j the length of the shortest path in graph G between nodes74

(instances) i and j, and define:75

V l(X i) = {Xj ∈ X|dAi,j ≤ l}

which is the set of multiview features of the neighborhood of i up to a distance76

l in graph G (of adjacency matrix A). We define the equivalent set, limited77

to view m:78

V l(X i
m) = {Xj

m ∈ Xm|di,j ≤ l}

Notations - For any matrix B, B(i, :) denotes the i-th row and B(:, i) de-79

notes the i-th column. The vector [c1, c2, . . . , cp]
T obtained by concatenation80

is denoted by [ck]
p
k=1. || · ||F is the Frobenius norm; tr(·) is the trace oper-81

ator; Ji, kK is the set of integers between i and k (including the boundary).82

For given distributions p and q, DKL(p||q) is the Kullback-Leibler distance83

between these distributions.84

Figure 1: Multiview dataset with graph structure. An illustration of a multiview
dataset. We have pictures taken from different angles for several people. The set of
pictures of one subject is an instance and the set of pictures taken from the same angle is
a view. Instances of the dataset can be related by an relationship on a graph. For example
here, theses instances (i.e subjects) could be part of a social network, in which people are
connected according to their friendship relations.
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Method Complexity
Non

Linear
>2 views Graph Robustness

CCA O(n) 7 7 7 7

Kernel CCA O(n2)3 3 7 7 7

Deep CCA O(n) 3 7 7 7

GMCCA O(n2) 7 3 3 7

VCCA(p) O(n) 3 7 7 7

VPCCA O(n) 7 3 7 7

MVGCCA O(n) 3 3 3 3

Table 1: Key properties of methods related to CCA. n is the number of elements in the
dataset. The column entitle ‘Graph’ indicates whether or not potential graph structure is
taken into account. The column ‘Robustness’ indicates whether or not the model is robust
to missing views in the data.

2.1. Algebraic approaches: linear CCA and extension85

CCA. Let X1 ∈ Rd1×n and X2 ∈ Rd2×n denote two views of dimension d186

and d2 for n instances. Given a dimension d << min (d1, d2), CCA seeks the87

best projectors U1 ∈ Rd1×d and U2 ∈ Rd2×d such that the correlation between88

UT
1 X1 and UT

2 X2 is maximized. This can be formulated as the following89

optimization problem:90

min
U1,U2

||UT
1 X1 − UT

2 X2||2F s.t. UT
m(XmX

T
m)Um = Idm for m ∈ {1, 2}. (1)

Introducing Σ11, Σ22 the (regularized) correlation matrices4:91

Σmm =
1

n− 1
XmX

T
m + rmIdm (rm > 0) (m = 1, 2) (2)

and the cross correlation matrix Σ12 = 1
n−1X1X

T
2 . The solution (U∗1 , U

∗
2 ) of92

the problem to Eq. (1) is obtained via an eigendecomposition [13, 23]:93

(U∗1 , U
∗
2 ) = (Σ11

− 1
2Ud,Σ22

− 1
2Vd) (3)

4r1 and r2 are regularization parameters allowing to avoid degenerate correlation ma-
trices and irrelevant correlations [24].
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where Ud ∈ Rd1×d (resp. Vd ∈ Rd2×d) are the d leading left (resp. right)94

eigenvectors of the matrix T = Σ11
− 1

2 Σ12Σ22
− 1

2 . This formulation can easily95

be extended to take into account non-linear relationships by replacing, in96

Eq. (1), X1 and X2 by any non-linear function of X1 and X2 (e.g., Kernel97

CCA [11, 12], Deep CCA [13, 14], autoencoder CCA [15], etc.).98

Multiview CCA (MCCA). A direct way to extend classical CCA to mul-99

tiview datasets with M > 2 is to maximise pairwise correlations between all100

pairs of views:101

min
(Um)Mm=1

n∑
m=1
m′>m

||UT
mXm − UT

m′Xm′ ||2F s.t. UT
m(XmX

T
m)Um = Idm . (4)

Unfortunately this problem is well known to be NP-hard [25]. In order to102

overcome this issue, it is usual to introduce a unique common and low-103

dimensional representation S ∈ Rd×n. The problem is reduced to finding104

S and projections {Um}Mm=1 in order to maximize correlations between S and105

all the projected views {UT
mXm}Mm=1. It leads to the formulation detailed106

in Eq. (5) with γ = 0. This relaxation of Eq. (4) is also solved using an107

eigenvalue decomposition. Indeed, the matrix S∗ has columns equal to the k108

leading eigenvectors of the matrix
∑M

m=1X
T
m(XmX

T
m)Xm [22].109

Graph Multiview CCA (GMCCA). Chen et al. [23] have proposed GM-110

CCA as an extension of MCCA in which graph-based prior knowledge on S,111

when available, can be incorporated. It can lead to an increase in clustering112

performance. The graph structure is taken into account by ensuring smooth-113

ness of S on the known graph, which is represented using the graph Laplacian114

matrix L ∈ Rn×n. By doing so, a graph-regularized CCA problem can be115

posed as follows:116

min
(Um)Mm=1

M∑
m=1

||UT
mXm − S||2F + γtr(SLST ) s.t. SST = Id. (5)

