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Abstract 

This paper studies the interactions between the European carbon and green bond markets 

from the lens of the European power firms’ trading activity over an eight-year period (2013-

2020). Those power firms have used two segments of carbon markets differently: one for short-

term hedging and speculative purposes and one for long-term hedging needs. The second one 

is found to have an informational advantage over the other and complements it.  

Interestingly, we show that power firms have used the green bond market as a 

complement to the carbon futures market used for their short-term hedging or speculative 

activities. Instead, they have employed the green bond market as a substitute for the carbon 

futures market used for their long-term hedging activities since 2018.  

Taken together, our results shed light on a pivotal change in the behaviour of European 

power firms that progressively abandon the carbon market to issue more green bonds in order 

to finance their transition to clean energy production systems.  
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1. Introduction 

The electricity sector is the most concerned by the financing of energy transition in 

Europe because of stringent limits on greenhouse gas emissions (EU, 2019; Fatica et al., 2019). 

Against the backdrop of climate change, the European Union implemented its Emissions 

Trading System (EU ETS hereafter) fifteen years ago to cut greenhouse gases emissions to zero 

by 2050. The EU ETS has created the world's largest carbon market valued at 169 billion euros 

in 2019 (Refinitiv, 2020), where European Union Allowances (EUAs hereafter) can be traded. 

Recent trends also point toward a rapid increase in the supply of green bonds especially 

in Europe (CBI, 2018; CBI, 2020a). Research has shown that green bonds have beneficial 

impacts on the reputation of firms (Flammer, 2020), on their cost of capital (Gianfrate and Peri, 

2019), and also on their environmental footprints and financial performance (Flammer, 2020). 

In view of these benefits, the volume of green bonds issued by power firms that account for 

half of the emissions covered by the EU ETS (Schultz and Swieringa, 2018), has soared over 

the past few years in Europe (CBI, 2018; 2020b), highlighting their effort at mobilising debt to 

finance low carbon projects (Monk and Perkins, 2020). Since the environment surrounding 

carbon markets is volatile, they may also use green bonds as an efficient tool to manage their 

carbon risk exposure (Jin et al., 2020). Despite the growth in popularity of the green bond 

market among power firms, there is, however, a lack of understanding of its joint contribution 

with carbon markets in their transitions to carbon neutrality.  

The purpose of this study is to better understand the different relationships between the 

European carbon and green bond markets from the lens of the trading activity of power firms. 

Our research exploits the idea that power firms can issue green bonds to reduce their carbon 

hedging needs rather than using EUA futures markets provided that they have the sufficient 

pipeline of low carbon and/or green projects to be financed. Issuing a new green bond is an 

information signal sent to investors on their willingness to switch from a carbon hedging policy 
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to a long-term investment policy in sustainability (Flammer, 2020). In this respect, we 

acknowledge the importance of corporate green bonds because of their growing role in funding 

low carbon (or green) projects. Notably, the amount of green bonds issued by non-financial 

corporates has tripled between 2017 and 2019 (CBI, 2020a).  

The originality of our paper consists of investigating the different volume-volatility 

interactions between the EUA carbon futures and green bonds markets from the lens of the 

activity of European power firms in order to test for substitutability/complementarity between 

those two markets. For that purpose, we take an informational perspective considering that the 

two markets are (information) complements (resp. substitutes) as those in which prices reflect 

information flows, with no significant (resp. significant) relationship between their trading 

volumes consistent with the definition of Holder et al. (2012) and Switzer and Fan (2008).  

The issue of substitutability/complementarity between those markets is not new for power 

firms for two reasons at least. First, they could have invested in Clean Development Mechanism 

projects monetised in certified emission reductions (CERs). In Phase II of EU ETS (2008-12), 

they could convert up to 13.4% of their CERs in EUAs to offset their emissions while in Phase 

III (2013-2020) only CERs from the least developed regions could substitute for EUAs. Second, 

volatility transmissions from energy markets to the EUA carbon market are significant due to 

a prominent fuel switching relationship (Schultz and Swieringa, 2018). As a result, natural gas 

may serve as a substitute for coal in power generation in Europe in addition to complement 

renewable energy because it covers for the intermittency of power generated by renewables. 

Understanding the interactions between those markets is not only important for power 

firms but also for investors, exchanges and policy makers. Since carbon prices are volatile, 

power firms and investors can include green bonds in their portfolio of energy and carbon assets 

to hedge against carbon price volatility (Jin et al., 2020). From the perspective of carbon 

exchanges, knowing that the two markets are either substitutes or complements is essential in 
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terms of product design and marketing issues. In fact, the degree of competition may lead 

current carbon exchanges to launch (or not) green bond listings in view of the associated 

expenses. From a policy making perspective, if issuing green bonds is actually viewed as an 

alternative to carbon hedging by power firms, it may indicate that the carbon price signal 

operates so the EU may decide to adjust the emission cap for the power sector accordingly.  

However, due to a lack of volume data, analysing the different interactions between 

carbon and green bond markets has been difficult, at best. To date, few papers have explored 

the volatility relationships between carbon and green bond markets. Using world S&P price 

indexes, Jin et al. (2020) found that the green bond market is more related to the carbon market 

than the energy market. Using US S&P price indexes, Hammoudeh et al. (2020) detected a 

significant time-varying causality running from the US carbon index to the US green bond 

market from 2013 to 2015. However, the price indexes used in those papers are not accountable 

for the European corporate green bond market performance and risk (Bachelet et al., 2019).  

To the best of our knowledge, no attempts have been made to study the interactions 

between carbon and green bond markets using the different volume/volatility relationships. To 

bridge this gap, we extend the methodology of Rannou and Barneto (2016) to explore the 

interactions between volume and volatility of European carbon futures and green bond markets. 

The primary emphasis of our study is to examine the interactions between the volumes of 

EUA carbon futures and their volatilities. The second emphasis of our study is to shed light on 

the complementarity and/or the substitutability relationships between the green bond and the 

EUA futures markets from the perspective of European power firms’ trading (volume) activity. 

Empirically, we consider monthly aggregate volumes of EUA futures and green bonds 

since the number of green bonds issued by power firms remains low making the daily frequency 

irrelevant. Next, we follow the recommendations of Lucia et al. (2015) to dissociate two EUA 

carbon futures markets: i) that related to the second-to-maturity EUA December futures, which 
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concentrates long-term hedging positions notably those of power firms; ii) that related to the 

front EUA futures, which reflects the extent of short-term hedging or speculative positions.  

We then perform a series of Granger causality tests and regression tests to assess causality 

between monthly volumes of EUA futures and green bonds issued by European power firms 

and volatility. In this regard, we develop a bivariate GJR GARCH model to study causality 

between volume and volatilities by capturing the asymmetric behaviour of volatility conditional 

to price variations after the arrival of positive or negative information (proxied by volume) as 

in Rannou and Barneto (2016). In addition, we consider three VAR model specifications to 

examine the relationships between the volumes of the two EUA carbon futures and green bond 

markets controlling for effects of their own volatility, of the macroeconomic environment 

(Broadstock and Cheng, 2019) and of energy sector performance (Liu et al., 2020). Finally, we 

employ a rolling VAR procedure to assess the time-varying influence of the green bond 

volumes on the activity of the two EUA futures markets. 

Our study builds on the lessons of information theories connected to market 

microstructure research. The Sequential Arrival of Information Hypothesis (SIAH hereafter) 

developed by Copeland (1976) considers that information is disseminated sequentially from 

one group of informed traders (hedgers) to another group of uninformed traders (speculators). 

Since information arrives to the two groups at different rates, they react and trade at different 

times generating lagged relationships between volume and volatility de facto. The Dispersion 

of beliefs model (DBM) of Shalen (1993) is complementary to SIAH. DBM attributes unusual 

volumes and excess volatility to uninformed traders’ dispersions of beliefs in the context of a 

futures market. Because uninformed traders are inclined to exaggerate price movements leading 

to increase volatility by their volumes, a positive volume-volatility relationship arises. 

