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Identifying the Russian voiceless non-palatalized fricatives
/f/, /s/, and /S/ from acoustic cues using machine learninga)

Natalja Ulrich,b) Marc Allassonnière-Tang,c) François Pellegrino, and Dan Dediu
Laboratoire Dynamique Du Langage (DDL) UMR 5596, CNRS/Universit�e Lyon 2, Lyon, France

ABSTRACT:
This paper shows that machine learning techniques are very successful at classifying the Russian voiceless non-

palatalized fricatives [f], [s], and [S] using a small set of acoustic cues. From a data sample of 6320 tokens of read

sentences produced by 40 participants, temporal and spectral measurements are extracted from the full sound, the

noise duration, and the middle 30 ms windows. Furthermore, 13 mel-frequency cepstral coefficients (MFCCs) are

computed from the middle 30 ms window. Classifiers based on single decision trees, random forests, support vector

machines, and neural networks are trained and tested to distinguish between these three fricatives. The results dem-

onstrate that, first, the three acoustic cue extraction techniques are similar in terms of classification accuracy (93%

and 99%) but that the spectral measurements extracted from the full frication noise duration result in slightly better

accuracy. Second, the center of gravity and the spectral spread are sufficient for the classification of [f], [s], and [S]

irrespective of contextual and speaker variation. Third, MFCCs show a marginally higher predictive power over

spectral cues (<2%). This suggests that both sets of measures provide sufficient information for the classification of

these fricatives and their choice depends on the particular research question or application.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0005950
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I. INTRODUCTION

Building efficient techniques for the (semi)automatic

identification of different speech sounds from their acoustic

properties is very important not only for practical applica-

tions in speech processing, but also for advancing funda-

mental research in phonetics and phonology. While certain

sound categories, such as vowels and stop consonants, are

relatively well understood, more complex ones, such as fri-

catives, still represent a challenge, as it is currently unclear

how they can be efficiently identified and classified using

acoustic cues. Fricatives, as continuous and complex aperi-

odic sounds with diffused energy, have so far not been con-

vincingly described by unique and distinct acoustic

properties, because most measured features, such as, for

instance, the spectral peak location or the four spectral

moments, show considerable speaker variation, vowel con-

text dependencies, and language-specific properties

(Jongman et al., 2000; McMurray and Jongman, 2011;

Nirgianaki, 2014; Reidy, 2016).

In this paper, a machine learning-based approach is pro-

posed to tackle this question by showing that computational

classifiers are successful at correctly identifying the Russian

fricatives [f], [s], and [S] from a set of spectral and temporal

acoustic cues. This process identifies a subset of acoustic

cues that carry most of the information about these

fricatives, helping advance the theoretical understanding of

the perception and processing of fricatives in speech. The

predictive power of these parameters is also compared with

that of the more mainstream approach based on mel-

frequency cepstral coefficients (MFCCs). Moreover, by

making the computer code available in the spirit of open sci-

ence, this study should contribute to the emergence of a

standardised computational toolkit in phonetic science.

The paper is structured as follows: Sec. II surveys the lit-

erature concerning the most commonly measured acoustic

cues for fricatives, discussing their applicability, limitations,

and remaining gaps. Section III then introduces the dataset

composed of 6320 tokens containing productions of the

voiceless non-palatal fricatives [f], [s], and [S] by 40 young

native speakers of Russian from St. Petersburg. Please note

that the sample analyzed here is only one part of a larger-

scale investigation of Russian fricatives. The full dataset

contains 22 854 tokens, including voiced and voiceless non-

palatal and palatal fricatives, from 78 recording sessions with

59 (29 females) native speakers of Russian, of whom 19 (nine

females) participated in a second recording session. The man-

ual and automatic segmentation steps as well as the acoustic

measurement procedure are also described. Moreover, an

original classifier based on changes in zero crossing rate to

identify the noise part of a fricative sound is introduced.

Section IV compares four different classifiers (decision

trees, random forests, support vector machines, and feed-

forward neural networks with backpropagation) on a large

set of acoustic cues derived from different approaches and

on 13 MFCCs to predict the fricative sounds. It shows, first,

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: natalja.ulrich@univ-lyon2.fr
c)ORCID: 0000-0002-9057-642X.
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that all classifiers and both types of measurements have high

predictive power and, second, that traditional measurements

do so while using only a small subset of acoustic cues.

The paper ends with a discussion of the advantages and

limitations of the methods and of the implications of the

findings for understanding fricatives in general and Russian

fricatives in particular.

II. AN OVERVIEW OF FRICATIVES

Even though fricatives have been extensively studied,

neither the relationship between the articulators and their

acoustic output, on the one hand, nor the perception mecha-

nisms involved, on the other, are currently fully understood.

Despite this, the basic mechanisms involved in the pro-

duction of voiceless fricatives are relatively well described:

they are produced by a turbulent airflow in the pharynx and

the oral cavities. The most significant parameters for acous-

tics are the length of the front cavities, the flow rate, and the

presence of an obstacle.

During the production of voiceless fricatives, frication

noise can in general be generated by two mechanisms: the

first source of frication noise is a “channel turbulence”

resulting from the air flow passing through a narrow con-

striction of the vocal tract, producing random fluctuations of

the air-stream (Catford, 1977; Stevens, 1998). Depending on

the fricative place of articulation, frication noise can also be

generated by a second source, due to the airflow encounter-

ing a wall or an obstacle (e.g., the teeth), generating energy

in the high frequency range of the noise spectrum (Catford,

1977; Shadle, 1990). Additionally, secondary articulations

such as palatalization or aspiration can complexify the artic-

ulatory and acoustic structure observed in fricatives. Though

typologically rare, phonologically aspirated voiceless frica-

tives involve, for instance, the production of both frication

and aspiration noise, leading to further challenges in their

characterization (Rabha et al., 2019).

