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Vortices in PT -symmetric non-Hermitian superfluid

We discuss the properties of the non-Hermitian PT -symmetric twoscalar fields model. We investigate stability areas of this system and properties of vortices that emerge in the system of two interacting scalar fields. The phase diagram of the model contains stable and unstable regions depending on PT -symmetry breaking, which intercross the regions of U(1)-symmetric and U(1)-broken phases in a nontrivial way. At non-zero quartic couplings, the non-Hermitian model possesses classical vortex solutions in the PT -symmetric regions. We also consider a close Hermitian analog of the theory and compare the results with the non-Hermitian model.

Introduction

Traditional quantum mechanics requires the Hamiltonian to be Hermitian. This condition guarantees that the energy spectrum is real-valued and the time evolution of the system is unitary. However, as some studies show, the requirement of Hermiticity is optional rather than mandatory. The Hermiticity condition can be replaced by the requirement that the Hamiltonian of the system enjoys the invariance under the combined parity P and time-reversal inversion T operation (PT -symmetry) [1,2]:

H = H PT , (1) 
This symmetry of the Hamiltonian ensures the real-valued energy spectrum and, consequently, the unitary evolution and stability of the system unless the PT -symmetry is broken spontaneously.

Examples of non-Hermitian Hamiltonians with real-valued energy spectrum appeared long ago in theoretical studies [3][4][5]. Nowadays, the ideas of non-Hermitian systems have found their applications in open systems with balanced gain and loss in different branches of physics, such as optics [6][7][8][9][10][11], photonics [12][13][14][15][16], superconducting wires [17,18], PTsymmetric electronic circuits [19] to mention a few.

In this work, we study vortex topological defects in a bosonic non-Hermitian model. We consider a model that consists of a pair of scalar fields associated with interacting condensates. The topological solutions in the multicomponent scalar models appear in various systems ranging from condensed matter to high energy physics. Some of these models can serve as viable extensions of the Standard Model of fundamental particle interactions [20][21][22][23].

PT -symmetric scalar field theory

We consider a simplest example of a scalar non-Hermitian PT -symmetric theory which describes dynamics of two complex scalar fields ϕ 1 and ϕ 2 coupled by a mass matrix M. The Lagrangian of theory,

L = ∂ µ Φ † ∂ µ Φ -Φ † M2 Φ -U int (Φ), (2) 
describes the doublet of two scalar fields Φ = ϕ 1 ϕ 2 subjected to the Hermitian self-interaction with the potential

U int (Φ) = λ|ϕ 1 | 4 + λ 2 |ϕ 2 | 4 . (3) 
We consider a repulsive self-interaction with the quartic couplings λ 1,2 ≥ 0. The non-Hermiticity emerges from the mass matrix of the Lagrangian (2), namely from the relative sign of its off-diagonal elements:

M2 NH = m 2 1 m 2 5 -m 2 5 m 2 2 . ( 4 
)
The opposite signs in front of m 2 5 0 elements correspond to a non-Hermitian theory. The choice of the identical signs of off-diagonal elements (analytically) transforms the theory to its Hermitian counterpart with the mass matrix:

M2 H = m 2 1 m 2 5 m 2 5 m 2 2 . (5) 
To highlight the difference between these two types of theories, we rewrite their Lagrangians in terms of individual fields:

L NH = ∂ ν ϕ * 1 ∂ ν ϕ 1 + ∂ ν ϕ * 2 ∂ ν ϕ 2 -m 2 1 |ϕ 1 | 2 -m 2 2 |ϕ 2 | 2 -m 2 5 (ϕ * 1 ϕ 2 -ϕ * 2 ϕ 1 ) -λ 1 |ϕ 1 | 4 -λ 2 |ϕ 2 | 4 , (6) 
L H = ∂ ν ϕ * 1 ∂ ν ϕ 1 + ∂ ν ϕ * 2 ∂ ν ϕ 2 -m 2 1 |ϕ 1 | 2 -m 2 2 |ϕ 2 | 2 -m 2 5 (ϕ * 1 ϕ 2 + ϕ * 2 ϕ 1 ) -λ 1 |ϕ 1 | 4 -λ 2 |ϕ 2 | 4 . (7) 
Both Hermitian and non-Hermitian models are invariant under the global U(1) transformation, in which the single phase factor (with a real-valued parameter ω) is shared by both complex scalar fields ϕ 1 and ϕ 2 :

U(1) : Φ(t, x) → Φ ′ (t, x) = e iω Φ(t, x) (8) 
The non-Hermitian theory ( 6) is also invariant under a discrete PT transformation that consists of the parity inversion P supplemented by the time conjugation T : NH :

       P : Φ(t, x) → Φ ′ (t, -x) = σ 3 Φ(t, x), T : Φ(t, x) → Φ ′ (-t, x) = Φ * (t, x). (9) 
Notice that under the action of P transformation ϕ 1 transforms as a true scalar, while ϕ 2 transforms as a pseudo-scalar.