The solution S∗ of this problem has columns equal to the k leading eigen-117

vectors of the matrix
∑M

m=1X
T
m(XmX

T
m)Xm − γL ; see [22] for more details.118

119

Due to the eigendecomposition involved in all these algebraic methods,120

they do not always scale well for large datasets (see Table 2). An alternative121
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method based on a variational approach applied to a probabilistic model has122

recently gained attention to reduce the computational cost. This relies on123

the work of Bach et al. [18], where it is shown that CCA has an equivalent124

probabilistic model.125

2.2. Probabilistic CCA126

PCCA. Bach et al.[18] have shown that linear CCA optimal projections, as127

in Eq. (3), can be obtained from a graphical model [18], where the views of128

an instance come from a latent variable (the common source) denoted z. Let129

us define a prior distribution on this latent space p(z) and the conditional130

probability (also called decoders) for each view pθm(xm|z) which is the prob-131

ability to have a certain view xm given the latent vector z and parameters132

θm, hence5,6 we have ∀m ∈ {1, 2},∀z ∈ Rd, ∀xm ∈ Rdm :133

z ∼ N (0, Id);

xm ∼ pθm(xm|z) = N (Wmz + µm,Ψm)
(6)

with µm ∈ Rdm , Wm ∈ Rdm×d and Ψm ∈ Rdm×dm < 0 (positive semidefi-134

nite). We collect the trainable parameters in θm as θm = (Wm, µm,Ψm). The135

optimal parameter θ∗ is computed by maximizing the data log-likelihood with136

respect to θ = (θ1, θ2):137

log pθ(X1, X2) =
n∑
i=1

2∑
m=1

log

∫
Rd
pθm(X i

m|z)p(z)dz. (7)

The parameter θ∗ is the one for which the dataset X = (X1, X2) is the most138

probable for pθ, and therefore the best parameter to explain the data. Let139

us introduce the distribution pm that is the unknown true distribution of140

data view m. Thanks to Bayes theorem, the optimal encoder distributions141

pθ∗m(z|X i
m) are perfectly defined, and we have ∀i ∈ J0, nK:142

pθ∗m(z|X i
m) =

pθ∗m(X i
m|z)p(z)

pm(X i
m)

. (8)

5Notation z ∼ p means z follows distribution p.
6Abuse of notation: any distribution p is indiscriminately written as p(x) or p.
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The expectation of optimal decoder is then exactly the optimal projection143

(cf. Eq. (3)) coming from CCA (cf. Eq. (1)):144

Ez∼ppθ∗m(z|X i
m) = MT

mU
∗
m
TX i

m (9)

The solution is known up to some arbitrary matrices Mm ∈ Rd×d such that145

MT
1 M2 = Pd where Pd is a diagonal matrix of the first d canonical correlations146

[18]. In this framework, CCA has a natural multiview extension to M > 2.147

To do so we introduce as many decoders as the number of views in data. We148

will use such an extension, while incorporating graph regularization like in149

[23].150

Yet, solving the inference problem for a model such as Eq. (6) (i.e., a151

multi-dimensional probability distribution) is often intractable: first because152

it requires maximization of the log-likelihood and thus to integrate over all153

the latent spaces, and, second, because the true distribution pm of each view154

is not known. Even if we were able to compute θ∗, we could not compute the155

decoder distributions (Eq. (8)). A variational approach solves these issues,156

as we will see next in recalling the method of variational autoencoder [26].157

With that, probabilistic CCA solves the problem in O(n) and is thus158

scalable. Moreover it opens up to perform inference tasks such as generating159

and recovering missing views. Conversely, GMCCA has initially the advan-160

tage of adding a prior information (coming as a graph) over data structure,161

so as to compute better low dimensional representation. This prior imposes162

a smoothness property on this representation such that the common view163

S is smooth on the associated graph of Laplacian L. While it can be seen164

as a prior, it acts in the problem as an additional regularization term and165

the solution comes with the additional cost of requiring an eigendecomposi-166

tion. Hence the method incurs O(n2); therefore it does not scale well. Our167

objective is to get the best properties of both model, by forming a fully168

probabilistic CCA model while having such prior on the graph.169

2.3. Variational bound and graph autoencoder170

VAE. Kingma et al. [26] have shown that by introducing parametric distribu-171

tions qη(z|X i) = qη(z|X i
1, X

i
2), with parameters η, instead of the intractable172

distribution pθ(z|X i) = pθ(z|X i
1, X

i
2), one can lower bound the log-likelihood173

in Eq. (7). This lower bound is referred to as the evidence lower bound174

objective (ELBO), given as:175
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log pθ(X1, X2) ≥
n∑
i=1

Ez∼qη(z|Xi
1,X

i
2)

[log(pθ(X
i
1, X

i
2|z))]−DKL(qη(z|X i

1, X
i
2)||p(z)).

(10)

The first term of ELBO ensures a correct data reconstruction due to176

the encoded latent representations. The second term acts as a regularizer177

ensuring that the posteriors distributions qη for each multiview instance re-178

main coherent in the latent space. It corresponds to the loss function of the179

variational autoencoders, used in most existing variational CCA methods.180

ELBO is easier to approximate than the data log-likelihood so we max-181

imise this lower bound with respect to both θ and η. Moreover this formu-182

lation gives directly the decoders as qη∗ without requiring the knowledge of183

the true view distributions pm.184

Graph VAE (GVAE). It is possible to account for geometric structure185

by using the variational autoencoder extension proposed by Kipf et al. [19]186

for link prediction on graphs. In their single-view framework (M = 1),187

data reside on the nodes of a graph having a weighted adjacency matrix188

A ∈ [0, 1]n×n. On the contrary of Eq. (10) where the ELBO is a sum of terms189

depending only on one instance i of the data, here we have to introduce a190

latent matrix Z ∈ Rd×n to express the probability to have graph A between191

n latent variables7.192

Then the graph-aware ELBO loss function is defined as :193

LELBO = EZ∼qη(Z|X,A)[log(pθ(A|Z))]−DKL(qη(Z|X,A)||p(Z)), (11)

where qη(Z|X,A) is the parametric probability distribution for encoder194

which is now parametrized by a graph neural network, p(A|Z) is the graph195

decoder distribution and p(Z) = Πn
i=1p(Z(:, i)) is the prior on the latent196

space, taken as a multivariate normal distribution. Following [19], ELBO197

first term will ensure graph reconstruction from latent space, but it does not198

allow for data reconstruction (which is useless for link prediction task). On199

the contrary, the second term acts as a regularizer of the latent space. We200

7Note that we could introduce the model with two latent variables only, and that would
be enough to write the model for link prediction.
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Figure 2: Representation of MVGCCA. All the views are encoded to their own latent
space Zm using the common graph. They are merged to form a common view Z. Finally,
Z is tailored to decode all the views and original graph.