Based on the invariant theory, which predicts that

unique and distinctive temporal, spectral, and/or amplitudinal

characteristics of acoustic signals serve as crucial perceptual

cues (Blumstein and Stevens, 1981), many studies have tried

to find reliable and distinct acoustic cues of fricatives. While

such an approach was successful in finding, for example,

voice onset time and formants as stable acoustic and percep-

tual characteristics for stop consonants and vowels, when it

comes to fricatives, such acoustic invariant properties are

highly debated. On the other hand, several studies argue that

there is no single property that characterizes all fricatives and

that in grouping them, only a distinction between the sibilants

and non-sibilants can be made (Ladefoged and Maddieson,

1996). Recent attempts to automatically classify the fricative

manner of articulation (vs stop or affricate manners) con-

firmed both that a high level of accuracy can be reached and

that performance significantly differs between sibilant and

non-sibilant segments (Patil and Rao, 2008; Vydana and

Vuppala, 2016). Moreover, cross-linguistic studies show

strong differences in the articulation and acoustics of

fricatives among languages and speakers, suggesting the exis-

tence of different acoustic features of the same sound

(Catford, 1988; Gordon et al., 2002; Hayward, 2000;

Ladefoged and Wu, 1984; Reidy, 2016).

Nevertheless, there is an abundant literature that tries to

identify measurements allowing the description and classifi-

cation of fricatives. Most work has concerned the English

voiceless fricatives and the contrasts in places of articulation

(Behrens and Blumstein, 1988; Jassem, 1965, 1995;

Jongman et al., 2000; Maniwa et al., 2009; McMurray and

Jongman, 2011; Shadle, 1986, 1990; Shadle and Mair, 1996;

Strevens, 1960), while the fricative inventories of other lan-

guages, such as Spanish (de Manrique and Massone, 1981),

Polish (Jassem, 1995; _Zygis and Padgett, 2010), Japanese

(Funatsu and Kiritani, 1998), Dutch (Kissine et al., 2003),

and Greek (Nirgianaki, 2014), are much less studied. The

research on the Russian sound system in general, and in par-

ticular on fricatives, is also strongly unrepresented, which

results in a lack of systematic documentation of topologi-

cally contrasting fricatives (Kochetov, 2017). The Russian

phonetic inventory is particularly interesting due to its com-

plex phonetics and rich fricative inventory: there are at least

12 fricatives, at four places of articulation [f, s, S, x], with

voicing [v, z, Z] and palatalization [fj, vj, sj, ˆ:, zj] contrasts

(Timberlake, 2004), offering thus a wide range of possibili-

ties for the investigation of fricatives. However, only a

handful of studies provide a description of the Russian pho-

neme inventory (Bolla, 1981; Shupljakov et al., 1968;

Timberlake, 2004), and most surveys of Russian fricatives

(Derkach et al., 1970; Kochetov, 2017; Padgett and _Zygis,

2007) either do not take into account all its fricative conso-

nants or only consider a small set of tokens, vowel contexts,

word positions, and/or speakers.

Concerning the effects of different vocal tract configu-

rations during the production of fricatives on various acous-

tic measures, it is in general agreed that the size and shape

of the vocal tract determines the spectrum of a fricative

(Stevens, 1998), and it is argued to be well described by the

acoustic features of the spectral peak location and the first

four spectral moments (spectral mean, spread, skewness,

and kurtosis) (Hoelterhoff and Reetz, 2007; Jesus and

Shadle, 2002; Jesus and Jackson, 2008; McMurray and

Jongman, 2011; Shadle and Mair, 1996). Moreover, frica-

tives are not immune to co-articulation, and the articulator

movements have salient acoustic consequences for the spec-

tral energy distribution. As a consequence, the spectro-

temporal trajectory has also been successfully exploited to

study fine-grained differences among voiceless fricatives

(Reidy, 2016). The spectral peak location is probably the

most studied acoustic cue and is defined as the frequency

with the highest amplitude. It has been argued that the fre-

quency of the spectral peak is connected to the tongue

movements during the production of fricatives at different

places of articulation: this value supposedly decreases from

high to low frequencies as the tongue moves from front

to back (Hughes and Halle, 1956; Jongman et al., 2000),

but this could not be confirmed for Greek fricatives
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(Nirgianaki, 2014). Moreover, spectral peak may serve to dis-

tinguish between sibilants and non-sibilants and, within the

former, between the alveolars and palato-alveolars (Behrens

and Blumstein, 1988; Heinz and Stevens, 1961; Jassem,

1965; Shadle, 1990; Strevens, 1960). Controversially, a num-

ber of studies have found a main effect of speaker and gender

(Hughes and Halle, 1956; Jongman et al., 2000; Nirgianaki,

2014) and of the vowel context, which influences the tongue

body during the production of the fricative (Mann and Repp,

1980; Nirgianaki, 2014; Soli, 1981; Stevens, 1998). Indeed,

the impact of the following vowel is stronger for [f] than for

[s] and even less for [S] (Stevens, 1998).

The first spectral moment is also often used and refers

to the mean of the distribution of spectral energy or to the

center of gravity of the fricative (Forrest et al., 1988).