Regarding EUA futures markets, Rannou and Barneto (2016) verified a lead-lag and positive 

relationship between volume and volatility, providing support for both SIAH and DBM. Bredin 
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et al. (2014) also detected a lead-lag volume–volatility relation in the EUA futures markets after 

accounting duration effects as predicted by SIAH. Balietti (2016) found that the lead-lag and 

positive relation between volume and volatility in the EUA futures markets was mainly due to 

the trading activity of the power sector. 

Apart from the case of EUA futures markets, the volume/volatility couple has also been 

explored to test the complementarity or substitutability nature of derivatives markets. Using the 

volumes of corn futures traded on U.S. and Japanese exchanges, Holder et al. (2002) showed 

that the two futures markets are complementary. By contrast, in the foreign exchange market, 

Switzer and Fan (2008) documented that futures and OTC forward markets are substitutes. 

Our study brings three main novel contributions to the above-mentioned literature. First, 

we analyse the interactions between the volume and volatility of two EUA carbon futures 

markets used either for short-term hedging or speculation (i.e., EUA front futures) or long-term 

hedging needs (i.e., EUA second-to maturity futures) over an eight-year period (2013-2020) 

corresponding to the Phase III of EU ETS. Causality tests and regression results carried out in 

a bivariate GJR GARCH model clearly show that EUA futures trading activity in the second-

to-maturity influence the trading activity in the front contract but not vice versa. This result 

provides evidence that the carbon market used by power firms for long-term hedging serves as 

a substitute to that used for short-term hedging and benefits from an informational advantage 

over the other since it is populated by hedgers (Bredin et al., 2014; Balcilar et al., 2016). Second, 

we find that European power firms consider the green bond market as a complement of the 

EUA carbon market used for short-term hedging. Third, we show that European power firms 

have begun to consider the green bond market as a substitute of the EUA carbon market used 

for long-term hedging from 2018, a period during which the EUA carbon price has soared. Our 

two latest results are insensitive to the variations of the economic context in Europe and of the 

equity market related to the energy sector. In practice, a European power firm who buys (resp. 



-7- 
 

sells) 1 ton of carbon dioxide with a front (resp. second-to maturity) EUA futures used for short- 

(resp. long-) term simultaneously issues 1 euro (resp. 0.15 euro) of green bonds, on average, 

according to our VAR model estimations. Overall, our findings highlight a pivotal change in 

the strategies of European power firms that progressively abandon the EUA carbon market and 

issue more green bonds to finance their transition to clean energy production systems. 

The rest of the paper is organised as follows. The next section presents an overview of 

the European carbon and green bond markets. Section 3 discusses the related literature. This is 

followed by a presentation of the methodology and data used. Section 5 outlines the main 

empirical results. The final section offers concluding remarks and policy implications. 

2. Institutional Background 

The EU-ETS scheme has been rolled out in phases. The pilot Phase I started in 2005 and 

ended in 2007. As in Phase I, circa 90% of EUAs were allocated for free in Phase II that ran 

from 2008 to 2012. In Phase III (2013-2020), 12% were freely allocated implying that 88% of 

EUAs are auctioned, on average. In the power sector, 100% of EUAs were almost auctioned.4  

In theory, the EU ETS forces regulated firms to cover their carbon emissions by trading EUAs. 

In reality, the EU ETS is a financial market, which allows hedging and speculative positions.  

The EU ETS covers applies to the power, industrial sectors and intra-EU flights. Almost 

60% of the emissions covered by the EU ETS come from the electricity (or power) sector (EEA 

2021). Consequently, it is the main EU ETS participant and the main buyer of EUA futures 

used for hedging purposes. According to the estimates of Schopp and Neuhoff (2013), European 

power firms hedge 46% of their output two years in advance, and 84% one year ahead, on 

average. In turn, they are continuously exposed to important electricity and EUA price 

 
4 In Phase III, a very low number of EUAs were freely allocated by certain Member States whose GDP per capita 
was below 60% of the EU average in 2013 in order to accelerate the modernisation of their electricity sector. 
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(volatility) risks (Balcilar et al., 2016) but also to volume risks such as demand for retail 

electricity suppliers and power output for renewable energy producers.  

To reduce these two kinds of risk exposures, power firms are used to sell power several 

years ahead of production. To secure prices of their power generation inputs (e.g., coal, gas, 

fuels), they buy them in advance. In this respect, the carbon hedging schedule of a power firm 

is determined as a function of its volumes of power sold forward. Thus, when its expectations 

about future energy and EUA prices differ from futures prices, the power firm will adjust their 

EUA hedging volumes. More especially, Schopp and Neuhoff (2013) consider that they deviate 

from their hedging schedule because they contract greater (resp. lower) volumes of coal in year 

one (resp. year two) if expectations are higher (resp. lower). Mechanically, their carbon hedging 

demands tend to increase (resp. decrease) in year one but decrease (resp. increase) in year two. 

Moreover, power firms can determine or adjust their carbon hedging demand on the basis 

of their calculated hedge ratios, which give the optimal amount of EUA futures that they must 

buy to reach a minimum level of unfavourable (spot) price variation (Balcilar and al., 2016).5  

In Phase III of EU ETS (2013-2020), power firms are required to purchase a significant 

higher volume of EUA futures to be compliant because they have no longer received free EUAs 

and EUA auctions are also limited in number. In this context, hedging in the short term with 

EUA futures give power firms time to gradually make recourse less carbon intensive energy 

sources (Balcilar et al., 2016). Moreover, the fact that EUA futures are not always effective for 

hedging due to time-varying relationships between EUA spot and futures markets or between 

EUA and energy prices has stimulated the adoption of cleaner energy sources by power firms. 

Consequently, power firms have increasingly financed low-carbon technologies and cleaner 

energy productions to reduce their rising carbon hedging demand and their exposure to the EUA 

 
5 Using EUA December futures, Balcilar et al. (2016) find that the carbon hedging strategies based on the use of 
time-varying hedge ratios are more effective than those determined from static hedge ratios. Therefore, power 
firms may apply these time-varying hedge ratios to rebalance their EUA futures positions in a more profitable way. 
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(volatility) risk (Balcilar et al., 2016). For that purpose, they have issued green bonds that are 

debt instruments whose ‘proceeds will be exclusively applied towards new and existing green 

projects’ (Monk and Perkins, 2020) to finance or refinance investments in renewable energy 

and energy-efficiency projects (Bachelet et al., 2019; Liu et al., 2020).  

Between 2017 and 2018, a period during which EUA carbon prices rose, the amount of 

green bonds issued by corporates took off in Europe. Thereafter, CBI estimated an added 50 

billion dollars issuance value from non-financial corporates in 2019 vs. 2018 in Europe (CBI, 

2020a). Among the 145 firms that issued green bonds in 2019, 48 belonged to the energy sector 

that uses about 90% of bond proceeds to finance low carbon energy investment (CBI, 2020a).6  

Energy sector issuance of green bonds is dominated by large and diversified power firms in 

Europe including EDF, Enel, Engie, Iberdrola, Ørsted (CBI, 2018; CBI, 2020b). Power firms 

continued their green bond issuance at an equivalent rate in 2020, notwithstanding the COVID-

19 pandemic. For instance, the German electricity producer EON issued two green bonds with 

tranches ranging from 750 million euros to 2.25 billion euros. After a difficult second quarter 

in 2020, confidence returned in the next quarter resulting in the most prolific quarter in terms 

of issuance (World Bank, 2020a), supported by the EU plan to issue 225 billion euros in green 

bonds in the forthcoming years by the EU President von der Layen (CBI, 2020a; CBI, 2020b).  

3. Literature Review 

The interaction effect between the green bond market and the carbon market is twofold. 

First, if carbon emissions from power companies are capped, carbon emissions leakage can 

occur when those companies issued green bonds to finance climate change mitigation projects. 