will use a similar approach to develop our method, while extending it for201

multiple views.202

3. Variational graph MCCA203

3.1. Model204

We now present our contribution which consists of proposing a proba-205

bilistic multiview CCA model that can deal with missing views. Specifically,206

starting from Eq. (6), our contributions are as follows:207

1. To extend the framework of [18] for M > 2. We introduce M decoders208

corresponding to the number of views. These decoders are parametrized209

by multilayer perceptrons (noted as MLP);210

2. To take into account a prior graph structure on the latent space of z;211

inspired by [19], we add graph decoders into the PCCA frameworks;212

3. To build a model that can deal with missing views in instances of213

datasets.214

To this end, we define the following probabilistic model that forms the basis215

of our contribution, ∀m ∈ {1, . . . ,M},∀z ∈ Rd,∀xm ∈ Rdm :216

z ∼ N (0, Id);

xm ∼ pθm(xm|z) = N (W µ
m

decMLPm(z),Ψm).
(12)
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This model relies on two hypotheses, in accordance to previous works [18,217

19, 26]. First, z follows a multivariate normal distribution; this assumption218

may look unreasonable for most data, but is often used in variational autoen-219

coders in the literature [26, 19] as this distribution of the prior is supposed to220

be mostly informative through its mean and variance, yet the specific shape221

is uninformative. In practice, it leads to good performance and it leads222

to a more convenient mathematical framework. In particular, it is easy to223

sample elements from Gaussian distribution and it leads to explicit formula-224

tion in the ELBO. The second hypothesis is that the conditional probability225

distributions of the view decoders are taken as multivariate Gaussian distri-226

butions parametrized by a multilayer perceptron for the mean, and a weight227

for the covariance matrix. Precisely, this hypothesis combined with the first228

one, allows to have an explicit form of Kullback-Leibler divergence on ELBO229

(Eq. (24)).230

Next, we take into account a prior graph structure on the latent space of z231

using techniques inspired by [19]. Specifically we introduce a graph condi-232

tional probability distribution (graph decoder) which gives the probability233

to have an adjacency matrix A ∈ [0, 1]n×n given the n latent space vectors234

concatenated in the matrix Z ∈ Rd×n :235

Z(:, i) ∼ N (0, Id);

A ∼ pg(A|Z).
(13)

In this context, we assume that all links of the graph are independent. Hence236

we introduce a weight decoder distribution pl(a = 1|z, z′) ∼ B(1, `(zT z′)),237

parametrized by a Bernoulli law B, where `(·) is the logistic sigmoid function238

and a ∈ [0, 1] is the possible weight of a link. Thus the probability to have a239

graph defined by an adjacency matrix A given Z is:240

pg(A|Z) =
n∏
i=1

n∏
j=1

pl(Ai,j|Z(:, i), Z(:, j)). (14)

3.2. Evidence lower bound objective241

Using the hypothesis that all the views are independent one from others, as242

well as from the links, the log-likelihood can be written in the following form:243

log pθ(X,A) = log
(
pθ({Xm}Mm=1) pg(A)

)
. (15)
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In this equation, pθ({Xm}Mm=1) is the joint probability on all the views, X1244

to XM ; hence, this equation gives the probability of obtaining the multi-245

view dataset X = {Xm}Mm=1 with the graph A given the model pθ. We can246

explicitly express these probabilities as in Eq. (7):247

log pθ({Xm}Mm=1) =
n∑
i=1

M∑
m=1

log

∫
Rd
pθm(X i

m|z)p(z)dz;

log pg(A) =
n∑
i=1

n∑
j=1

log

∫
Rd
pl(Ai,j|z, z

′
)p(z)p(z

′
)dzdz

′
.

(16)

Since this computation is also intractable, we follow the methodology of248

Kingma et al. [26] in order to define an efficient approach. We introduce a249

parametric distribution written as in Eq. (17). As we are going to parametrize250

this distribution with graph neural networks, we need the notation V l intro-251

duced earlier to refer to the features in the neighborhood of a node up to a252

distance l in the graph, i.e, we have:253

qη(Z|X,A) =
n∏
i=1

qη(Z(:, i)|V l(X i), A) =
n∏
i=1

M∏
m=1

qηm(Z(:, i)|V l(X i
m), A).

(17)

Were ηm is the trainable parameter for view m distribution encoder qηm and254

we have η = (η1, . . . , ηM). The parameter l depends on the parametrization255

of the graph neural networks, which will be decided on the experimental256

part. Let us consider the Kullback-Leibler divergence between the parametric257

decoders and the decoders as:258

DKL(qη(Z|X,A)||pθ(Z|X,A)) ≥ 0. (18)

More explicitly, we have:259

∫
Rn×d

qη(Z|X,A) log
qη(Z|X,A)

pθ(Z|X,A)
dZ ≥ 0. (19)

Using Bayes theorem, we can write Eq. (19) as:260

12



∫
Rn×d

qη(Z|X,A) log
qη(Z|X,A)pθ(X,A)

p(Z)pθ(X,A|Z)
dZ ≥ 0. (20)

which develops into:261 ∫
Rn×d

qη(Z|X,A) log
qη(Z|X,A)

p(Z)
dZ

−
∫
Rn×d

qη(Z|X,A) log pθ(X,A|Z)dZ ≥ − log pθ(X,A).

