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The treatment of hysteresis in numerical simulations represents major issues as large computational times and significant memory space 
allocations are required. The memory management of the Jiles-Atherton model is simple, but its integration requires relatively fine 
temporal discretization to achieve convergence. Oppositely, the Preisach model gives satisfactory results with a coarser temporal grid 
but requires vast memory space and complex management. The Derivative Static Hysteresis Model (DSHM) is an alternative solution 
for improved performances. The hysteresis law is considered in a generalized input vector space. An interpolation matrix is constructed 
with the columns and rows denoting the discrete values of H and B and whose terms stand for the dB/dH slope at the corresponding 
point. Up to now, the filling step of the DSHM matrix has always been through experimental first-order reversal curves, but getting such 
experimental data is always complex. In this study, we propose to fill the DSHM matrix alternatively. We use simulated first-order 
reversal curves obtained from the Jiles-Atherton or the Preisach model, which have been identified using limited experimental data (the 
first magnetization curve and the major hysteresis cycle). 
 

Index Terms— Ferromagnetic hysteresis, space discretization, frequency dependence, simulation optimization. 

 

I. INTRODUCTION 

In modern society, electromagnetic devices including motors, 
generators, electromechanical solenoids, relays, loudspeakers 
can be found in every industrial field. The development of new 
electromagnetic designs, such as improving and understanding 
already existing ones, requires precise simulation tools [1][2]. 
Dedicated commercial software already exist, but they are still 
very limited, and in this domain, signs of progress are highly 
expected [3].  

Such numerical tools can also be used for the understanding 
of electromagnetic nondestructive testing (NDT), like the Eddy 
Current Testing (ECT) [4][5], the Harmonic Analysis [6], the 
Magnetic Incremental Permeability (MIP) [7][8], the Magnetic 
Barkhausen Noise (MBN) [9][10], but here again progresses are 
still to be done for a larger democratization of these simulation 
tools. Recent developments for the simulation of 
electromagnetic devices focus on coupling Space Discretization 
Techniques (SDT), like the Finite Elements Methods (FEM) or 
the Finite Differences Methods (FDM) to accurate scalar or 
vector, static or dynamic, hysteresis material laws [11]-[17]. For 
this material law, the best results come from the extension of a 
quasi-static hysteresis model to the dynamic behavior resulting 
from the separation loss technique described by Bertotti in [18].  

Running quasi-static hysteresis models brings significant 
issues as they always require large computational times and 
memory space allocations. Hysteresis in an SDT resolution 
means dealing with memory management for each node of the 
mesh. The allocation of the memory space is linearly 
proportional to the number of nodes.  
Numerous quasi-static hysteresis model descriptions can be 
found in the literature [19]-[21]. Amongst these, the Jiles-
Atherton (J-A) [22] and the Preisach models [23][24] are by far 
the most studied hysteresis models. In its original form, the J-A 
model implementation requires only five parameters, and the 
memory management is limited to the t-dt value of the 

magnetization M. The J-A model is thus an excellent candidate 
for integration in an SDT calculation code. Unfortunately, this 
simple model is subjected to limitations: 
_ convergence is most of the time obtained through fine 
temporal discretization, which imposes an increased number of 
samples and simulation time. 
_ Correct simulation of closed minor loops as observed under 
unsymmetrical excitation field is impossible. The J-A model 
presents a slow but constant accommodation time, preventing 
the magnetization trajectory between the turning points of a 
minor loop from being closed at the end of its course [25].  

The Preisach model is much more accurate for the 
reconstitution of the hysteresis behavior under unsymmetrical 
excitation (minor loops, first magnetization curve, etc.). 
Unfortunately, though, correct simulation results imply fine 
discretization of the Preisach triangle and time-consuming 
memory management. The signs of many terms in the Preisach 
triangle are switching at each simulation time step. 

In [26], the authors proposed an alternative method for 
considering the quasi-static hysteresis in SDT simulations. This 
method, called Derivative Static Hysteresis Model (DSHM), is 
a data-based reconstruction of the magnetic hysteresis. It shows 
decent performances under unsymmetrical excitation, works 
under coarse time discretization, and memory management is 
found to be very limited. The fact that interpolation in a 
generalized vector space is used instead of direct branching is 
also beneficial for the overall algorithm in terms of stability. Up 
to now, the filling step of the DSHM matrix has always been 
through a set of experimental first-order reversal curves. It is 
evident that getting such a lot of experimental data is complex, 
but in this study, we propose to alternatively fill the DSHM 
model matrix with a reduced number of experimental data 
thanks to assumptions also used to parameter the Preisach and 
the J-A models. The principles of the new method can be 
detailed as follows: 
_ The Preisach or the J-A models are identified first using a 



limited number of experimental results (a first magnetization 
curve and a major loop). 
_ A set of first-order reversal curves is obtained numerically 
using the Preisach or the J-A model. 
_ The numerical first-order reversal curves are used to fill the 
DSHM matrix. 