This mitigation achieved reduces de facto the scarcity of EUAs below the cap, thereby allowing 

emissions to shift rather than their net reduction (Heine et al. 2019). Second, price volatility 

 
6 Among the top 10 issuers, we find five power firms: Iberdrola, Engie, TenneT, Enel, Innogy (CBI, 2020b). 
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explains the interaction between green bond and EUA markets. As the returns on investment 

for green projects depend on carbon prices, a more stable EUA price also creates a more stable 

return on investment and accordingly a greater demand for green bonds (Heine et al. 2019). 

If the question about the complementarity between carbon pricing tools has been at the 

heart of debates in environmental theory (World Bank, 2020b), it has shown a resurgence of 

interest because of their potential link with green bonds. A survey made for the European 

Commission highlighted that the issuance of green bonds by non-financial corporates have led 

to a reduction in the firm level carbon emissions relative to total assets in Europe (Fatica et al., 

2019). Moreover, Jin et al. (2020) verified that the green bond market offers the best hedge for 

the carbon market when studying causality between the S&P Energy, S&P Carbon and S&P 

Green Bond price indexes. In the US market, Hammoudeh et al. (2020) detected a time-varying 

causality from carbon prices to the green bond market from 2013 to 2015, a year during which 

carbon prices peaked. Using also price indexes, Reboredo et al. (2020) concluded that investors 

may use green bonds as an alternative to other fixed income securities in their portfolios.  

To date, no studies, however, have investigated the substitutability/complementarity 

between carbon and green bond markets by studying their price–volume relationships i.e., how 

EUA carbon price volatility affects the volumes of EUA futures or green bonds and vice-versa. 

Because traders cannot observe the information signal with only studying prices, volume 

may provide the required additional information for that signal to be captured. In this way, 

different categories of traders focus on the volatility–volume relationship in futures markets. 

Hedgers are prone to trade futures to smooth their future revenues or charges along a volume 

being determined according to their expectations about future price changes. As for speculators, 

they open a position in futures based on their forecasts of futures price volatility. Assessing 

precisely price volatility is therefore useful for hedgers and speculators in energy markets to 

assess margin requirements of their traded futures (Chevallier and Sévi, 2012). 
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From a theoretical perspective, a sizeable market microstructure literature has explored 

the linkages between price volatility and trading volumes in futures markets (Karpoff, 1987). 

Copeland (1976) built the SIAH model where information becomes known by distinct group of 

traders at different times, generating a positive and lead-lag relationship between volume and 

volatility. Hence, the rate by which information arrived and the level of information held by 

traders pilot their liquidity or hedging needs and drives the volume/volatility relation. The DBM 

of Shalen (1993) states that asymmetrically informed traders differ in the way they interpret 

incoming information and trade from their different beliefs. The dispersion (or variety) of their 

expectations involves a positive relation between volume and volatility. Those two main 

information theories: SIAH and DBM have been used to explain the volume/volatility relation 

on EUA futures markets. Bredin et al. (2014) document a positive and lead-lag relationship 

between volume and volatility of Phase II EUA futures providing support for the SIAH. Rannou 

and Barneto (2016) show that the volumes of nearby EUA futures affect volatility estimates but 

not vice-versa. Like Bredin et al. (2014), they report a significant lead–lag causal relation 

between volumes and volatility and conclude that both SIAH and DBM apply to EUA futures 

markets. Balietti (2016) attributes the positive and lead-lag volume–volatility relation in the 

EUA futures markets to the trading activity of energy producers including power firms.7 

Outside the EUA futures markets, the volatility–volume relationship has been studied to 

test the complementarity or substitutability nature of derivatives markets. Holder et al. (2002) 

find a complementary relationship between U.S. and Japanese corn futures markets based on 

the quasi absence of volume interactions. In the foreign exchange market related to the 

Canadian Dollar, Switzer and Fan (2008) detect significant Granger causality from the futures 

 
7 Balietti (2016) uses the European Union Transactions Log to track permit transfers across the individual accounts 
of EU ETS installations in Phase I. Balietti (2016) estimates that accounts held by the power sector are responsible 
for almost 60% of the trading activity. However, the method developed by Balietti (2016) is not adapted to estimate 
the carbon hedging volumes. First, permit transfers are not priced and are not initiated on exchanges. Second, those 
transfers cannot be differentiated according to their objectives (hedging or speculating) and are not related to firms.  
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volume to OTC derivatives volume but not reciprocally. This result implies that futures markets 

have an informational advantage. Then, their regression tests provide evidence of 

substitutability between the foreign exchange futures market and the OTC derivatives market. 

4. Methodology and data  

4.1. Data selection 

We compile a first dataset from Datastream related to EUA December futures contracts 

traded on the European Climate Exchange (ECX). ECX has been the most liquid EUA futures 

exchange since the advent of EU ETS attracting many market participants and far greater 

trading volumes (Boutabba, 2009). For Boutabba (2009) and Stefan and Wellenreuther (2020), 

the quasi monopoly of ECX explains that it has led price discovery in Phases II and III.  

This first dataset is composed of two EUA futures sliced series, namely the front December 

futures and the second-to-maturity futures starting from January 2013 until December 2020. 

Similar to Lucia et al. (2015) we consider the front EUA December futures as that concentrates 

the majority of the short-term hedging or speculative activity, whereas the hedging demand 

focuses on the second-to-maturity EUA December futures, as is the case in financial markets.  

We rely on splicing techniques to create two full time series: front and second-to maturity EUA 

December futures series. As in Rannou and Barneto (2016), we switched to the most liquid 

(front) contracts as evidence that the market’s attention turns away as soon as the daily trading 

volume and open interest for the nearby December futures are lower than those for the next 

contract. We proceed similarly to form the second-to-maturity EUA December futures series.8 

As a result, this first dataset is made up of two full time series of ECX EUA futures cumulating 

2020 observations (prices and volume) from 2013 to 2020: 1) front and 2) second-to maturity.  

 
8 Data related to the volumes traded by power firms on exchanges are not available because trading occurs on a 
limit order book that offers anonymity to traders (Rannou and Barneto, 2016). Further, in the event that identities 
of traders may be disclosed, the trading volumes of power firms should be underestimated since they will not 
include those of brokers who execute their large orders on their behalf. By contrast, our methodology allows us to 
estimate consistent hedging volumes since our two sliced series mimic the rollover strategies used by power firms 
or their brokers when they take short-term or long-term hedging positions with EUA December futures. 
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We build a second dataset of green bonds issued by power firms on European stock 

exchanges. Information related to green bonds is collected from Datastream and includes issuer 

name, issuance size, coupon rate, currency, rating, number of securities issued, use of proceeds. 

Also, we visited the websites of European exchanges where green bonds have been issued: the 

Luxembourg Green Exchange, Euronext, the London Stock Exchange, Deutsche Boerse, the 

Madrid Stock Exchange, Borsa Italiana, the Vienna Stock Exchange and the Nasdaq OMX to 

verify that the list of green bonds proposed by Datastream matches the compilation of the lists 

of green bonds displayed by those exchanges. This second dataset is composed of monthly 

aggregate volume of green bonds because green bond issues are not sufficient in number to 

form a daily volume series.9 We consider green bonds issued by power companies covered by 

EU ETS with carbon emissions that exceed an annual total of emissions of 1 MtC02eq, which 

corresponds to an annual carbon hedging exposure of 12 million euros considering the average 

EUA price in Phase III (12 €/tCO2eq). For the purposes of clarity and consistency with previous 

studies (Bachelet et al., 2019; Broadstock and Cheng, 2019; Flammer, 2020), we decided to 

exclude sustainability linked bonds and transition bonds from our sample of green bonds.10 

Table 1 outlines the characteristics of the 86 sampled green bonds issued by power firms 

over the period January 2013 - December 2020. Two preliminary findings emerge from our 

interpretation of the Table 1 statistics. First, there is no apparent association between the level 

of the bond credit risk (measured by the rating) and the number or the size of the green bonds 

 
9 We compute the volume by dividing the notional amount of green bond issued by the value of securities issued. 
10 Green Bonds are bonds where the proceeds are exclusively used to finance green and low carbon projects with 
clear environmental benefits, which are aligned with the EU Taxonomy. However, there are firms that cannot issue 
green bonds today, due to a lack of sufficiently green projects. This is the reason why investment banks have 
proposed transition bonds to provide financing for these firms, which are ‘brown’ today but target a transition to 
green in future. However, no uniformly accepted definition or standards of transition bonds clearly exists today. 
By contrast, ICMA (2020) defined Sustainability-Linked bonds as bonds for which the financial and/or structural 
features (e.g., coupon, maturity, repayment amount) can vary depending on whether the issuer respects predefined 
Environmental and/or Social and/or Governance (ESG) goals within a predefined timeline. 
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issued. Second, the more that the level of annual carbon emissions of a power firm is important, 

the shorter is the maturity of green bond it issued is and the greater is its number of bond issues. 