In the case of the Hermitian theory, the P and T transformations are as follows:

H :

       P : Φ(t, x) → Φ ′ (t, -x) = Φ(t, x), T : Φ(t, x) → Φ ′ (-t, x) = Φ * (t, x), (10) 
Notice that both fields ϕ 1 and ϕ 2 behave as true scalars under the parity inversion.

Ground states

In Ref. [24], an analytical study of the ground state of the two-field scalar model (2) has been done for a particular case when only one field was self-interacting (λ 2 = 0). We extend this analysis to the case of the most general model in which both scalar fields have nonzero self-interacting couplings, λ 1,2 0. Unfortunately, such an extension makes the equations of motion much more complicated, which does not allow us to obtain analytical solutions. In our work, we use numerical analysis to find the ground state of the model as well as its PT stable regions.

The classical equations of motion can be obtained by the variation of the action corresponding to Lagrangian (6) with respect to the fields ϕ * 1 and ϕ * 2 , respectively:

□ϕ 1 + m 2 1 ϕ 1 + m 2 5 ϕ 2 + ∂V ∂ϕ * 1 = 0 , (11) 
□ϕ 2 + m 2 2 ϕ 2 -m 2 5 ϕ 1 + ∂V ∂ϕ * 2 = 0 . ( 12 
)
In the ground state the condensates are coordinate-independent quantities, and Eqs. ( 12), can be reduced to the non-linear algebraic relations by representing fields ϕ a in the radial form ϕ a = v a e iθ a :

m 2 1 v 1 + m 2 5 v 2 + 2λ 1 v 3 1 = 0 , (13a) 
m 2 2 v 2 -m 2 5 v 1 + 2λ 2 v 3 2 = 0 . (13b) 
In the case of the counterpart Hermitian model, the theory equations ( 13) take the following form:

m 2 1 v 1 + m 2 5 v 2 + 2λ 1 v 3 1 = 0 , (14a) 
m 2 2 v 2 + m 2 5 v 1 + 2λ 2 v 3 2 = 0 . ( 14b 
)
These systems of equations can be solved numerically. Solutions that correspond to the minima of the energy density of the ground state

E NH,0 = m 2 1 v 2 1 + m 2 2 v 2 2 + λ 1 v 4 1 + λ 2 ϕ 4 2 , (15a) 
E H,0 = m 2 1 v 2 1 + m 2 2 v 2 2 + 2m 2 5 v 1 v 2 + λ 1 v 4 1 + λ 2 v 4 2 , (15b) 
are represented in figure 1.

Stability of the ground state of non-Hermitian theory.

To probe the stability of the ground state, we consider weak fluctuations of the scalar fields,

ϕ a = v a + φa , (16) 
with | φa | ≪ |v a |. Next, we build the quadratic fluctuation matrix that corresponds to the variation of action with respect to the small deviations of the fields about their ground-state values. The configuration is unstable if this matrix contains at least one negative eigenvalue. In the Hermitian theory, the minimum of energy of the system corresponds to the stable state as the quadratic fluctuation matrix does not contain negative eigenvalues. In the non-Hermitian theory, this criterion does not work in general and we are left with the additional analysis of its fluctuation matrix:

M 2 NH =               4λ 1 v 2 1 +m 2 1 2v 2 1 λ 1 m 2 5 0 2v 2 1 λ 1 4λ 1 v 2 1 +m 2 1 0 m 2 5 -m 2 5 0 4λ 2 v 2 2 +m 2 2 2v 2 2 λ 2 0 -m 2 5 2v 2 2 λ 2 4λ 2 v 2 2 +m 2 2               . ( 17 
)
In the U(1) broken phase, this matrix has one zero eigenvalue which corresponds to the Goldstone mode. In the symmetric U(1) phase, all eigenvalues are generally nonzero.

As it can be seen from figure 2, the ground state of the non-Hermitian model is unstable in some regions of the parameter space. We interpret these new regions as PT -broken regions thus providing in our work the extension of the definition of the spontaneously PT breaking to the case of the interacting model. In the non-interacting limit, λ 1,2 → 0, the PT -instability requirement reduces to the standard criterion of the PT breaking in the noninteracting model, 4m 4 5 > (m 2 1m 2 2 ) 2 . The system in the PT -broken regions cannot be used as a valid prescription of any steady-state in a physical system. On the contrary, the PTsymmetric regions are stable zones where the steady-state physics can be realized.

λ 2 = 0 λ 2 = 0.1 λ 2 = 1 λ 2 = 2 m 2 1 > 0 (a) (b) (c) (d) m 2 1 < 0 (e) (f) (g) (h)

Vortices at finite couplings

Both Hermitian and non-Hermitian two-field models possess vortex solutions at finite values of the quartic couplings λ 1 and λ 2 . We consider examples of the static vortex solutions of the classical equations of motion assuming the form of the scalar fields

ϕ a (r, θ) = v a f a (r)e inθ , a = 1, 2,
where r and θ are the radial coordinates in the (x 1 , x 2 ) plane and n ∈ Z is the vorticity of the solution.