Several studies show that center of gravity can distinguish

between non-sibilants and sibilants and even within sibilants

(Jongman et al., 2000; Kochetov, 2017; Nittrouer et al.,
1989): higher values were found for sibilants than for non-

sibilants (Tomiak, 1991) and for [s] than for [S] (Funatsu

and Kiritani, 1998; Jongman et al., 2000; Nittrouer et al.,
1989; Padgett and _Zygis, 2007; Zsiga, 2000). In Russian, the

center of gravity was reported to be gender- and speaker-

dependent, with higher values in word-initial than in word-

medial positions (Kochetov, 2017).

An acoustic cue less considered in the literature is the

second spectral moment, which refers to the spectral spread

or variance of the energy around the mean. Spectral variance

was found to be lower for sibilants and higher for non-

sibilants (Jongman et al., 2000; Tomiak, 1991), with the

post-alveolar fricative [S] having the lowest variance

(Shadle and Mair, 1996).

More findings are reported for the third and the fourth

spectral moments, skewness and kurtosis. Skewness

describes the spectral tilt and measures the overall asymmetry

of the energy distribution. A skewness of zero indicates a

symmetrical distribution around the mean. A positive skew-

ness suggests a negative tilt with a concentration of energy in

the lower frequencies, and a negative skewness infers a posi-

tive tilt and a predominance of energy in the higher frequen-

cies (Newell and Hancock, 1984; Peeters, 2004). Kurtosis

refers to the “peakedness” or flatness of the distribution:

spectral kurtosis equal to 3 indicates a normal distribution,

while a value smaller than 3 suggests a flat distribution and a

higher value stands for a “peaker” distribution (Newell and

Hancock, 1984; Peeters, 2004). Several studies suggest that

skewness and kurtosis may distinguish between [s] and [S]

(McFarland et al., 1996; Nittrouer et al., 1989; Tomiak,

1991). A negative skewness was found for [s] and a positive

one for [S] (Jongman et al., 2000; McFarland et al., 1996;

Nittrouer et al., 1989), but others report a greater positive

skewness for [s] than for [S] (Tomiak, 1991). For kurtosis, a

large positive value was measured for [s] and a small positive

or a negative one for [S] (Jongman et al., 2000; McFarland

et al., 1996; Nittrouer et al., 1989; Tomiak, 1991).

Thus, multiple studies show that the spectral moments

may be able to distinguish fricatives (Forrest et al., 1988;

Jongman et al., 2000; Tomiak, 1991), but others argue that

while they carry important information about fricatives,

they cannot reliably distinguish their places of articulation

(Shadle and Mair, 1996). On the other hand, the temporal

properties of fricatives were so far much less investigated,

with most studies agreeing that duration is not a distinct cue

in fricatives at all (Jongman et al., 2000; Kochetov, 2017) or

can only contrast non-sibilants and sibilants (Behrens and

Blumstein, 1988).

In terms of the predictive power found in the literature,

temporal and spectral measures achieve quite a low accu-

racy of about 77% (Jongman et al., 2000) and between about

79% and 85% (McMurray and Jongman, 2011) for English

fricative place of articulation and of only about 61% for

Greek fricatives (Nirgianaki, 2014). In contrast, several

recent studies have focused on the extraction of cepstral

coefficients on the mel scale (Kong et al., 2014) or the Bark

scale to describe and distinguish fricative place, voicing,

and palatalization contrasts (Ghaffarvand Mokari and

Mahdinezhad Sardhaei, 2020; Jesus and Jackson, 2008;

Spinu et al., 2018; Spinu and Lilley, 2016), achieving a

much better predictive power of around 90% and higher

than the traditional measures. Even fewer studies

approached the identification of fricatives using machine

learning, and they mostly used deep learning methods

(Anjos et al., 2020; Nagamine et al., 2015). However, while

very interesting, it is generally harder, when using such

methods, to understand how the acoustic cues participate in

the classification process.

III. PRIMARY DATA AND ACOUSTIC CUES

The following R packages are used for the quantitative

analysis: data.table (Dowle and Srinivasan, 2019), e1071

(Meyer et al., 2019), ggfortify (Tang and Horikoshi, 2016),

neuralnet (Fritsch et al., 2019), nnet (Venables et al., 2002),

recipes (Kuhn and Vaughan, 2019), randomForest (Liaw

and Wiener, 2002), randomForestExplainer (Paluszynska

and Biecek, 2017), recipes (Kuhn and Wickham, 2019),

rpart (Therneau and Atkinson, 2019), rpart.plot (Milborrow,

2019), rsample (Kuhn et al., 2019), scales (Wickham and

Seidel, 2020), and tidyverse (Wickham, 2017).

A. Participants and primary data collection

The participants were 40 students (20 female) between

18 and 30 years old, studying in different departments of St.

Petersburg University in Russia. These participants were

born or had lived since their early childhood in St.

Petersburg. No participants reported any speech or hearing

impairment, and only one had to be excluded as he was a

professional musician. All participants were first introduced

to the purpose of the experiment, the expected duration, and

the procedure. They were told that they had the right to

withdraw at any time during the experiment, and they were

provided with the contact details of a person who could

answer all their questions concerning the research and their

rights. The participants were compensated for their

1808 J. Acoust. Soc. Am. 150 (3), September 2021 Ulrich et al.

https://doi.org/10.1121/10.0005950

https://doi.org/10.1121/10.0005950


participation. Demographic data, such as sex and age, were

recorded before the experiment started. The recording ses-

sions were conducted at the phonetic laboratory of the

Phonetic Institute in St. Petersburg, in an audiometric booth

using the recording program SpeechRecorder (Draxler and

J€ansch, 2018) at a sample rate of 44.1 kHz (16-bit encoding).