The DSHM model is described in the first section of this 
manuscript, including the alternative method developed for the 
model matrix construction. In the second part of the manuscript, 
a benchmark electromagnetic situation chosen to evaluate the 
model performances is described: the dynamic magnetic field 
diffusion through the cross-section of a ferromagnetic 
lamination. This diffusion is solved through FDM resolution, 
including hysteresis and frequency dependence. The efficiency 
of the J-A, the Preisach, and the DSHM models are compared 
in the last section of the manuscript. Conclusions are given 
regarding the gains and the advantages of the proposed method. 

II. DERIVATIVE STATIC HYSTERESIS MODEL 

A. Experimental observation 

The DSHM model is based on the following assumption: if 
the magnetic excitation field Hi (respectively, the magnetic 
induction Bj) is the input of the model, the slope dB/dHi,j 
(dH/dBi,j, eq. 2) for each point of the (Hi, Bj) plane, included in 
the envelope of the quasi-static major hysteresis loop is 
supposed to be dependent on only three parameters: the 
magnetic field Hi, the induction field Bj, and the sign of the time 
derivation of the input excitation (Hi or Bj) (see eq. 1).  
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Fig. 1 below illustrates the DSHM assumption by comparing a 
first-order reversal curve to a centered cycle in the zone where 
both could be seen. These experimental results were obtained 
with a pure iron material, “Telar 57 ARMCO”.  

 
Fig. 1, Illustration of the DSHM assumption for the pure iron Telar 57 

ARMCO. 

B.  Memory storage 

Based on the experimental observations and the assumption 
commented previously, two matrices can be filled where each 
column and row represents discretized values of respectively H 
and B. The first matrix is filled with the dB/dH (or dH/dB) ob-
tained when the sign of the time derivation of H is positive. A 
set of first-order reversal curves are used to fill this matrix. This 
matrix behaves like an image of a discretized (H, B) plane. After 
filling the matrix with all the reversal curves available, many of 
the matrix terms remain unfilled. If these terms are situated in-
side the major hysteresis cycle envelope, linear interpolations 
are done to complete the matrix until one obtains a continuous 
and smooth distribution of dB/dH. Fig. 2 below gives an 

illustration of the DSHM model matrix and the interpolation 
process: 

 
 

Fig. 2, DSHM interpolation matrix illustration. 
 

The second matrix should be filled with the dB/dH (or dH/dB) 
obtained for negative H slopes (decreasing field), but given the 
point of symmetry of the hysteresis loops, this matrix is redun-
dant. In the simulation, if H decreases, the corresponding dB/dH 
will be obtained thanks to the “dB/dH increasing H matrix” by 
multiplying the slope found in the (-H, -B) coordinates of the 
first matrix with the sign of (dH/dt), (see Eq. 2). 
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In Fig. 3 below is depicted the 3D plot of the DSHM matrix 
obtained for the Telar 57 ARMCO. 

 
Fig. 3, dB/dH distribution for the Telar 57 ARMCO. 

C.  DSHM matrix fill-in 

Numerical results on samples of different compositions show 
that a minimum of a dozen first-order reversal curves is neces-
sary to fill the dB/dH memory matrix. For exotic materials such 
as an 80/20 iron-nickel (permalloy) of extreme relative perme-
ability variation, this number can reach 20. Measuring these re-
versal curves can be somewhat complicated since it implies ap-
plying a magnetic excitation field with a sawtooth shape of var-
ying amplitude (Fig. 4). The substitute option we propose is to 
numerically simulate the first-order reversal curves using a 
quasi-static hysteresis model easier to parameterize. Both the J-
A or the Preisach models can be used successfully for this nu-
merical substitution. In both cases, accurate simulation results 
can be obtained with experimental data limited to a major 



hysteresis cycle and the first magnetization curve. Fig. 4 below 
shows some reversal curves simulated with the Preisach model 
combined with the Biorci & Pescetti method [27] for the 
Preisach triangle definition (Telar 57 ARMCO material).  

 
Fig. 4, Simulated reversal curves for the Telar 57 ARMCO. 