[INSERT TABLE 1 HERE] 

Figure 1 plots the number of those sampled green bonds issued annually and the evolution 

of the front EUA futures. Interestingly, when the EUA carbon price averaged €24.7/tCO2eq. 

between 2019 and 2020, i.e., more than three times higher than over the period 2013-2018, we 

observe that the number of green bonds issued has taken off from 15 green bonds in 2018 to 27 

two years after. If this result suggests that an increasing EUA price may boost green bond 

issuance of power firms, it also indicates a negative inter-market price/volume relationship. 

[INSERT FIGURE 1] 

In addition, we observe from Figure 2 that the annual volume of the sampled green bonds 

issued by power firms is a negative function of their aggregate annual level of carbon emissions. 

If the volume of their green bond issuances has significantly increased from 2017-2018, this of 

carbon emissions plummeted to a third indicating that power firms have progressively switched 

to cleaner and low carbon technologies as underlined by Hammoudeh et al. (2020).  

In fact, most of the proceeds from green bonds issued by power firms tend to be geared 

towards renewable energy projects including wind farms, solar energy and photovoltaic 

facilities, hydro-power and biomass generation. Also, they may be allocated to energy 

efficiency projects like renovation of buildings, low-carbon transportation and infrastructure. 

A small share of proceeds may also be used to finance biodiversity projects (CBI, 2019).  

[INSERT FIGURE 2] 

These two results underscore that the power firms’ supply of green bonds is negatively 

related to their carbon hedging demand as seen in Table 1 but also to the cost of their hedging 

(i.e., the price of EUA futures). Ultimately, these negative relationships raise the question of 

substitutability between the EUA and the green bond market for the case of power firms. 
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4.2. Causality tests 

To assess causality between returns and volume, we model the conditional mean equations: 
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          (2) 

Where: RETEUA,t is the EUA futures return at month t, VOLt the corresponding monthly volume 

of EUA futures (or green bonds). Eq. (1) includes 2
RET lagged squared errors to measure return 

volatility to test whether in this specification lagged return volatility causes volume. Although 

Eqs. (1) and (2) are not written in a conventional VAR form, the rationale of running causality 

tests between volatility and volume series is analogous to this of linear Granger causality tests 

(Rannou and Barneto, 2016).11 Significance of the causality results are based on F-statistics.  

Chevallier et Sévi (2012) find a positive but asymmetric for crude oil and natural gas futures. 

Using a bivariate GJR GARCH model, Rannou and Barneto (2016) also detect an asymmetric 

relationship between volume and volatility of EUA futures in Phase II of EU ETS. To estimate 

conditional variance modelled by an asymmetric impact of prior positive and negative volume 

(information) shocks, we write a GJR-GARCH (Glosten et al, 1993) process such that:12 

2 22 2
, , , , , , 1 , 1 ,

1 1 1
EUA EUA EUA EUA EUA EUA EUA EUA EUA

M N O

RET t RET m p RET t m RET n RET t n RET RET t RET t RET o t o
m n o

I VOL        
    

  

             (3) 

2 22 2
, , , , , , 1 , 1

1 1
EUA

QP

VOL t VOL VOL p VOL t p RET q VOL t q VOL VOL t VOL t
p q

I       
   

 

                    (4) 

Where: 2
,EUARET t and 2

,tVOL  are the conditional variances of returns and volume at time t, the 

dummy variables , 1RET tI 
  et , 1VOL tI    are equal to 1 (otherwise equal to 0) if respectively , 1EUARET t 

<0 or if 1, tVOL  <0. The asymmetric effect of information on volatility is captured by 
EUARET  and 

VOL  in Eqs. (3) and (4), respectively. To examine the relation between volatility and volume, 

 
11 We proceed to pair wise causality tests following the Toda and Yamamoto (1995) approach, which allows the 
fitting of volume and volatility variables into a VAR in levels without considering cointegration testing procedure. 
12 We obtain a GJR GARCH (1,1) optimal model for return variance after having estimated alternative 
specification including more lags in the asymmetry terms, which are not statistically significant at all levels. 
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we introduce lagged volume otVOL   given ,EUARET o  that tests its impact on current volatility. 

Finally, we estimate a constant bivariate GJR-GARCH model using the Berndt–Hall–Hall–

Hausman (BHHH) algorithm in all scenarios as in Rannou and Barneto (2016).  

4.3. VAR analysis 

We examine the connectedness between green bond and carbon markets but also with 

other financial markets in a flexible VAR framework. As a matter of fact, Liu et al. (2020) 

document a positive price relationship between the green bond and (clean) energy stock 

markets. Specifically, we develop three VAR model specifications with two lags and FUT1 and 

FUT2 volume as endogenous variables. In Model 1, the green bond volume is an exogenous 

variable providing an insightful base from which to study our subsequent Models 2 and 3. Given 

volatility is likely to affect EUA futures volume (see Table 4), Model 2 includes the volatility 

of the two EUA futures markets as exogeneous variables. Model 3 adds two exogeneous 

variables to Model 2: i) the monthly return of MSCI Energy index (EnergyRet) to control for 

the influence of the stock market performance of the European energy sector (Broadstock and 

Cheng, 2019; Liu et al., 2020) and ii) the OECD Composite Leading Indicator (CLI Europe) 

for the EU to control for changes in business activity in Europe (Broadstock and Cheng, 2019).  

5. Empirical Results 

5.1. Descriptive statistics of the two EUA futures and Green Bond markets  

Panels A and B of Table 2 provide summary statistics on the mean, standard deviation, 

skewness, excess kurtosis, the Jarque–Bera test for normality and ARCH test of the two EUA 

futures volatility series as well as the two EUA futures and green bonds volume series 

respectively. The front EUA futures (FUT1) exhibits higher mean monthly volume and 

volatility than the second-to-maturity EUA futures (FUT2) signalling a positive 

volume/volatility relationship in EUA futures markets consistent with the findings of previous 

studies (Bredin et al., 2014; Rannou and Barneto, 2016). Since the two EUA futures volatility 
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series have significant skewness, and excess kurtosis, normality is rejected given the Jarque 

Bera test. If the ARCH (2) statistic of the EUA futures volatility and volume series are 

significant, it is, however, insignificant for the case of the GB volume series, that would offer 

lower predictability perspective. Given the ARCH (2) tests, we suspect the existence of a time-

varying second moment in EUA futures. Therefore, we then adopt GJR-GARCH asymmetric 

specification when regressing volatility in order to capture dependence structures in mean and 

conditional variance equations. Moreover, we conduct ADF tests, which confirm that all 

volume and volatility series are stationary. Besides, ADF tests can be unreliable in the presence 

of structural breaks. Instead, we test for an unknown structural break in the intercept and level 

and unit root simultaneously using the Zivot and Andrews (ZA) test as in Boutabba (2009). ZA 

tests also attest that all series are stationary. 

[INSERT TABLE 2 HERE]  

The contemporaneous correlations between the volatility and volume series of the two 

EUA futures and the green bond markets are reported in Table 3. As shown by Lucia et al. 

(2015), the front EUA futures (FUT1) volatility is almost perfectly correlated with that of the 

second-to-maturity EUA futures (FUT2), while their volumes are significantly less positively 

related, suggesting that the two EUA futures markets are complementary and used for different 

purposes: short-term hedging or speculative for FUT1 and long-term hedging for FUT2.  