(21)

In other word, we have the inequality:262

log pθ(X,A) ≥ EZ∼qη(Z|X,A) log p(X,A|Z)−DKL(qη(Z|X,A)||p(Z)). (22)

The ELBO (lower bound of Eq. (22)) takes finally the following explicit form263

(similarly as in Eq. (10)):264

LELBO =
n∑
i=1

n∑
j=1

E z∼qη(z|Vl(Xi),A)

z′∼qη(z′|Vl(Xj),A)

log pg(Ai,j|z, z′)

+
n∑
i=1

M∑
m=1

Ez∼qη(z|Vl(Xi),A) log pθm(X i
m|z)

−
n∑
i=1

DKL(qη(z|V l(X i), A)||p(z)).

(23)

In this formula, we obtain a graph reconstruction term, an explicit data265

reconstruction term, and a regularizer in the latent space. All these terms266

involve the parametric view decoders qη that we define next.267

3.3. Parametric decoders268

We choose in this model to parametrize each qηm by a multivariate Gaus-269

sian distribution with a Krylov Graph convolutional neural networks8 (GCN)270

[27] as:271

8log in log σm is applied element-wise on matrix σm.
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qηm(z|V l(X i
m), A) = N (µenc

m (:, i), diag(σenc
m (:, i)).

µenc
m = W µ

m
encKrylovm(Xm, A).

log σenc
m = W σ

m
encKrylovm(Xm, A).

(24)

where µenc
m and log σenc

m are matrix output by Krylov layer whose i-th column272

is, respectively, the mean and the diagonal of the covariance matrix of qηm .273

We use the log to ensure positivity of sigma.274

The reason for the choice of a GCN is that they are efficient to extract fea-275

ture information of a node considering its neighborhood [28, 29]. They have276

been widely used in node classification, node clustering, and other graph an-277

alytic tasks. Currently, many GCN have similar performance [30], and since278

the choice is not critical, we simply use a truncated Krylov GCN architec-279

ture [27] which has been proven to have good properties when stacking across280

graph layers.281

3.4. Parameters of the model and inference282

Globally, the trainable parameters (i.e., the ones to infer) of the models are283

the weights Ψm, W µ
m

dec, W σ
m

enc, W µ
m

enc, respectively the parameters of the284

multilayer perceptron MLPm and of the Krylov GCN layers Krylovm.285

In order to infer these parameters efficiently, we will use the ELBO of286

Eq. (23). Even if this ELBO is not separable in a sum of terms depending287

only of one instance i, it can be decomposed in terms containing only subsets288

of some instances i. This leads to a training strategy of the model in a batch289

manner, using a suitable optimization method. For every instance i, each290

view m (i.e., X i
m) has it’s own latent representation, which is computed sim-291

ilar to Eq. (9) i.e Ez∼qηm (z|Vl(Xi
m),A) = µenc

m (:, i). These latent representations292

of views allow us to build the common latent representation of instance i as293

(see Fig. (2) for illustration):294

Ez∼qη(z|Vl(Xi),A) =

[
M∑
m=1

µenc
m (k, i)

σenc
m

2(k, i)
/

M∑
m=1

1

σenc
m

2(k, i)

]d
k=1

. (25)

These representations are used for the experiments presented later on.295
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3.5. Robustness and “views dropout”296

The formula (25) comes from the choice of qη as a product of multivari-297

ate Gaussian distribution with diagonal covariance matrix. This particular298

choice gives the model robustness property to deal with missing views. In-299

deed by model assumptions, each view of an instance i of the dataset is300

derived from a latent variable we seek for. For each view, the distribution301

qηm(z|V l(X i
m), A) gives the probability that the latent variable z generates the302

corresponding views. Thus we have qη(z|V l(X i), A) = ΠM
m=1qηm(z|V l(X i

m), A)303

which is the probability that z generates (all the views of) an instance i; hence304

the probability of an instance is given by the product of probability mass of305

the different views of this instance i. Thus, the more probability mass the306

different views m gives to z, the more likely z are the sources of i (i.e of307

these views). But these views do not contribute equally to the probability.308

Some views or groups of views contains more information than others about309

z, as can be seen in Eq. (25) by the fact that z is the barycenter (using the310

precision (inverse variance) as weight) of view’s most probable latent space311

vector (i.e the mean of decoders).312

In the case in which some views are missing, if the sum of precisions313

associated to missing views is not large compared to the one associated to314

existing views, the computation of Eq. (25) without these views will be still an315

accurate approximation of z. So given enough views, we could still compute316

a good approximation of the common latent representation. This potential317

ability to deal with missing views is successfully confirmed in the experiments318

reported under Section 5.3.2 and 5.3.3. There is no such direct possibility319

with other variational CCA approaches. Indeed in the 2-views variational320

model VCCA [20], qη is parametrized only by one of the two views, hence321

this cannot be robust to the absence of the corresponding view for some322

instances. The improved model VCCA-private in the same article also suffers323

from this. The more recent variational model VPCCA [21] can deal with324

limited numbers of views available, but needs to have these views available325

for each instance to compute the low dimensional common latent space which326

makes it obviously not robust to real missing views situations where different327

instances could have different missing views (see Fig. (3)). The present model328

exploits the maximum amount of information available for each instance.329

In order to reinforce the robustness of the proposed model, we introduce330

for the experiments the novel notion of ”views dropout”. This consists of331

randomly ignoring certain views during the encoding part of the training332

phase while still asking the model to be able regenerate all the views as well333
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as the adjacency matrix. This procedure is more detailed and evaluated in334