For the recordings, a clip-on microphone [Sennheiser

(Wedemark, Germany) MKE 2-P] was placed at a distance

of 15 cm from the speakers’ mouth and connected through

an audio interface [Zoom (San Jose, CA) U-22] to a laptop

computer.

The participants were instructed to read 198 sentences

from a computer screen. The stimuli were presented one by

one in a pseudo-random order by the experimenter, and the

participants could repeat a sentence in the case of a produc-

tion error. Ninety-four real words containing one of the 12

Russian fricatives at four places of articulation, voicing con-

trast, and palatalization were embedded either in sentences

where the fricatives occurred without contrast (N¼ 94) or as

minimal pairs in carrier sentences in which the fricatives

were in contrast (N¼ 104). Sentences not containing a con-

trasting fricative were natural-sounding language sentences,

such as “his name is Sasha [salj]” and “I like your [Salj]”

(scarf),1 while the contrasting ones were more constrained:

for example, for the minimal pair [salj] and [Salj], the carrier

sentences were “She said [salj] and not [Salj]” and “She said

[Salj] and not [salj].”2 Some target words have two minimal

pairs (for instance, the word [salj] is embedded in two differ-

ent carrier sentences, once contrasting with [Salj] and a sec-

ond time with [Zalj]), explaining the higher number

(N¼ 104) of carrier sentences.

B. The fricatives

The current study focuses on the differences in the place

of articulation between three Russian fricatives: the labio-

dental [f], the dental [s], and the hard alveolar-palatal [S].

The velar [x] and other voiced and palatalized fricatives

were excluded for several reasons. First, while the contrast

in places of articulation in Russian fricatives has been stud-

ied previously, a gap still exists in the literature (Kochetov,

2017). Studies of Russian fricatives have mostly concerned

pairwise comparisons of places of articulation, such as the

contrast between [s] and [S], while [f] generally has not

been considered so far. In terms of acoustic cues, most stud-

ies have measured noise intensity, F1, F2, F3 onset/offset,

and consonant duration (Kochetov, 2017). Noise spectra

have not been much considered, except in studies that

involved the production from a single speaker (Bolla, 1981)

or only measured the center of gravity (Kochetov, 2017).

Since the documentation of Russian voiceless fricatives is

rather limited, it is preferable to start with a smaller sample

and go deeper in the analysis to achieve a better understand-

ing of how different acoustic cues interact with each other in

the identification of these fricatives.

Second, the velar fricative [x] was excluded, since its

realisations are often very short and show strong co-

articulatory effects, meaning that no or only a very short

noise portion could be detected by the manual and automatic

methods. Therefore, the acoustic cues could only be

obtained from the raw sounds, and even there we saw a very

high variation in the estimated values, suggesting that fur-

ther research is needed to determine how to measure the

velar [x] in a comparable way to the other fricatives.

Furthermore, the occurrence of [x] is much less frequent

than of the other fricatives in Russian, which makes its sam-

ple size too small to be investigated in the current controlled

study.

Third, palatalized and voiced fricatives are not included

to avoid interference between voicing, palatalization, and

place of articulations. That is to say, by only considering

voiceless non-palatalized fricatives, the current study allows

a clear view of how acoustic cues interact with each other to

distinguish fricatives with different places of articulation.

Arguably, this strength can also be construed as a weakness,

since the results shown in the current study are restricted to

a certain subset of Russian fricatives, but since the current

state-of-the-art is relatively limited when it comes to

Russian fricatives and to machine learning, this more

focused approach may be preferable (this is further devel-

oped in Sec. IV).

The final data consist of 6320 sounds: 1440 (22.7%) [f],

2680 (42.4%) [s], and 2200 (34.8%) [S], each equally dis-

tributed among tokens recorded by male and female speak-

ers (e.g., there are 720 [f] sounds recorded by males and 720

recorded by females). Due to the structure of the Russian

lexicon, there are fewer [f] sounds than [s] and [S].

C. Automatic and manual segmentation

The audio files were filtered below 80 and above

20 050 Hz with a smoothing of 80 Hz and were first pre-

processed online automatically using the Munich Automatic

Segmentation System (MAUS) (Kisler et al., 2017; Schiel,

1999). Its output is a TextGrid containing, among other

things, a tier with the phonetic boundaries, which was used

for further manual boundary corrections, followed by the

extraction of the fricatives with Praat (Boersma and

Weenink, 2021). To define the onset and offset of the full

consonant, the broadband spectrogram was considered as

more important than the start of an aperiodic waveform

with rising zero crossing rates, and in intervocalic fricatives,

the presence of formant columns is defined as the onset and

offset of the fricative [following Skarnitzl and Machač

(2011)].

Applying this segmentation strategy means that the full

segment of a fricative in an intervocalic positions will also

contain part of the transition zone, with co-articulatory

effects of the preceding and following sounds, as can be

seen in Fig. 1. Fricatives preceded by consonants, or in the

last word and sentence position, were segmented according

to the presence of high energy in the spectrogram.3

A third segmentation step was performed to better sepa-

rate the full consonant into temporal components and to
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extract the relevant frication noise portion of the sound. As

shown in Fig. 1, the oscillogram of the full duration of the

consonant is not equal to the pure noise part of the fricative.