On the one hand, we can argue that if FUT2 contracts are not considered as an alternative 

to FUT1 contracts by power firms, the two futures markets are indeed complements. This 

implies that an increase in the volume of FUT2 would cause an increase in the FUT1 volume, 

as power firms prefer using FUT1 to hedge instead of speculating or arbitraging. On the other 

hand, we can argue that the two carbon markets share information unlike Holder et al. (2002). 

In this way, power firms view these markets as informationally complements. In case when 
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EUA prices react to the same informational factors, no relationship in volumes would be 

detected. Thus, the two EUA futures markets also appear to have a complementary relationship. 

Also, we note that the correlation between the FUT1 futures and the green bond volumes 

is significantly positive while this between the FUT2 futures and the green bond volumes is 

negative. Taken together, these two results suggest a complementary (resp. substitutability) 

relationship between the green bond market and EUA futures markets used for short-term 

hedging or speculation (resp. long-term hedging) purposes by European power firms. 

[INSERT TABLE 3 HERE] 

5.2. Causality tests results 

Table 4 presents Granger causality tests with 2 and 3 lags used to study lead-lag 

relationships. Panel A results indicate a unidirectional causality running from the volatility of 

the two EUA futures to their corresponding volumes significant at all lags and a unidirectional 

causality from their own volatilities to the volumes of the other one, which is only significant 

with 3 lags. These results suggest that the nature of price risks hedged in the two EUA futures 

markets by power firms (through their trading volumes) may be not identical. Further, an 

absence of causality from the EUA futures volume and their volatilities is reported implying 

that these volumes have no explanatory power for volatility changes in the EUA futures markets 

in contrast with the findings of Switzer and Fan (2008) related to the foreign derivatives market.  

Besides, we can see from Panel B the absence of inter-market causal relations between 

the volume of green bonds and the volatility of the two EUA futures. Accordingly, higher EUA 

volatility risks do not necessarily cause a large number of green bond issuances by European 

power firms instead of a significant increasing trend of EUA prices observed from 2017 (see 

Figure 1). This latest result is in line with that of Hammoudeh et al. (2020), who detect causality 

running from US carbon prices to the US green bond market over the period 2013-2015. 
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Interestingly, Panel C shows that the green bond volume causes the two EUA futures 

volume with 2 and 3 lagged months, which corresponds to the time necessary to issue a green 

bond (Monk and Perkins, 2020) but not vice-versa. Also, a unidirectional causality from the 

second-to-maturity EUA futures (FUT2) volume to the front EUA futures (FUT1) volume is 

observable at all lags. This result can be interpreted in two ways. First, since FUT2 trading 

activity is found to lead FUT1 trading activity, the EUA carbon market used for long-term 

hedging appears to have an informational advantage consistent with the findings of Lucia et al. 

(2015). This is due to the fact that this FUT 2 market is largely dominated by hedgers such as 

power firms that are privately informed traders (Bredin et al., 2014; Rannou and Barneto, 2016). 

Second, considering the definition of complementary markets of Holder et al. (2002), we can 

argue that the two EUA futures markets have a complementary relationship because of an 

absence of a significant bidirectional causality between their respective trading volumes.  

[INSERT TABLE 4 HERE]  

To verify that the aforementioned causal relations between those EUA futures markets 

persist, we regress their contemporaneous trading volumes on lagged values of the volumes of 

the two EUA futures in a similar manner as Rannou and Barneto (2016). We determine two 

lags as optimal autoregressive lags with the AIC benchmark for volume variables in Table 5.  

On the left column (resp. right column) of Table 5, we show the results with the FUT 1 

(resp. FUT2) EUA volume as the dependent variable. From Panel A of Table 5, we report a 

significant unidirectional causality running from the second-to maturity EUA futures (FUT2) 

volume to the EUA front futures (FUT1) volume. Enhanced trading volumes in the FUT2 

market therefore increase the trading volume in the FUT1 market, confirming that the FUT2 

market complements FUT 1 and benefits from an informational advantage over FUT1.  

Panel B includes the contemporaneous volume of green bonds as a regressor in the mean 

equations. We observe a significant positive causality running from green bond volume to the 
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volume of the two EUA futures markets as seen in Table 4. Compared to Panel A, the magnitude 

of asymmetric GARCH coefficient (δ) is reinforced. The leverage effect parameter in the GJR–

GARCH (1,1) model (α) remains statistically significant and negative implying that positive 

shocks (market advances) lead to increase the EUA futures volume more than negative shocks 

(market retreats) of the same magnitude. Besides, the Wald test statistic for the green bond 

volume coefficient is significant at the 5% level, which is not the case of FUT2.13  

In addition to the above tests, we conduct similar regression with the green volume as a 

dependent variable. We note the absence of significant causality from lagged volumes of the 

two EUA futures markets on the green bond volume (See Appendix (Table A.1)).  

Taken together, Table 5 results confirm those of Table 4 in a sense that they clearly 

indicate that power firms use the green bond market as a complement to the EUA carbon market 

used for their short-term hedging. Instead, they consider the green bond market as a substitute 

for the EUA market used for their long-term hedging, but this inter-market linkage appears to 

be unstable. Further investigation on this instable relationship will be carried out in §5.4.  

[INSERT TABLE 5 HERE] 

[INSERT TABLE A1 HERE] 

5.3. VAR analysis  

Panels A and B show the results of the VAR models for the front EUA futures (FUT1) 

and the second-to-maturity futures (FUT2) volumes as the dependent variable respectively. In 

Model 1, the coefficient of the lagged FUT2 volume is significant validating its impact on the 

FUT1 volume seen in Tables 4 and 5. Also, we verify that the green bond volume influences 

negatively (resp. positively) the FUT2 (resp. FUT1) volume confirming the results of Table 5. 

This second result is in line with those of Jin et al. (2020) and Hammoudeh et al. (2020) who 

both detect a unidirectional (price) causality from the green bond market to the carbon market.  

 
13 We also applied Wald tests on the lagged coefficients of FUT1 and FUT2. All tests reject the null hypothesis 
that those coefficients are equal to 0, giving evidence that they are stable. 
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From Model 2, we observe a significant positive relation between the two EUA futures 

market volatility and their respective volume as shown by previous studies (Lucia et al., 2015; 

Balietti, 2016; Balcilar et al., 2016; Rannou and Barneto, 2016). As explained by Balietti 

(2016), this positive relation is mainly attributed to energy providers.  

Looking at the Model 3 results, the coefficients of CLI Europe and Energy Ret are 

insignificant at 1% and 5% levels. This third important result suggests that the hedging activities 

but also green bond financing strategies are insensitive to the business climate fluctuations and 

to the energy sector (returns) performance in Europe as shown by Reboredo et al. (2020).  

Overall, Models 1, 2 and 3 confirm our two previous findings. The green bond market 

serves as a substitute (resp. complement) of the EUA carbon markets used for long-term 

hedging (resp. short-term hedging and speculation) for European power firms while these two 

carbon markets are complementary for their hedging activity.  

[INSERT TABLE 6 HERE]  

5.4. Robustness tests  

The Wald test performed in Table 5 indicates that the impact of green bond volume on 

EUA futures volume may be time-varying and even unstable. To control for instability, we use 

a rolling procedure to assess the time-varying behaviour of green bond volume coefficients 

through the VAR Model 1. We employ a window size of 18 months to estimate this rolling 

VAR, a period consistent with the hedging horizon of power firms (Schopp and Neuhoff, 2013). 

Figure 3 plots the evolution of rolling coefficients for the green bond volume estimated 

in the front EUA futures (FUT1) equation along with their t-tests to assess simultaneously their 

sign and their significance. Coefficients are found to be positive and significant from February 

2016 (i.e., the sub-period from February 2016 until July 2017) to March 2017 (i.e., the sub-

period from March 2017 until July 2018) but has become insignificant afterwards. 
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This important finding implies that the green bond market is used as a complement of the EUA 

carbon market used for short-term hedging or speculation by power firms but less and less.  