experiment part 5.3.2 and 5.3.3.335

As a summary of this methodological part, we repeat that our model is336

the only CCA model which is scalable, graph aware, and robust to missing337

views.338

Remark: The choice for all qηm involves that qη (cf. Eq. (17)) is not a339

correctly normalized distribution. However, qη is proportional to a distribu-340

tion (there is a constant K such that Kqη is a distribution). If we resume the341

calculation started in Eq. (18) with Kqη it will lead to the same ELBO up342

to an additive and a multiplicative constant that does not change inference,343

so we can work as if qη was a distribution.344

Figure 3: Multiview dataset with missing views. On the left, one can see a multivew
dataset where some views are missings but some are fully available. Variational model such
as VCCA (limited to two-view dataset) and VPCCA can deal with these kind of data. We
evaluate MVGCCA in this scenario in Section 5.3.2. On the right one can see a dataset
were many views are corrupted. This dataset is a much more realistic representation
of errors which can be found on real dataset. The proposed model can deal with these
kinds of missing data during both training and testing. MVGCCA exploits the maximum
amount of information available for each instance. MVGCCA is evaluated in this scenario
in Section 5.3.3.

4. Datasets345

4.1. UCI handwritten digits dataset346

UCI Handwritten Digits Dataset9 is a multiview dataset of n = 2000347

samples images representing digits. Each image has a label from 0 to 9348

(200 instances for each), and 6 views with different dimensions: d1 = 76,349

9archive.ics.uci.edu/ml/datasets/Multiple+Features
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Dataset uci7 uci10 Recommendation

Metric Acc. ARI ARI2 Acc. ARI ARI2 Prec. Recall Mrr

PCA 0.84 0.55 - 0.69 0.42 - 0.1511 0.0795 0.3450
GPCA 0.93 0.71 0.77 0.87 0.63 0.62 0.1578 0.0831 0.3649
MCCA 0.86 0.66 - 0.76 0.59 - 0.0815 0.0429 0.2225

GMCCA 0.95 0.83 0.84 0.90 0.69 0.71 0.2290 0.1206 0.4471
MVGCCA 0.95 0.82 0.85 0.94 0.74 0.77 0.1753 0.0583 0.4432

Dataset Recommendation Large

Metric Prec. Recall Mrr

MVGCCA 0.1745 0.0960 0.4301

Table 2: Results of experiments on the different datasets and tasks; see text for the
detailed discussion. Acc. stands for accuracy in classification; ARI for adjusted rank
index in clustering tasks: ARI1 if using K-means and ARI2 if using spectral clustering.
For the Recommendation task, Prec. is precision and Mrr is the mean reciprocal rank.

d2 = 216, d3 = 64, d4 = 240, d5 = 47 and d6 = 6. These views correspond350

to specific transformations of the original image: Fourier coefficients of the351

character shapes X1 ∈ Rd1×n; profile correlations X2 ∈ Rd2×n; Karhunen-352

Loeve coefficients X3 ∈ Rd3×n; 240 pixel averages in 2 x 3 windows X4 ∈353

Rd4×n; Zernike moments X5 ∈ Rd5×n; and 6 morphological features X6 ∈354

Rd6×n. Clustering, classification and reconstruction tasks are performed on355

this whole dataset (uci10); also, we consider as in [23] for comparison, a356

partial version (uci7) where classes 0, 5 and 6 have been removed. The357

obtention of a prior graph is an important step for the analysis. As the358

objective is to be able to compare the method to existing one, like [23], the359

choice is made to follow exactly the method described in Chen et al. [23]360

(Section VII.C) to build the prior graph over data.361

4.2. Twitter friend recommendation362

A multiview dataset10 based on post from Twitter has been proposed363

in [6]. It consists of multiview representations of messages of users. They364

took 1% of the publicly available users data in April 2015. They removed all365

tweets that are not in english, and those from users who did not post between366

January and February 201511. Finally they only kept the last 100 tweets from367

the remaining users, yielding n = 102327 users. These data for each user368

10http://www.cs.jhu.edu/~mdredze/data/
11There are other minor exclusion criteria which may be found in [6].
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Figure 4: Illustration of two-view MNIST dataset. Three samples of two-view
MNIST dataset. For each digit (1, 5 and 8) we display on the left : original image,
middle: first (rotated) view, right: second (noisy) view.

are in the form of 6 1000-dimensional views: EgoTweets, MentionTweets,369

FriendTweets, FollowersTweets, FriendNetwork, and FollowerNetwork. A370

task of friend recommendation is performed as follows. The followed accounts371

are known for each user; given a highly followed account and a part of their372

followers, the goal is to determine, for each other users, whether or not he373

will follow this account after March 2015. For this task, a graph based on the374

Twitter dataset is built as in [23] with the views Egoweets, FollowersTweets,375

and FriendNetwork.376

4.3. Two-view MNIST noisy dataset377

Two-view MNIST noisy dataset has been proposed by Wang et al. [15].378

It is a two-view dataset built from the famous MNIST handwritten digits379

28 × 28 dataset. MNIST dataset is composed of a training set with 50000380

instances, a validation set with 10000 instances and a test set with 10000381

instances. We merge them. The first view is obtained after performing382

a rotation to the 70000 images. Angles of each rotation have been sampled383

from continuous uniform distribution U([−π/4, π/4]) with −π/4 as minimum384

value and π/4 as maximum value. For the second view, we choose randomly385

another image with identical labels from MNIST and we add a noise sampled386

from uniform distribution U([0, 1]) to each pixel. Finally, we truncate pixels387

values to keep them between 0 and 1. This data has no pre-defined graph388

structure. We build the prior graph by connecting each instance with a389

probability 1/10 (resp. 1/1000) to another instances with the same labels390

(resp. different labels). At the end each instance is connected to nearly 10%391

of instance with a different label. Hence this graph structure gives some392

(noisy) supplementary information about relation between instances of this393

dataset. Finally, to evaluate our model we split the dataset in a training394

set, a validation set and a test set of the same size as at the beginning. A395

visualisation of this dataset can be seen on Figure 4.396
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Figure 5: t-SNE visualisation in 2D of the latent space (d = 3) for the uci7 and uci10
dataset. Each color represents a different class.