Once the reversal curves are simulated, the DSHM matrix can 
be filled. In the case of the Telar 57 ARMCO, a 5 A/m step was 
used for the interpolation matrix column discretization and 0.01 
T for the rows. As the maximum of H was 5200 A/m and B 1.78 
T, the size of the resulting matrix was 357 columns, 2081 rows 
and a total of 742917 cells. 

D.  Quasi-static hysteresis simulation 

As Matlab® has been developed for matrix calculation, it is 
well suited for the implementation of the DSHM model. Fig. 5 
below shows a block diagram illustrating the DSHM model 
principle. For the “H input” version of the DSHM model, H(t) 
is already known and set as input. To obtain the related B(t), the 
corresponding dB/dH(t) has to be determined first. To get this 
slope, a two-dimensional linear interpolation read on the 
dB/dH(H,B) interpolation matrix is performed. If sign(dH(t)/dt) 
is positive, H(t) and B(t-dt) are used as the scalar coordinate 
sources for the linear interpolation: dB/dH(t)(H(t),B(t-dt)), if 
not H(t) and B(t-dt) are replaced by -H(t) and -B(t-dt). At this 
step of the process, dB/dH(t) is consistently positive, but by 
multiplying it with sign(dH(t)/dt) it became negative if H de-
creased and stayed positive otherwise. Once dB/dH(t) is ob-
tained, B(t) is calculated by H integration (see Eq. 3).  
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Finally, B(t) is stored and used as input for the calculation of 
the next simulation step B(t+dt). Fig. 5 displays both B(H) and 
H(B) solutions. Switching from a “B input” model to an “H in-
put” model is very simple. To run the “B input” model, the 
dB/dH(H,B) matrix of the “H input” model is simply replaced 
by a dH/dB(H,B) matrix, easily obtained by substituting every 
term of the “H input” matrix by its multiplicative inverse. 

 
Fig. 5, schematic representation of the DSHM model (black B(H), red H(B)). 

E.  Single sheet tester characterization and experimental 
validations 

A dedicated measuring setup has been developed to 
parameter and validate the numerical method. Epstein frame 
magnetic sheets (280 mm long, 30 mm wide) have been 
characterized. The measuring setup consisted of a single sheet 
tester with CEI 60404-3 international standards inspiration 
[28]. The magnetic excitation field H was provided by a 4000 
turns coil wound on a high section yoke magnetic circuit. This 
coil was connected in series with a 10/400 Ω variable power 
resistor whose objective was to avoid a distorted current 
waveform even under high frequencies excitation. The whole 
circuit was electrically supplied by a high-voltage KEPCO 
amplifier BOP 100-4M. Real-time feedback control was 
ensured from a DEWESoftX2 data acquisition software 
associated with a SIRIUSif 8×CAN data acquisition and 
generation card. These devices ensured the control of the 
magnetizing current and the asset of the measured signals. A 
noise shielded radiometric linear Hall probe (SS94A from 
Honeywell) positioned ideally as close as possible to the 
magnetic sample measured the surface magnetic field Hsurf over 
the probe area. A 200-turn pick-up coil surrounded the tested 
sample was used to measure the magnetic flux. An analogic 
integration, occurring twice (once for the pick-up coil 
acquisition and once for the drift correction) was performed to 
get the flux variation. Before each new measure, we ensured the 
reproducibility of the result by a complete demagnetization of 
the tested samples. To validate the DSHM model and the new 
implementation method on a large scale, a prospective study on 
magnetic materials of different properties has been carried out. 
The Telar 57 ARMCO material has been tested first, followed 
by an iron-nickel permalloy and a FeSi NO electric steel. 
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    Fig. 6 - a, comparison sim./meas. for the Fe-Ni 80/20, 6 - b, comparison 
sim./meas. for the Pure Iron Telar 57 ARMCO, 6 - c, comparison sim./meas. 
for the FeSi NO,  6 - d comparison sim./meas. for FeSi NO under minor loop 

situation, 6 - e, comparison sim./meas. for Telar 57 ARMCO under a 
harmonic-type excitation. 

 
The simulation method has been validated over a large 

window of materials (Fig. 6 - a, b, c). In Fig. 6 - d, e, good 
simulation results were obtained under unsymmetrical 
excitation waveform for the FeSi NO (minor loop) and for the 
Telar 57 ARMCO (harmonic-type excitation). 