[INSERT FIGURE 3] 

In the same vein, Figure 4 outlines the evolution of rolling green bond volume in the 

second-to maturity EUA futures (FUT2) equation along with their corresponding t-tests. With 

the volume of the second-to-maturity EUA futures, the estimated coefficient of the green bond 

volume is positive and statistically significant from May 2016 (i.e., the sub-period from May 

2016 until October 2017) to March 2017 (i.e., the sub-period from March 2017 until August 

2018) but it is negative and significant for the rest of the sub-periods.  

[INSERT FIGURE 4]  

According to our model inferences, an increase (resp. a decrease) of 1 ton in the front 

EUA futures (resp. second-to-maturity EUA futures) volume induces a green bond issue of 1 

euro (resp. 0.15 euro) by European power firms, on average. In practice, it implies that a 

European power firm that buys (resp. sells) 1 ton of carbon dioxide with a front (resp. second-

to maturity) EUA futures used for short- (resp. long-) term hedging simultaneously issues 1 

euro (resp. 0.15 euro) of green bonds, on average. As a result, we conclude that the relationship 

between the front EUA futures and green bonds volumes is much stronger than that existing for 

the second-to-maturity EUA futures.  

Quite importantly, we also notice a more pronounced negative relationship between the 

volume of green bonds and that of second-to-maturity EUA futures from 2018 where EUA 

prices have dramatically increased, indicating that the green bond market has become a 

substitute of the EUA market used for long-term hedging in the case of power firms.  
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6. Conclusion  

This study is, to our knowledge, the first to examine the interactions between the 

European carbon and green bond markets from the perspective of the European power firms’ 

activity. Since the advent of EU ETS in 2005, European power firms have been indeed the most 

concerned by hedging their carbon risk exposure and financing green technologies to reduce it. 

We proceed in two steps. First, using volume to proxy information, we study the causal relations 

between the volume and volatility of two EUA carbon markets used either (1) for short-term 

hedging and speculating or (2) long-term hedging over an eight-year period (2013-2020) 

corresponding to the Phase III of EU ETS. Second, we examine the relationships between the 

volume of these two carbon markets and that of green bonds issued by European power firms. 

Three new key findings emerge from our study. First, the EUA carbon market used by 

power firms for long-term hedging serves a substitute of the EUA carbon market used for short-

term hedging or speculating. Second, the first aforementioned carbon market has an 

informational advantage over the other because it is dominated by hedgers like power firms that 

are informed (Bredin et al., 2014; Rannou and Barneto, 2016). Third, we show that the green 

bond market acts as a complement of the EUA carbon market used for short-term hedging, 

while it has become a substitute of that used for long-term hedging since 2018. In practice, a 

European power firm that buys (resp. sells) 1 ton of carbon dioxide with a front (resp. second-

to maturity) EUA futures used for short- (resp. long-) term simultaneously issues 1 euro (resp. 

0.15 euro) of green bonds, on average. This result relates to the fact that the carbon price signal 

begins to operate in Europe, which has bolstered the green bond issuance programs of European 

power firms. But it is unlikely to be the main driving force (Bachelet et al., 2019; Zerbib, 2019; 

Flammer, 2020). Taken together, our results underscore a recent pivotal change in the strategies 

of European power firms that progressively abandon the EUA carbon market used for long-

term hedging and issue more green bonds to finance their transition to clean energy systems.  
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Our findings have major implications for power firms, investors, policy makers, and 

exchanges alike. Since the green bond market may serve as a substitute for the carbon market 

used for their long-term hedging, power firms or investors can include green bonds in their 

portfolio of energy and carbon assets as an hedging instrument (Jin et al., 2020). From a policy 

making perspective, if issuing green bonds is an alternative to long-term carbon hedging 

strategies of power firms, it also signals that the carbon price signal operates in Europe so the 

EU can decide to decrease the emission cap accordingly. To compensate for this decrease, 

corporate green bond issuers like power firms may claim fiscal incentives to the EU when 

issuing green bonds. In this way, they might issue more and sizeable green bonds (Zerbib, 2019) 

in order to reduce their carbon hedging demand more quickly. This measure may also contribute 

to reduce two disadvantages that they face simultaneously: high due diligence costs (Gianfrate 

and Peri, 2019) and increased carbon hedging costs that renewable energy producers for 

instance do not really support.  Finally, knowing that the green bond market is viewed as a 

substitute for the carbon market by power firms is essential for the two main European carbon 

exchanges: ECX and EEX since power firms represent their most active and largest investor 

community. Possibly, these exchanges can launch their own green bond listings to develop their 

services to power firms in order to keep them captive and to broaden their investor clienteles. 

We must admit that our work has one shortcoming, which lies in the assumption that the 

EUA carbon futures market used for long-term hedging is dominated by power firms that 

anticipate their emission levels and their hedging demand with certainty. Aside from addressing 

this limitation, future research may be carried out according to two directions. First, our study 

may be extended to the case of U.S. or Chinese environmental markets. Second, the comparison 

between the strategies of industrial actors, who are also important carbon emitters and those of 

power firms in the European carbon and green bond markets is left for future research. 
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Figure 1. Large power firms: Carbon price trajectory vs. green bond issuance  

Source: Refinitiv, Point Carbon 

Note: The numbers in italics correspond to the annual number of green bonds issued by European power firms. 

 

Figure 2. Power firms: Carbon emissions trajectory vs. green bond issuance  

 
Source: Refinitiv, Point Carbon 

 
Note: The numbers in italics correspond to the annual number of green bonds issued by European power firms. 
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Figure 3. Rolling estimates of the green bond volume coefficient in the front EUA carbon 
futures equation (FUT1) 
 

 
 
Note: The blue curve represents the evolution of the green bond coefficient in the rolling VAR written in Eq. (5) 
(see right axis) while the red curve graphs the evolution of its corresponding t-test (see left axis). Dates on the x-
axis are those of the start of each rolling window. 
 
 
 
Figure 4. Rolling estimates of the green bond volume coefficient in the second-to-maturity 
EUA carbon futures equation (FUT2) 
 

 
 
Note: The blue curve depicts the evolution of the green bond coefficient in the rolling VAR written in Eq. (5) (see 
right axis) while the red curve highlights the evolution of its corresponding t-test (see left axis). Dates on the x-
axis are those of the start of each rolling window. 
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Table 1. Summary characteristics of the green bond sample 

 
Power firms  

(Issuers) 

Number 
of issues 

Average 
issuance amount  

(in M€) 

Average 
maturity  
(in years) 

Average 
issue 

rating 

Annual carbon 
exposure (annual 
verified emissions) 

in MtCO2eq 
A2A 

E.ON 
EDF 
EDP 

EnBW 
ENEL 
Enexis 
Engie 

Eurogrid (Elia Group) 
Iberdrola 

Ignitis 
National Grid 

Naturgy 
Orsted 
Stedin 

Scottish & Southern Energy  
Stockholm Exergi 

TenneT  
Terna 

Vattenfall  
Verbund 

1 
6 
4 
3 
4 
9 
1 
10 
1 
9 
2 
2 
1 
4 
1 
2 
5 
15 
2 
3 
1 

400   
766.667   
1 850   

833.333   
833.333   

1 111.111   
500   
800   
750   

744.444   
300   
300   
800   

435.535   
500   
625   

37.719   
623.333   
330.526   

500   
500   

10 
8 
7 
20 
42 
7 
12 
11 
12 
8 
10 

12.5 
3 
12 
10 
8.5 
5.8 
12 
8.5 
6.5 
10 

Baa2 
A3 
A3 

Baa2 
Baa2 
A3 
Aa3 
Baa1 
Baa1 
A3 

Baa1 
A2 

Baa1 
Baa1 
A3 

Baa1 
Baa1 
A3 
A3 

Baa1 
A3 

7 105 
86 966     
87 823 
19 477 
20 148 
106 767 
1 657 

113 418 
 1 318 
26 070 
1 206 
8 724 
22 322 
4 456 
1 870 
14 860 
8 234 
3 640 
1 380 
74 621 
2 040 