5. Experiments397

All architectures and hyperparameters specified here are the same for all398

experiments12, unless otherwise indicated in the text. We pre-process all the399

views: each view is centered and normalized by standard deviation. For each400

dataset, the graph adjacency matrix is rescaled with its maximal entry and401

diagonal coefficients are set to 1.402

Decoders: Mean decoders computed by MLPm for each view m are used403

with a ReLU non linearity except the last layer which is a linear transforma-404

tion. Covariance matrix decoders Ψm are trained as a scaled identity matrix:405

Ψm = ((σm + 10−6)2)Idm . This choice reduces the complexity and improves406

robustness, and we have seen in experiments that it does not decrease per-407

formance.408

Encoders: Krylov GCN layers [27] encoding the mean and variance in qη,409

have a depth of l = 4 hop neighborhood.410

General features: Batch size is set to 512. A dropout regularization of411

rate 0.5 is also applied after all the hidden layers. The Adam optimizer is412

used for training. A decay learning rate is applied: lr1.1
−50 e

E , where e is the413

current epoch and E the maximal number of that is set to 600 epochs by414

default.415

12Code available : https://github.com/Yacnnn/MVGCCA
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5.1. Classification and clustering416

We performed classification and clustering experiments. A first experi-417

ment involves a comparison to GMCCA (which is the only method which418

can deal with graph). And a second one shows comparisons to many other419

non linear method such as Deep CCA, Kernel CCA, Variational CCA, etc420

(cf Tab. (3)).421

5.1.1. UCI422

The model was trained on uci7 and uci10 datasets. The loss function423

was the ELBO from Eq. (23), trained with a batch of dataset. For each424

batch, the graph used is the subgraph of samples in the batch. The latent425

space is of dimension d = 3. We perform a grid search over the learning426

rate (1e-3,1e-4), number of hidden layers (3,4) and hidden layers size (512,427

1024). We also decide to apply a decay learning rate or not, and to look for428

decoders covariance matrix as full matrix or scalar matrix based on a grid429

search. For each combination of these parameters we trained the algorithm430

three times, on 600 epochs and we save each latent embedding every 100431

epochs (to perform early stopping).432

We take 90% instance of dataset as the train set and the remaining 10%433

as test set. We perform a 5-fold cross validation with SVM-RBF accuracy434

to find optimal parameters (MVGCCA and SVM-RBF hyperparameters and435

early stopping step) on the train set. Finally, for the best parameters, we436

train the SVM-RBF on the train set and evaluate it on test set. We also437

perform a K-means and spectral clustering on the whole embeddings (the438

train and test sets). A 2D t-SNE projection of latent space can be visualized439

in Figure 2.440

Because of the small size of UCI dataset, the ouput of this procedure de-441

pends on initial choice of dataset splitting; so in order to overcome this issue,442

we perform this experiment 100 times and average the results. Following443

[23], results are compared to PCA (applied on concatenated views), graph-444

regularized PCA, MCCA, and GMCCA. In order to make fair comparison in445

terms of hyparameter tuning, all the experiments were done with the same446

protocol for all the methods.447

The results are summarized in Table 2. We see that MVGCCA is compet-448

itive in both classification (Acc.) and clustering tasks (ARI if using K-means449

& ARI2 if using spectral clustering). It achieves the best performance on the450

more complex dataset uci10 over other graph aware methods. This indicates451

that the graph structure is well encoded in the latent space.452
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Remark: In using SVM-RBF, we have conducted a grid search (with sklearn453

package) for the following parameters: C13: 7 values logarithmically spaced454

in [10−3,103] and gamma: 7 values logarithmically spaced in [10−3,103]. The455

K-means and the spectral clustering (with gamma = 5) are performed with456

the default parameters of sklearn.457

5.1.2. Two-view MNIST458

This dataset is composed of a training, validation and test sets. For this459

experiment we train our model only on the training set. We performed a460

small grid search based on insight given by previous experiments; hence we461

only tune the latent space dimension d = {30, 60} and if we use a scalar462

decoder or not. We used a 4 hidden layers and the hidden layers size is set to463

1024 for both encoders and decoders. We trained the algorithm during 200464

epochs and we save each latent embedding every 10 epochs after 50 epochs to465

perform early stopping. Once the model has been trained, the latent space466

of train, validation and test set is then inferred from the model. In order467

to perform fair comparison with others variational method VCCA [20] and468

VPCCA [20], we suppose that only the first view is available to produce469

the test set latent space (first scenario of Figure 3), it is equivalent to use470

Z1 as latent representation. We use theses representations for classification.471

We use VPCCA [21] and [15] as the baseline. We train a Linear SVM with472

regularization parameter C having possibly 8 values that are logarithmically473

spaced in [10−3,103]. We used the validation set to select best parameter for474

this linear SVM, the dimension of our latent space, and to decide to stop475

early the epochs. Finally, we trained the linear SVM on both training and476

validation set with these parameters and evaluate our method on the test477

set. On contrary to the UCI dataset, two-view MNIST is a large dataset,478

so the results of these experiments have been averaged only over three runs.479

The results of these experiments are summarized in Table 3.480

As it can be seen, the results are competitive against the best methods of481

the state of art, thanks to the information brought by the graph structure.482

This illustrates again how CCA can benefit from taking into account some483

geometrical structure in the multivew dataset.484
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Dataset Two-view MNIST

Metric Acc.