Noise is in general defined as an aperiodic signal with high

frequencies and therefore a high number of zero crossings in

a given time, i.e., a high zero crossing rate (zcr). This is

known to detect the voiced and unvoiced parts in speech,

and we used it here to detect the frication noise part in frica-

tives. To visualize the number of zero crossings in Praat, a

PointProcess object4 was generated, as shown in Fig. 2.

The blue bars represent the points where the waveform

passes through zero, and the noise parts of the fricative are

characterized by the high density of the blue bar (appearing

almost as a solid blue rectangle), while the gaps between the

blue bars at the beginning and the end of the sound indicate

fewer zero crossings, which can arise from co-articulatory

effects. Our data show that, in connected speech, the distri-

bution of zero crossings along the sound duration depends to

some degree on linguistic and non-linguistic factors, such as

co-articulation, stress, or speaker-specific production char-

acteristics. Furthermore, many sounds did not show a clear

middle noise portion without any interruption, in which case

no all-encompassing rule could be applied and, to detect the

relevant region, each token had to be considered individu-

ally, explaining why the segmentation of the noise part is

very time-consuming and resists full automatisation and

standardisation.

To overcome these difficulties and allow the full autom-

atisation of the extraction of the noise part, we introduce

here a new method based on training a tree-based computa-

tional classifier, built on the assumption that the zero cross-

ing rate provides sufficient information to divide a speech

signal into a purely aperiodic portion and portions contain-

ing periodics. With this model, each sound is separated into

different windows based on a certain amount of zero cross-

ing points. The zcr within each window is then measured

and compared with the zero crossing rate of the preceding

window (if any). The difference of zero crossing rate

between the two windows (diff) is then computed and used

as a cue to identify the beginning and the end of the noise

part of a sound. Typically, we expect that a rise of zero

crossing rate across two windows indicates the beginning of

the noise, while a drop of zero crossing rate across two win-

dows represents the end of the noise. To have a better under-

standing of which settings are optimal for the model, we

tested different window lengths (here, 64, 128, 256, or 512

points) with different levels of overlap (0%, 30%, 50%, or

80%); please note that the window lengths are considered in

terms of number of zero crossings and do not represent the

window’s absolute duration in terms of wall-clock time, as

the same number of zero crossings may cover different

absolute durations for different sounds.

A “gold standard” subset of 560 fricative sounds, which

had their noise duration identified manually, was used to

annotate each window with noise¼TRUE or noise¼ FALSE

depending on its occurrence within or outside the noise part

identified manually. For the sake of argument, let us consider

FIG. 1. (Color online) An example of a fricative sound. The first tier of this screenshot from Praat shows the full duration of the fricative, while the second

shows only the noise part, excluding the effects of any potential co-articulation.

FIG. 2. (Color online) Visualizing the zero crossings in Praat. The increase

in the spatial density of the blue bars shows a rapid increase in zcr.
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a recording of a certain length, within which there is only one

manually annotated noise part that starts at ts seconds and

ends at te seconds. Each possible window is annotated with a

unique time mark, ti, representing the moment at which the

window starts; if, for a particular window i, this time mark

falls between the starting time and the ending time of the

manually annotated noise of the sound (ts � ti � te), the win-

dow is marked as noise¼TRUE, but if the time mark is

found before the starting time (ti < ts) or after the ending

time of the noise (te < ti), the window is marked as

noise¼ FALSE. This procedure ensures that each window

within each of the sounds is annotated as noise¼TRUE or

noise¼ FALSE, annotations that are used for training a tree-

based computational classifier (Breiman et al., 1984) to iden-

tify the TRUE or FALSE value of each window based on the

gap of zero crossing rates between two consecutive windows.

The classifier was trained on a randomly chosen 70% of

the data (the “training subset”) and evaluated on the remain-

ing 30% of the data (the “test subset”). The random splitting

of the “gold data” into the “training” and “test” samples was

repeated 100 times. For each of these 100 training/test sam-

ples (replications), we evaluated all the possible combina-

tions of window length and overlap so as to identify which

of them generate the highest accuracy at identifying the

noise parts of the sounds. We thus estimated a total of 4

lengths� 4 overlap values¼ 16 possible combinations of

parameters, which were replicated 100 times each, resulting

in a total of 1600 replications. An example decision tree for

window length 512 and 50% overlap is shown in Fig. 3.

The overall performance of the classifier is measured

by its accuracy, which is equal to the percentage of the cor-

rectly classified windows out of the full set of windows

(e.g., if a sound is segmented into ten windows and the

model classifies correctly seven of them, the accuracy of the

model is 7=10 ¼ 70%). A summary of the accuracy of each

of the 16 possible combinations of window lengths and

overlaps is shown in Fig. 4, where each boxplot represents

the distribution of the accuracies of the 100 replications of

the corresponding combination of parameters.

We see that all combinations of parameters result in

accuracies between 78% and 83%, with the best accuracy

being found for a large window length (512 zero crossings)

and a standard overlap (50%), with mean¼median¼ 80.8%

across the 100 replications.5 It is important to note that these

models are much more accurate than the “majority baseline,”

which is equal to what would be obtained by conducting a

deterministic allocation of all the data points into the majority

category (please see below for more details). For our best

parameters (window length¼ 512 and overlap¼ 50%), the

majority baseline is equal to the share of the TRUE sound

segments in the data, i.e., 39 842/61 485¼ 64.8%, but the

accuracy of the model (80.8%) is much higher than this.

Thus, the sound segments classified by this model can then

be used for the extraction of acoustic cues.