TOTAL 86 645 12 A3 20 192 
 

 

Notes: The average issuance amount is expressed in millions of euros. For issuance denominated in a currency 
other than the euro, the amount is translated into euros with the exchange rate prevailing at the issuance date.  
The displayed average rating by firm is an arithmetic mean of the rating obtained for all bond issued. For 
comparison purposes, we use the corresponding Moody’s rating.  
The carbon exposure is the annual level of Scope 1 emissions verified to be covered by power firms for compliance 
purposes that we averaged between 2013 and 2020. This information is provided by Datastream on an annual 
basis. When it is not available (case of unlisted companies: EnBW and Vattenfall), the volume of verified 
emissions disclosed in the annual report of the firm is used. 
The row TOTAL displays the sample average of the different variables except for the column “Number of Issues” 
that reports the aggregate volume of green bond issuances. 
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Table 2. Descriptive monthly statistics for EUA futures and Green Bonds (GB)  

Panel A: Volatility of EUA Futures 

 VOLATFUT1 VOLATFUT2 
Mean 
Median 
Max. 
Min. 
Std. Dev. 
Skewness 
Kurtosis 
Normality (JB) 
ARCH (2) 
ADF 
ZA 

0.4674 
0.4045 
1.0972 
0.1446 
0.2081 
2.1894 
10.09 

     278.24** 
      10.12** 
      - 4.95** 
      - 5.85* 

0.4547 
0.3927 
1.0351 
0.1430 
0.2048 
2.1748 
9.43 

       268.14** 
    10.40** 
    - 4.93** 
    - 5.89** 

   

 

Panel B: Volume of EUA futures and Green Bonds (GB) 

 VOLUMEFUT1 VOLUMEFUT2 VOLUMEGB 
Mean 
Median 
Maximum 
Minimum 
Std. Dev. 
Skewness 
Kurtosis 
Normality (JB) 
ARCH (2) 
ADF 
ZA 

394 192 
373 482 
884 692  
170 002 
143 433 
   0.86  
   3.60 
 13.29**  
   6.04* 
 - 3.92** 
 - 6.36** 

194 347 
171 492 
380 696 
21 441 
53 119 
2.27 
9.78 

39.37** 
14.77** 
- 3.81** 
- 4.98* 

6 819 543 
6 786 555 
40 000 000 

0 
8 064 440 

1.51 
4.47 

  45.32** 
1.76 

 - 4.96** 
 - 13.4** 

    

 

Notes: Panel A reports monthly statistics for volatility of the front EUA futures (VOLATFUT1) and of the second-
to-maturity EUA futures (VOLATFUT2) observed along the period January 2013 to December 2020. Volatility 
represents a 20 moving average business days volatility.  
Panel B displays monthly statistics for aggregated volumes of the front EUA futures (VOLUMEFUT1) and of 
the second-to-maturity EUA futures (VOLUMEFUT2) respectively as well as the volume of green bond issued 
by power firms (VOLUMEGB) along the period January 2013 to December 2020.  
Normality tests are carried out based on Jarque-Bera (JB) tests. ARCH (2) is a χ² statistic of Lagrange Multiplier 
(LM) used to test autoregressive conditional heteroscedasticity effects with 2 lags.  
Both the Augmented Dickey and Fuller (ADF) and Zivot and Andrews (ZA) unit root tests are performed under 
the specification: intercept and without trend. 
** Indicates significance at 1% level. 
*   Indicates significance at 5% level. 
 
 
Table 3. Pairwise correlation tests 

 VOLUMEFUT1 VOLUMEFUT2 VOLUMEGB VOLATFUT1 VOLATFUT2 
VOLUMEFUT1 
VOLUMEFUT2 

VOLUMEGB 
VOLATFUT1 
VOLATFUT2 

1 
0.396 
0.207 
0.387 
0.383 

 
1 

-0.135 
0.046 
0.05 

 
 
1 

-0.095 
-0.041 

 
 
 
1 

0.998 

 
 
 
 
1 

 

Note: ** and * denote significance at 1% and 5% levels respectively. 
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Table 4. Pair-wise causality between volume and volatility in a bivariate GJR GARCH model  

Panel A. Volume/Volatility of EUA Carbon Futures (FUT1 & FUT2) 

Null Hypothesis 
Lag = 2 Lag = 3 

F-Stat Prob. F-Stat Prob. 

VolatilityFUT1 does not Granger Cause VolumeFUT1 
VolumeFUT1 does not Granger Cause VolatilityFUT1 

3.049* 
0.868 

0.033 
0.461 

6.05* 
1.091 

0.000 
0.367 

VolatilityFUT2 does not Granger Cause VolumeFUT2 
VolumeFUT2 does not Granger Cause VolatilityFUT2 

5.6** 
0.425 

0.001 
0.654 

5.22** 
1.584 

0.001 
0.191 

VolatilityFUT1 does not Granger Cause VolatilityFUT2 
VolatilityFUT2 does not Granger Cause VolatilityFUT1 

  1.034 
  1.449 

0.287 
0.234 

0.055 
1.893 

0.994 
0.12 

VolatilityFUT2 does not Granger Cause VolumeFUT1 
VolumeFUT1 does not Granger Cause VolatilityFUT2 

1.856 
0.539 

0.143 
0.657 

2.536* 
1.18 

0.046 
0.326 

VolatilityFUT1 does not Granger Cause VolumeFUT2 
VolumeFUT2 does not Granger Cause VolatilityFUT1 

1.874 
0.592 

0.14 
0.622 

3.034* 
1.161 

0.033 
0.334 

 

 

 
Panel B. Volatility of EUA Carbon Futures (FUT1 & FUT2) and Volume GB 

Null Hypothesis 
Lag = 2 Lag = 3 

F-Stat Prob. F-Stat Prob. 

VolatilityFUT1 does not Granger Cause VolumeGB 
VolumeGB does not Granger Cause VolatilityFUT1 

0.384  
0.050  

0.764 
0.985 

0.269 
0.221 

0.896 
0.926 

VolatilityFUT2 does not Granger Cause VolumeGB 
VolumeGB does not Granger Cause VolatilityFUT2 

  0.399 
0.046 

0.754 
0.987 

0.280 
0.206 

0.890 
0.934 

     

 
 
Panel C. Volume EUA Carbon Futures (FUT1 & FUT2) and Volume GB 

Null Hypothesis 
Lag = 2 Lag = 3 

F-Stat Prob. F-Stat Prob. 

VolumeFUT2 does not Granger Cause VolumeFUT1 
VolumeFUT1 does not Granger Cause VolumeFUT2 

 3.049*
0.868 

0.033 
0.461 

2.496* 
1.135 

0.049 
0.346 

VolumeFUT1 does not Granger Cause VolumeGB 
VolumeGB does not Granger Cause VolumeFUT1 

1.813 
 3.034*

0.19 
0.03 

1.648 
2.509** 

0.240 
0.046 

VolumeFUT2 does not Granger Cause VolumeGB 
VolumeGB does not Granger Cause VolumeFUT2 

1.449 
 3.032*

0.234 
0.032 

1.161 
2.536* 

0.334 
0.044 

 
 

Note: Causality tests are performed on a full time period basis (January 2013 to December 2020). We employ the 
Toda and Yamamoto (1995) procedure to test causal relations.  
We estimate F-Stats to assess the significance of Granger causality tests given the following null hypothesis:     
Β1 = Β2 = … = ΒM = 0 from Eq. (3) or θ1 = θ2 = … = θM = 0 from Eq. (4).  
If this null hypothesis is rejected in the first (second) case, volatility (volume) is said to Granger-cause volume 
(volatility). The corresponding p-values of F-Stats are expressed in italics. 
** and * denote, respectively, statistical significance at 1% and 5% levels.  
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Table 5. Trading volume regression for the two EUA carbon futures markets (FUT1 & FUT2) 

Panel A. Cross regression with front (FUT1) and second-to-maturity (FUT2) futures volume 