III. BENCHMARK TEST: NONLINEAR MAGNETIC FIELD 

DIFFUSION THROUGH THE CROSS SECTION OF A 

FERROMAGNETIC LAMINATION 

The ability of the DSHM model and its alternative 
implementation method to behave correctly under symmetrical 
and unsymmetrical magnetic excitation waveforms and for 
different nature of materials have been verified in the previous 
section. Its performances combined with a numerical solver for 
the solution of the diffusion problem in ferromagnetic pieces 
remain to be evaluated. The magnetic field diffusion through 
the cross-section of a ferromagnetic lamination is strongly 
nonlinear.  

     ∇ଶ𝐻ሬሬ⃗ = 𝜎.
ௗሬ⃗

ௗ௧
                        (6) 

σ is the electrical conductivity. Macroscopic eddy currents 
due to the dynamic of the external magnetic excitation interfere 
with microscopic ones linked to the domain wall motions 
[14][15]. Good simulation results for this diffusive behavior 
have been obtained by coupling finite differences resolution to 
frequency-dependent hysteretic material law as detailed in [29]-
[32]. In this experimental situation, B and H are supposed 
colinear during the magnetization process. This hypothesis 
allowed to reduce the simulation scheme to scalar quantities. 
Just like in [30], the equations solved for each node i of the 
finite difference mesh can be written as follows:  
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Here, f-1
quasi-static(B) is a quasi-static magnetic field 

contribution obtained from a quasi-static hysteresis model H(B) 
and ρ a dynamic constant depending on the tested specimen 
nature and geometry. The J-A, the Preisach, or the DSHM 
models described in the first part of this manuscript in their 
B(H) version were tested for this contribution. The finite 
differences discretization scheme we opted for is illustrated in 
Fig. 7 below. The simulation has been carried out in a 1D 
window using a regular grid for the spatial discretization. The 
lamination thickness was 0.65 mm with a discretization step of 
0.0016 mm. We assumed the imposed Hsurf on top and bottom 
of the lamination as identical.  

The evolution of the local magnetic state as a function of the 
excitation frequency is depicted in Fig. 8. We illustrate the skin 

effect, i.e., the increasing eddy current density at the top and 
bottom layers as the frequency is growing. 

 
Fig. 7, Finite differences discretization. 

 
The lamination simulated was a FeSi electric steel M400P50, 

with σ being set to 6.4 106 S.m-1 and ρ to 0.04. 

 
Fig. 8, Magnetic state distribution through the cross section of the lamination. 

 
The result depicted in Fig. 8 below shows the evolution of the 

hysteresis cycles for different frequencies. B stands for the 
average of the induction field: 

                            𝐵(𝑡) = ∑
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H is the imposed tangential component of the magnetic 
excitation at the specimen surface. The three quasi-static 
contributions were tested, and the numerical performances were 
compared in Tab. 1. As observed in Fig. 9, the simulation results 
obtained using the DSHM model were of reasonable accuracy. 
In terms of numerical performances, the gain of simulation time 
was significant (÷100), as indicated by the computational times 
provided in Tab. 1. For every test, a suitable timestep was 
chosen to ensure the stability of the numerical scheme. 

 
Fig. 9, Comparison simulations/measurements, the J-A, the Preisach and the 

DSHM are tested successively as quasi-static contribution to check the 
accuracy of every method. 

e 



Tab. 1 Simulation performances. 

 
 

In the last simulation test, we used the DSHM but with a finer 
mesh, including 80000 nodes. The same macroscopic behavior 
(Fig. 9) was observed while the simulation time remained 
below 21s, confirming a neat gain in the total simulation time. 

IV. CONCLUSION 

The DSHM model is an elegant alternative method for the 
hysteresis consideration in space discretized simulations. It is 
characterized by simple memory management and reduced 
memory allocation. Convergence and precise simulation results 
can be reached with a relatively coarse temporal discretization. 
Based on the interpolation of a precalculated matrix hysteresis 
data, the model is easily reversible and exportable.  

To fill the matrix, a set of experimental first-order reversal 
curves is usually used. It is evident that getting such 
experimental results can be complicated in many situations, 
including electromechanical converters design or 
electromagnetic nondestructive testing, but in this study, we 
demonstrated that a reduced number of experimental data could 
fill the DSHM model matrix thanks to assumptions also used to 
parameter the Preisach and the Jiles-Atherton models. The 
reversal curves are obtained numerically from the classic 
simulation methods and used to fill the DSHM matrix. 

The DSHM model implemented this way provides correct 
simulation results even under unsymmetrical waveform 
situations. Implemented in a nonlinear dynamic finite 
differences numerical scheme to resolve the magnetic field 
diffusion through the cross section of a magnetic lamination, it 
allows to attain considerable speed-up of the simulation process 
while conserving a very reasonable level of accuracy. 
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