However, in general, 80% is far from excellent perfor-

mance and can only be considered as good. Therefore, we

also conducted a brief analysis of the performance of the

classifier for the noise classification task:3 the closer analysis

of the errors generated by the classifier indicates that the pre-

dictions of the classifier tend to wrongfully predict windows

without noise as having noise, which is to say, the model

predicts noise parts that are larger than the actual noises.

FIG. 3. (Color online) A decision tree generated for window length¼ 512

points and 50% overlap. zcr, zero crossing rate; diff, the gap of zero cross-

ing rate between two consecutive windows. A positive diff value represents

an increase in the zero crossing rate, while a negative value refers to a

decrease in the zero crossing rate. The values Sound_TRUE and

Sound_FALSE refer to the presence of noise in a window: a window with

Sound_TRUE is located within the noise part of the sound, while a window

with Sound_FALSE is not. Such a tree is interpreted as follows: the color of

the rounded rectangles (“buckets”) at the bottom of the tree represents the

ratio of correctly predicted TRUE/FALSE value of noise, with the numbers

within showing the number of tokens classified as such (the denominator)

and, of those, which were correctly identified (the numerator). The predic-

tion for a given token starts from the top node and ends in a bucket at the

bottom of the tree. For instance, starting from the top node 1, if zcr < 0.14,

the segment is interpreted as noise¼FALSE; this path classifies 2525

tokens as noise¼FALSE, among which 2042 are correctly identified as

noise¼FALSE, resulting in an accuracy of 2042/2525¼ 80.9% for this pre-

diction. As another example, if the zcr �0.14 and if the gap of zero crossing

rate with the previous sound ranges between –0.036 (node 3) and 0.05

(node 7), the sound segment is interpreted as noise¼TRUE. This path clas-

sifies 6858 tokens as noise¼TRUE, of which 5688 are classified correctly,

resulting in an accuracy of 5688/6858¼ 82.9%. The same logic applies for

the other branches of the tree. The variables that are shown in the decision

tree are the variables considered to have statistically significant explanatory

power given the data, while the variables not shown are considered to not

help in identifying the TRUE/FALSE value of the windows; here, both zcr
and diff are relevant.

FIG. 4. (Color online) The accuracy of the classifiers trained with different

parameters of window length and percentage of overlap (add percentage in

graph). Each combination of parameters is trained and tested for 100 repli-

cations with different training and testing data.
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These errors are equally frequent at the beginning and at the

end of the noise parts of a sound. Furthermore, the windows

from the [f] sounds seem harder to classify, as the accuracies

for the three sounds are [f]¼ 75%, [s]¼ 85%, and [S]¼ 80%,

which is not surprising given that [f] typically has a shorter

noise duration. Additional tuning of the parameters (such as

window length and overlap) may help to further improve the

performance of the classifier, but this goes beyond the aims

of the current study, whose main goal is to investigate

whether machine learning may improve distinguishing frica-

tives. Further discussions can be found in Sec. V.

D. Acoustic cue definition and extraction

To extract acoustic cues, most studies use single spec-

tral slices from the middle and sometimes the beginning and

end of the fricative or of the frication noise, with window

sizes between 25 ms (Kochetov, 2017) and 40 ms (Jongman

et al., 2000). The extraction of the acoustic cues for frica-

tives is generally not conducted on the full duration of the

consonant. Because here we want to both follow the exam-

ples of previous studies and develop new machine learning

methods, we combined two dimensions for pre-processing

the sound files to subsequently extract the acoustic cues.

For the acoustic analysis, two data sets were used. The

first data set includes the whole corpus of 6320 sounds

(denoted in the following as “A”¼ all sounds): there are

1440 [f] sounds (22.7%), 2680 [s] sounds (42.4%), and 2200

[S] sounds (34.8%). The second data set is the subset of

6068 sounds for which a frication noise window of mini-

mum 30 ms could be detected by applying the above men-

tioned automatic noise detection strategy (denoted as

“N”¼ noise sounds); thus, 252 sounds were discarded

[[f]¼ 171 (2.7%), [s]¼ 5 (0.08%), [S]¼ 76 (1.2%)]. To

extract the acoustic cues, four regions of the fricative are

considered: (a) the full consonant duration derived from the

manual segmentation (denoted as “C”¼ consonant), (b) the

identified frication noise duration from the automatic seg-

mentation (“F”¼ frication), (c) the 30 ms window placed in

the middle of the consonant (“W”¼window), and (d) the

30 ms window place in the middle of the frication noise

(“M”¼middle). Combining these two dimensions results in

six acoustic cue extraction techniques (ACETs): first,

extracting the acoustic measures from the whole corpus

(“A”; 6320 tokens), using (i) the full consonant duration

(“AC”) or (ii) the middle 30 ms (“AW”) and, second,

extracting the acoustic measures from the “N” subset (6068

tokens), using (iii) the full duration of the consonant

(“NC”), (iv) the frication noise (“NF”), (v) the 30 ms win-

dow placed in the middle of the sound (“NW”), or (vi) the

30 ms window placed in the middle of the frication noise

(“NM”) (Table I).

Table II shows the acoustic cues extracted for this

study. All measures were extracted using Praat (Boersma

and Weenink, 2021) and standard settings. The spectral

measurements central peak location (peak) and the four

spectral moments (cog, sdev, kurt, skew) are the most

commonly used cues for fricatives and are discussed above.6

In the temporal domain, we measured the zcr and the dura-
tion of the entire consonant (dur). Furthermore, 13 MFCCs

from the middle 30 ms of the sound were extracted.