Linear CCA 0.804
SpliAE 0.881

Kernel CCA 0.949
Deep CCA 0.971
DCCAE 0.978
VCCA 0.970

VCCA-(p) 0.976
VPCCA 0.981
MVGCA 0.985

Table 3: Results of classification with a linear SVM on two-view MNIST; see text
for the detailed discussion. The baseline is issue from Wang et.al [15] and Karami et al.[21].
The baseline involve linear CCA [8]; non linear method: Kernel CCA [17], Deep CCA
[13], Deep CCA autoencoders [15], and probabilistic model Variational CCA (-private)
[20] or Variational Probabilistic model [21]. For VCCA, VPCCA and MVGCCA, all views
are available during training time, while only the first view is available for inference.
MVGCCA and VPCCA are the only model which can deal with more than two views.

5.2. Twitter friend recommendation485

For this dataset and the recommendation task, no further hyperparameter486

tuning is done and values from previous experiments are used with a learning487

rate = 10−4, number of hidden layers = 4, hidden layers size = 1024, number488

of epochs = 600, a decay learning rate and a scalar covariance matrix for489

decoders. The parameters of the methods used for comparison are extracted490

from [16, 23] with their best parameters. The twitter dataset is large with491

more than 100,000 users, which makes it intractable for existing methods.492

Hence, 2506 twitter users are randomly selected from the database as in [23]493

for fair comparison.494

The 20 most followed accounts (over the whole dataset) are selected,495

For each of these, 10 users following them are chosen (at random) and the496

average representation from latent space is computed. These average profiles497

will represent the typical users who follow the 20 most followed accounts.498

The latent space is set to dimension d = 5. Finally, the cosine similarity is499

computed between this average profile and the one of the L = 100 closest500

users to these representations. If one of these 100 users actually followed the501

13Regularizer parameters of Linear SVM. See sklearn implementation of Linear SVM.
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Figure 6: Log-log plot of running time between the two graph CCA methods: MVGCCA
and GMCCA. We measure the running time for a run of GMCCA and one epoch of
MVGCCA for four twitter dataset size (n = 2506, 3000, 5000, 10000). On the right figure
we rescaled the running time by the running time at n = 2506. One can see that the
GMCCA running time grows much more quickly than for MVGCCA.

initially chose account, this is considered as a good friend’s recommendation.502

To assess performance, precision, recall, and Mrr (mean reciprocal rank)503

metrics are computed (averaged for the 20 most followed accounts). This504

experiment has been repeated and averaged over 100 sampling of 2506 users.505

The results are in Table 2 (right).506

The performance of MVGCCA is comparable (except for recall) to that507

of GMCCA, which is currently the best method for this task. We recall here508

that the results are assessed on a limited dataset that all methods can process509

while our model could process a larger sample of dataset. To check that, we510

re-run the same experiment on larger dataset in order to show the scaling511

of the running time for a dataset from n = 2506 to n = 10000. The result512

is displayed in Fig. 6. We observe that the scaling is, as expected, better513

for MVGCCA and, for data of size n = 5000 of larger, MVGCCA epochs514

are quicker despite the overhead in computing time due to the use of GCN.515

Considering that after 100 epochs we already have goods results.516

In order to give insight of what happens when we deal with a larger517

dataset, we also report the result of the recommendation task for the largest518

scale experiment, i.e with dataset 5 times larger. Here, we consider n = 12530519

users and the 100 most followed accounts. We choose 50 users following520

these most followed accounts to compute average representation. The same521
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training parameters are used but latent space dimension which is set to d =522

10. For evaluation, we take L = 500 in order to keep the same difficulty (we523

have 5 times the number of users) so as to make this experiment comparable524

to the previous one. A graph based on the Twitter dataset is built as before,525

from the exact same views Egoweets, FollowersTweets, and FriendNetwork,526

but with the neighbor parameters equal to 100 (instead of 50 before). Please527

refer to [23] to have more information about this parameter. The experiments528

have been averaged over 20 sampling of 12530 users. The result of this larger529

scale experiment is in Table 2 (last line). As it can be seen, the performance530

is quite the same on precision and Mrr metrics while there is an improvement531

for the recall metrics. It means that, thanks to the larger amount of data, the532

algorithm is capable of finding more of what it is possible to be find, while533

conserving a good precision. This results in a greater ability to perform534

recommendation.535

Remark: We did not process a larger experiment because of the limita-536

tions associated to graph building procedure. On a data coming naturally537

with a graph structure, this problem would not exist; we choose here this538

dataset for the sake of comparison on a situation studied in the literature.539

5.3. Inference540

In a final experiment, we illustrate the robustness of the model to missing541

views for some instances, and its ability to reconstruct these missing views.542

This property of the model is unique among other graph aware CCA methods.543

To do so, we rely on the probabilistic nature of our model. Once the model544

has been trained, for a new instance not seen during training we apply the545

formula of Eq. (25) restricting the sum to the available views. Then this546

approximation of the latent representation zapprox is used to regenerate any547

missing views m as:548

xregeneratem = Ex∼pθm (x|zapprox) = W µ
m

decMLPm(zapprox). (26)

5.3.1. Recovering missing views549

We consider the following scenario: We train the model on a training set550

(90% of data) where all the views are available for all instances. Then, for551

every k ∈ [|0, 4|], we randomly select 10 instances in a test set14 for which we552

14Whose elements have not been seen during training.
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Figure 7: UCI 4th view reconstruction. We see here the result of the reconstruction
experiment of the 4th view. The first line corresponds to the original view. Every figure in
line l > 2 corresponds to a reconstruction from 7− l views. We did not use views dropout
in this experiment.