Dependant Variable Volume FUT1 Volume FUT2 
   Coeff. z-Stat Coeff. z-Stat 
   [SE] (Prob.) [SE] (Prob.) 
1. Conditional Mean Equation of Trading Volume 
 Intercept 30607** 2.234 110435** 3.035 
 [13698] 0.000 [36382] 0.002 

 

Volume FUT1 (-1) 
0.598** 6.593 0.36 1.644 
[0.091] 0.000 [0.219] 0.1 

Volume FUT1 (-2) 
-0.081 -1.136 -0.207 -0.947 
[0.071] 0.256 [0.219] 0.344 

Volume FUT2 (-1) 
0.044* 2.09 0.47** 4.715 
[0.021] 0.04 [0.1] 0.000 

Volume FUT2 (-2) 
-0.031 -0.767 0.208* 2.101 
[0.041] 0.443 [0.099] 0.036 

2. Conditional Variance Equation 
 ω  4.74E+08* 2.041 8.08E+08 1.781 
 [2.32E+08] 0.04 [4.54E+08] 0.075 
 δ 

0.126* 2.026 0.106 1.174 
 [0.062] 0.042 [0.091] 0.241 
 α 

  -0.416** -3.282 -0.273* -2.296 
 [0.113] 0.001 [0.119] 0.022 
 β 

  0.774** 6.241  0.748** 4.734 
 [0.124] 0.000 [0.158] 0.000 
3. Diagnostic Tests 
 R² 0.415 0.456 
 Adj. R²  0.380 0.431 
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Panel B. Cross regression with front (FUT1), second-to-maturity (FUT2) futures volume and 
green bond (GB) volume  

Dependent Variable Volume FUT1 Volume FUT2 
   Coeff. z-Stat Coeff. z-Stat 
   [SE] (Prob.) [SE] (Prob.) 
1. Conditional Mean Equation of Trading Volume 
 Intercept 78125 1.717 46408** 2.889 
 [45478] 0.085 [16059] 0.004 

 

Volume FUT1 (-1) 
0.694** 5.073 0.01 0.842 
[0.137] 0.000 [0.053] 0.093 

Volume FUT1 (-2) 
0.066 0.526 -0.075 -1.415 

[0.125] 0.599 [0.053] 0.157 

Volume FUT2 (-1) 
0.086* 2.205 0.373** 2.927 
[0.39] 0.029 [0.127] 0.003 

Volume FUT2 (-2) 
-0.159 -0.484 0.125* 2.155 
[0.330] 0.629 [0.058] 0.037 

Volume GB 
0.028* 2.152 -0.016* -2.021 
[0.013] 0.031 [0.008] 0.048 

 W-1 (Volume GB) 1.97* 0.05 1.81 0.074 
2. Conditional Variance Equation 
 ω  3.23E+08 0.537 5.22E+08 1.371 
 2.02E+08 0.591 [3.81E+08] 0.170 
 δ 

0.205 0.462 0.135 1.706 
 [0.443] 0.644 [0.114] 0.254 
 α 

-0.536* -2.002 -0.560** -2.901 
 [0.268] 0.049 [0.193] 0.004 
 β 

0.597* 2.251 0.673* 2.050 
 [0.265] 0.026 [0.328] 0.040 
3. Diagnostic Tests 
 R² 0.481 0.410 
 Adj. R²  0.432 0.351 

 

 

Note: We employ z-statistic to test the significance of estimated coefficients. Their values and their corresponding 
p-values are reported in the right columns. The Bollerslev and Wooldridge (1992) robust standard errors are shown 
in square brackets beneath the coefficients. 
Adj. R2 is the R2 adjusted for degree of freedom.  
** and * indicates respectively statistical significance at 1% and 5% levels. 
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Table 6. VAR analysis 

Panel A. VAR (2) with FUT1 (front EUA futures) volume as dependent variable 

 Variables 
Regression Model 

(1) (2) (3) 

Volume FUT1(-1) 
0.6** 0.54**  0.564** 

[0.107]  [0.107]  [0.112] 

Volume FUT1(-2) 
0.092 0.061  0.08 

[0.111] [0.109]  [0.112] 

Volume FUT2(-1) 
0.151* 0.141*  0.139 
[0.074]  [0.072]  [0.084] 

 Volume FUT2(-2) 
-0.074 -0.017 -0.07 
[0.299]  [0.293]  [0.299] 

 

Intercept 
99256** 72418* -560352 
[37892]  [38481]  [944036] 

Volume GB 
0.003* 0.002**  0.002* 
[0.001]  [0.001]  [0.001] 

Volatility FUT1 
  2869.7*  2510.3* 
  [1440.6]  [1270.8] 

Volatility FUT2 
  -2580.6 -2413.4 
   [1854.4]  [1634.1] 

CLI Europe 
     6179.1 
     [9211.7] 

EnergyRet 
    -1735 
     [1288] 

 

R² 0.507 0.534  0.541 
Adj. R²  0.479  0.497  0.491 

 F-stat  16.723 14.104 10.982 
Prob. (F-stat) 0.000 0.000 0.000 
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Panel B. VAR (2) with FUT2 (second-to-maturity EUA futures) volume as dependent variable 

Variables 
Regression Model 

(1) (2) (3) 

Volume FUT1(-1) 
0.038*  0.037  0.04 
[0.048]  [0.05]  [0.053] 

Volume FUT1(-2) 
0.033 0.036  0.039 
[0.05]  [0.051]  [0.053] 

Volume FUT2(-1) 
0.595** 0.584**  0.584** 
[0.132]  [0.138]  [0.14] 

Volume FUT2(-2) 
-0.154 -0.164 - 0.135 
[0.135] [0.138]  [0.18] 

 

Intercept 
25087 24427 -68028 

[17048.7]  [18155]  [448244] 

Volume GB 
-0.001* -0.001* -0.001* 
[0.000]  [0.001]  [0.001] 

Volatility FUT1 
  -2695.7 -2361.8 
   [2068.7]  [1869.6] 

Volatility FUT2 
   2736.3  2407.7 
   [1933.7]  [1759] 

CLI Europe 
     902.9 
     [4373.9] 

EnergyRet 
     780.4 
     [896.3] 

 

R² 0.445 0.497 0.407 
Adj. R²  0.403 0.437 0.328 

 F-stat  12.053 13.253 10.238 
Prob. (F-stat) 0.000 0.000 0.000 

 

Note: We apply the Akaike Information criteria to determine the number of appropriate lags, which is equal to 2 
for both FUT1 and FUT2 volume. 
Adj. R2 is the R2 adjusted for degree of freedom.  
** and * indicates respectively statistical significance at 1% and 5% levels. 
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Appendix 

A1. Trading volume regression for the green bond market as the two EUA futures markets as 
regressors (FUT1 & FUT2) 

 

Dependant Variable Volume GB 
   Coeff. z-Stat 
   [SE] (Prob.) 
1. Conditional Mean Equation of Trading Volume 
 Intercept -5382761** -1.044 
 [13698] 0.297 

 

Volume FUT1 (-1) 
2.595 0.205 

[12.64] 0.837 

Volume FUT1 (-2) 
22.17 1.239 

[17.90] 0.215 

Volume FUT2 (-1) 
-16.61 -0.473 
[35.09] 0.636 

Volume FUT2 (-2) 
-24.72 -0.909 
[27.19] 0.363 

2. Conditional Variance Equation 
 ω  7.74E+13 1.835 
 [4.22E+13] 0.067 
 δ 

0.051 0.046 
 [1.103] 0.963 
 α 

  -0.118** -4.832 
 [0.024] 0.000 
 

β 
  0.598* 2.138 

 [0.230] 0.032 
3. Diagnostic Tests 
 R² 0.211 
 Adj. R²  0.165 

 

 
Note: We employ z-statistic to test the significance of estimated coefficients. Their values and their corresponding 
p-values are reported in the right columns. The Bollerslev and Wooldridge (1992) robust standard errors are shown 
in square brackets beneath the coefficients. 
Adj. R2 is the R2 adjusted for degree of freedom.  
** and * indicates respectively statistical significance at 1% and 5% levels. 
 