Figure 5 compares the main acoustic cues computed

using the three ACETs.3 It can be seen that the acoustic cues

behave differently across ACETs, with, for example, [f]

showing more variation for cog and skew than the other

sounds. Likewise, there is variation in the acoustic cues

between the sounds, the most variable being cog, peak,

sdev, and zcr.3

We also conducted a principal component analysis

(PCA) to visualize the relationships between the acoustic

cues. PCA is a technique used for unsupervised dimension

reduction (Jolliffe, 2002). Because multidimensional data

often include variables that are correlated, it is preferable to

transform them before applying other types of analysis.

PCA transforms the correlated input variables into a set of

uncorrelated principal components (PCs) derived from them

and explaining the same variation. The PCs are ordered

decreasingly in terms of the amount of variation in the data

they explain (thus, PC1 explains most of the variance,

PC2 explains most of the remaining variance, and so on).

Figure 6 shows the data projected on the PC1 (x axis) and

PC2 (y axis), which explain together 96.52% of the vari-

ance. 77.66% of the variance is explained by PC1, which is

mostly driven by zcr, cog, and peak, and 18.86% is

TABLE I. The six theoretically possible acoustic cue extraction techniques

(ACETs). The abbreviations shown in each cell are used to refer to each

ACET within the following text. The first letter (A/N) of the abbreviation

refers to the data sample used for the extraction of acoustic measures (all

sounds/noise sounds), and the second letter (C/F/W/M) indicates the consid-

ered region of each sound (full consonant duration/frication noise duration/

middle 30 ms of duration/middle 30 ms of noise).

All sounds (A) Noise sounds (N)

Consonant duration (C) AC NC

Middle 30 ms of duration (W) AW NW

Frication duration (F) NF

Middle 30 ms of frication (M) NM

TABLE II. Summary of the acoustic cues included in the present study.

Cue Variable Description

Fricative duration dur Duration of the entire sound obtained

from manual segmentation

Zero crossing rate zcr Number of times the wave crosses 0,

computed for each time frame of the signal

Peak frequency peak Frequency of the highest amplitude

Peak amplitude peak_a Amplitude of the highest frequency

Spectral mean cog Mean distribution of spectral energy

(center of gravity)

Spectral variance sdev Spectral spread or variance of the energy

around the mean

Spectral skewness skew Spectral tilt, overall asymmetry of the

energy distribution

Spectral kurtosis kurt Spectral flatness of the distribution
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explained by PC2, which is driven mostly by peak, zcr, cog,

and sdev.

The clusters of [s] and [S] sounds generally stand out

from each other, which implies that the classifiers will prob-

ably not have difficulty in differentiating those two sounds

based on their acoustic cues. On the other hand, the tokens

of [f] are a bit blurred with the [s] and [S] sounds. This

shows that [f] sounds may represent some difficulty for the

classifiers.

IV. PREDICTING FRICATIVES FROM ACOUSTIC CUES

Four computational classifiers were used to predict fri-

catives from acoustic cues. The information about the sex of

the speakers as well as their unique (anonymous) identifiers

was also provided to the classifiers to assess their potential

relevance to the classification of fricatives.7 The first two

are based on binary recursive partitioning (Breiman et al.,
1984): the first classifier generates a single decision tree
based on the data and helps visualize the interactions

between the variables (incidentally, we also used such a

classifier above for sound filtering).

The second, called a “random forest” (Breiman, 2001),

generates a series of 300 decision trees8 that are analyzed as

a whole and used to assess the importance of each variable

with regard to correctly predicting the fricatives. For each

tree, it uses a bootstrap sub-sample of observations and a

random subset of the variables from the entire dataset. This

process of random sampling is also the main strength of ran-

dom forests, as it allows the analysis of small-scale data and

consideration of the possible auto-correlation of variables

(Tagliamonte and Baayen, 2012).

The third classifier is called “support vector machines”

(SVMs), which are able to separate subsets of the data even

when the separation boundary is not linear.

The fourth classifier uses a neural network architecture

(Haykin, 1998; Parks et al., 1998), which searches for non-

linear boundaries between the data points. Here, we use a

feed-forward neural network that consists of an input layer,

a hidden layer, and an output layer, each layer having a spe-

cific number of neurons that are connected to the neurons of

the next layer. The input layer has one neuron for each vari-

able (predictor) in the classification task, while the output

layer has one neuron for each type of predicted sound. The

hidden layer is set to ten neurons in the current experiment.

We chose these four classifiers for the following rea-

sons. The first classifier generates an explicit decision tree

that captures the hierarchical interactions of the variables

within the dataset. The second classifier provides informa-

tion about the relative importance of the predictors. The

third and the fourth classifiers are among the best at dealing

FIG. 5. (Color online) The comparison of acoustic cues based on the three main ACETs reported in the experiments. The names of the ACETs refer to the

acoustic cue extraction techniques listed in Table I.

FIG. 6. (Color online) The PCA visualization of the acoustic cues for each

sound. The length of the arrows relates to how much information is contrib-

uted by the acoustic cues to the PCs. cog, peak, sdev, and zcr are the most

relevant.
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with complex non-linear problems, at the cost of an easy

understanding of the decision process. The interest of com-

paring these four classifiers is in trying to find the best trade-

off in terms of transparency and performance for the classifi-

cation of fricatives based on acoustic cues.

All classifiers were trained on 70% of the data (the

training subset), and their accuracy was evaluated on the

other, non-overlapping, 30% of the data (the test subset).