remove the 4th view and k additional views15. Note that, in this dataset, the553

4th view is a subsampling of the original image. Using the other views, we554

regenerate 4th views according to Eq. (25) restricted to available views.555

The results are given in Fig. 7. We see that in the case of uci7 the556

reconstruction goes very well in the majority of cases whatever the number557

of missing views. Still, there are some problematic cases. For instance, in558

column 4 we can clearly see that the original view is upside down, while in559

column 5 the original view is degraded – this shows that in both cases we have560

an atypical point of the dataset. Also, in column 7 we see some confusion561

between a 7 and a 9. The right part of the Figure is for uci10 which is a562

more difficult dataset than uci7. The method has additional difficulties to563

regenerate some views, because of some confusions between 4 and 6, and564

between 7 and 1. Still, this difference between uci7 and uci10 suggests that565

a training on a larger database should solve these problems. Anyway, we see566

that the majority of the proposed reconstructions from the model are very567

close to original views, thus demonstrating experimentally the ability of our568

model to reconstruct missing views.569

5.3.2. Robustness wrt. missing views – first scenario570

This scenario corresponds to the first of Figure 3. In this experiment the571

quality of the reconstruction is evaluated more quantitatively and this will572

15The k views removed are the k views with the smallest dimension.
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Figure 8: Illustration of MVGCCA robustness. See section 5.3.2 and 5.3.3 and Fig. 3
for details on both scenario. a. First scenario: The accuracy of clustering is compared
for the two procedures of test (by SVM-RBF or inference of 1-hot encoding), without and
with “views dropout”. The black dotted line corresponds to accuracy found in Section
5.1.1 with all views. Note that we did not search for optimal parameters here, so it is
expected to found a lower accuracy for 0 missing views. Still, for uci7, we obtain a better
accuracy when using “views dropout”. b. Second scenario: We evaluated on the SVM-
RBF accuracy in this scenario. One can see similar behavior. The more the fraction of
missing views, the more the performance decrease. The procedure of “views dropout”
helps somehow the algorithm to deal with missing views, with a diminished the effect in
comparison to the first scenario. Globally, this scenario seems to be harder, yet MVGCCA
is currently the only method to deal with it.
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show the robustness of the proposed model when only a subset of views are573

(fully) available. To do so, we work with regular UCI and an extended UCI574

where we add to the training set a 7th view that corresponds to a one hot575

encoding of the instance label. Then, we train MVGCCA on this two sets.576

Finally, we evaluate accuracy on test set in two manners:577

• For regular UCI, we train a SVM-RBF on train set embeddings from578

trained model. Then we evaluate this SVM on test set embeddings579

where some views have been removed. These embedding are computed580

as in section 5.3.1.581

• For extended UCI, we regenerate the 7th views of test set instances.582

This directly gives us an estimation of their labels. Once again, some583

views are removed.584

For a given number of available views v ∈ [|1, 5|], we consider any possi-585

ble combination of views to form novel datasets, and we average the ob-586

tained accuracies (e.g if v = 2 the set of available views considered are587

{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), . . . , (5, 6)}). It allows us to obtain a588

result that does not depend on the nature of the missing views. Moreover,589

we repeat this experiment 10 times and average the results. They are pro-590

vided in Figure 8.a as dashed line. As we can see, the model can deal with591

a small number of missing views; still the performance decreases with the592

number of these missing views and that is not surprising.593

In the same figure, we show results with continuous line where we robus-594

tify the method by applying a “views dropout” during training phase. This595

consists in randomly removing between 1 and 5 views to each instance of596

the batch size for the encoding part of the model only. Hence the model is597

trained in order recover all views from only a subset of views. As we can598

see this procedure makes the model very robust: for instance, when 4 views599

are missing, the accuracy with views dropout remain better than using the600

model without views dropout, even with a smaller number of missing views.601

This allows even for better results to be obtained when no view is missing.602

5.3.3. Robustness wrt. missing views – second scenario603

This scenario corresponds to the second of Figure 3. In the previous604

experiment, limited subsets of available views were available for generating605

the latent space but all instances had the same set of available views. In606

real scenario different instances may have different missing views. We will607

27



evaluate MVGCCA in this scenario. Once again we will train MVGCCA608

on train set (90% of the dataset) and then infer the test set latent space609

after having randomly removed some views. We removed a percentage r =610

{1%, 5%, 10%, 15%, 25%, 50%, 75%} of views on the test sets while asserting611

that each instance will have at least one views available. We repeat the612

experiment 10 times and for each we evaluated 10 times each percentage of613

missing views r with and without views dropout.614

As can be seen in Figure 8.b, we have a similar behavior than for previous615

experiments. The method is able to deal with this type of corrupted dataset.616

This is the first method to do so in the literature. The procedure of “views617

dropout” is again useful somehow (this time by removing between 1 and 3618

views to each instance), but its effect is diminished as compared to scenario619

1.620

Remark: As discussed before, in order to compute a low dimensional rep-621

resentation when some views are missing, we restrict the formula of Eq. (25)622

to available views. In this second scenario, we need to make some adjuste-623

ment in order to compute µenc
m (:, i) and σenc

m (:, i) from Eq. (25), as they de-624

pend on the views m of neigbours of i (see Eq. (24)); these views could be625

missing. We overcome this issue by replacing in qηm(z|V l(X i
m), A) the ad-626

jacency matrix A by Am which is the adjacency matrix where unavailable627

views have been suppressed. Thus V l(X i
m) contains only available views m628

in the neighborhood of instance i.629

6. Conclusion630

We proposed MVGCCA, a novel multiview and non linear extension of631

CCA based on a Bayesian inference model. The proposed model is scalable,632

and can take into account the available graph structural information from633

the data. We have also proposed also a robustification method to handle634

missing data by applying “views dropout” during training. The probabilistic635

graphical nature of the model can be used for other tasks, such as addressing636

link prediction for multiview datasets, and that is a perspective for future637

work.638
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