The classical equations of motion are given by the following system of differential equations for the profile functions:

f ′′ 1 (r) + f ′ 1 (r) r - n 2 r 2 f 1 (r) -m 2 1 f 1 (r) -m 2 5 v 2 v 1 f 2 (r) -2λ 1 v 2 1 f 3 1 = 0, (18) 
f ′′ 2 (r) + f ′ 2 (r) r - n 2 r 2 f 2 (r) -m 2 2 f 2 (r) + m 2 5 v 1 v 2 f 1 (r) -2λ 2 v 2 2 f 3 2 = 0. ( 19 
)
The equations on the profile functions in the counterpart Hermitian model are as follows:

f ′′ 1 (r) + f ′ 1 (r) r - n 2 r 2 f 1 (r) -m 2 1 f 1 (r) + m 2 5 v 2 v 1 f 2 (r) -2λ 1 v 2 1 f 3 1 = 0, (20) 
f ′′ 2 (r) + f ′ 2 (r) r - n 2 r 2 f 2 (r) -m 2 2 f 2 (r) + m 2 5 v 1 v 2 f 1 (r) -2λ 2 v 2 2 f 3 2 = 0. ( 21 
)
Using the numerical analysis, we confirm the existence of the stable vortex solutions in the regions characterized by U(1)-broken symmetry and, simultaneously, obeying PT -unbroken symmetry. In all other regions the stable vortex solutions do not exist.

An example of the profile functions for a set of coupling constants is shown in figure 3(a). The radial functions feature a linear rise close to the origin which turns into an exponentially slow approach to the corresponding vacuum expectation values at large distances. These properties mark the generic behaviour of all solutions that we have analyzed. We show the vortex energies in both Hermitian and non-Hermitian theories in, respectively, in figure 3(b) and figure 3(c) in different areas of the phase diagram for the same values of the quartic couplings. While the vortex energies in the Hermitian and non-Hermitian versions trivially coincide with each other at m 5 = 0, their behaviour starts to differ from each other with the growth of the off-diagonal mass m 5 .

Discussion and conclusion

Our work considers the non-Hermitian model of two self-interacting complex scalar fields. Due to the PT -symmetry, this theory can describe open systems that exchange energy with an environment via gain and loss processes. It is the PT -symmetry that provides an exact balance between the gains and losses, thus ensuring the stability of the ground state of the system.

The phase diagram of the non-Hermitian model and its comparison to the Hermitian counterpart are shown in figures 1 and 2, respectively. The Hermitian theory is stable in the whole parameter space. It has the U(1) broken phase with non-vanishing condensates everywhere except the line m 2 5 = 0. In contrast, the phase diagram of the non-Hermitian theory has complicated patterns (figure 2) enriched by the intersections of PT -symmetric (stable) and PT -broken (unstable) regions with U(1) symmetric and broken regions (with vanishing and non-vanishing condensates, respectively). This difference is caused by the nontrivial solutions of equations of motion in the case of PT -symmetric self-interacting theory. The notion of the spontaneous PT -breaking is generalized to the interacting model.

Similarly to the Hermitian theory, its non-Hermitian analog possesses the vortex solutions, stable only in the PT -broken regions. We have investigated the vortex profiles and energies and found that the properties of single vortex solutions in the non-Hermitian case are qualitatively similar to the Hermitian ones, apart from the difference in the stability regions imposed by the PT symmetry in the non-Hermitian model.
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 1 Figure 1. The upper panel depicts (a) the energy density and the condensates (b) v 1 and (c) v 2 in the ground state of the non-Hermitian model (6) with the real-valued mass of the field ϕ 1 . The middle panel represents the same quantities obtained for the imaginary mass, m 2 1 < 0. The lower panel corresponds to the Hermitian theory(7). All quantities are shown in the units of the absolute value of the mass parameter, |m 1 |. In all plots, the quartic couplings for both scalar fields are fixed: λ 1 = λ 2 = 1.

Figure 2 .

 2 Figure 2. Stability diagrams of the non-Hermitian model in the (m 2 5 , m 2 2 ) plane for the fixed coupling λ 1 = 1. The stable regions marked by the blue color and the unstable marked by the red color. The upper and panels correspond to m 2 1 > 0 and m 2 1 < 0, respectively. The dark (light) areas denote regions with non-vanishing (vanishing) condensates.
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 321 Figure 3. Panel (a) represents the profile functions of the elementary n = 1 vortex solution at the mass parameters m 2 2 = |m 2 1 | and m 2 5 = 0.1|m 2 1 | with m 2 1 < 0 and the equal quartic couplings λ 1 = λ 2 = 1. Panels (b) and (c) represent the Hermitian and non-Hermitian vortex energies respectively vs. the off-diagonal mass squared m 2 5 in different stability areas: (b) m 2 2 = -m 2 1 corresponds to the border of the stable and unstable regions and (c) m 2 2 = 2.5m 2 1 < 0 resides within the stable region of figure 2(g).
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