Importantly, both the training and testing subsets have the

same frequency of the predicted sounds as the full dataset

(e.g., as [f] appears 1440 times in the data, that is, 1440/

6320¼ 22.8% of the time, the subsets each contain about

22% [f] sounds). To be able to generalize the results, we ran

ten replicates, each with the data randomly partitioned into

such training and testing subsets.9

The performance of the computational classifiers was

captured using three measures: accuracy, precision, and

recall. Accuracy provides an overview of the performance on

the entire dataset, and it is the proportion of all correctly clas-

sified sounds. Its value should be compared with an appropri-

ate baseline. One such baseline would be the accuracy of a

model that makes completely random guesses; here, this ran-

dom baseline would be equal to the square of the proportion

of each sound in the data, i.e., ð1440=6320Þ2 þ ð2680=6320Þ2
þð2200=6320Þ2 ¼ 35%, and if our model surpasses this base-

line, it would be considered as performing better than chance.

However, the random baseline is easily affected by the differ-

ent sizes of each category in the data, prompting us to use the

majority baseline as our threshold. This baseline deterministi-

cally allocates all sounds to the biggest category in the dataset:

since [s] appears in the most tokens in our data (42%, 2680/

6320), such a classifier would reach a precision of 42% just

by guessing that all the sounds are [s], so that the accuracy of

our classifiers should be greater than 42%. The majority base-

line is by default at least as good as the random baseline,

making it harder to beat and more reliable for evaluating the

accuracy of classifiers.

However, accuracy gives only a general idea of the per-

formance of the model, and to have a more precise idea as

to how the classifier performs for each sound, we also con-

sidered precision and recall (Ting, 2010). Precision quanti-

fies how many of the sounds classified in each category are

correctly classified (e.g., how many of the sounds classified

as [f] are actually [f] sounds). Recall quantifies how many of

the sounds actually belonging to each category are correctly

classified (e.g., how many [f] sounds are correctly classified

as [f] sounds by the classifier). Precision and recall are com-

puted for each of the three fricatives, resulting in three esti-

mates of precision and three of recall in total.

We now analyze the results of each of the four classi-

fiers in turn.

A. Single decision tree

The mean output of the 10 replications is shown in

Table III. The accuracy does not vary much between the

ACETs, as the maximum is 94.6% and the minimum is

93.0%, but the accuracy of NF is consistently the highest.3

The precision and recall are generally high for all sounds

across the ACETs, without much systematic variation.

Focusing on NF, the accuracy is similar across the repli-

cations, and we show in Fig. 7 the decision tree generated

on the first replication. This tree is to be interpreted in the

same way as in Fig. 3 and shows that cog and sdev are suffi-

cient for the classifier to distinguish between [f], [s], and [S].

For instance, if cog is high (�5486, node 1 to node 2) and

sdev is also high (�4002, node 2 to node 4), the classifier

predicts an [f] sound, while if cog is low (<5486, node 1 to

node 3) and sdev is also low (<2803, node 3 to node 7), the

classifier predicts an [S].

TABLE III. The performance of the classifiers across ten replications ranked according to their mean accuracy. The names of the ACETs refer to the acous-

tic cue extraction techniques listed in Table I. The baseline indicates the majority baseline. Acc., accuracy; upper, upper confidence interval; lower, lower

confidence interval; Pr., precision; Rc., recall. Please note that the slight variation in the accuracy of the majority baseline is due to variations in the dataset

size (NF has fewer tokens than AC since the former is only considering the sounds that were detected with noise parts). The values in bold indicate the

parameters with the highest accuracy for each classifier.

Classifier ACET Baseline (%) Mean Acc. (95% CI) (%) Pr. [f] (%) Rc. [f] (%) Pr. [s] (%) Rc. [s] (%) Pr. [S] (%) Rc. [S] (%)

Single tree MFCC 42.4 93.5 (93.1–93.9) 90.4 89.0 92.3 93.1 97.9 96.9

Single tree AW 42.4 94.6 (94.3–94.9) 91.0 93.4 96.7 93.4 94.7 96.9

Single tree AC 42.4 93.0 (92.8–93.3) 85.9 94.5 94.6 91.8 96.4 93.4

Single tree NF 44.1 94.9 (94.6–95.1) 92.6 91.9 96.1 94.3 94.7 97.3

Random forest MFCC 42.4 98.5 (98.3–98.7) 97.6 96.8 98.2 98.6 99.5 99.6

Random forest AW 42.4 97.4 (97.2–97.6) 96.2 96.9 97.1 97.1 98.1 97.7

Random forest AC 42.4 97.3 (97.0–97.5) 96.2 97.1 97.0 96.9 98.2 97.8

Random forest NF 44.1 97.7 (97.4–97.9) 97.1 96.4 97.8 97.3 97.9 99.0

SVM MFCC 42.4 99.6 (99.5–99.7) 99.2 99.2 99.6 99.6 1.00 1.00

SVM AW 42.4 98.0 (97.8–98.2) 96.8 96.6 97.9 97.7 98.9 99.3

SVM AC 42.4 98.2 (98.0–98.3) 97.6 97.7 98.2 97.6 98.5 99.2

SVM NF 44.1 98.5 (98.3–98.7) 98.1 97.0 98.4 98.4 98.8 99.6

Neural net MFCC 42.4 99.5 (99.4–99.6) 99.1 99.0 99.4 99.4 99.8 99.9

Neural net AW 42.4 97.7 (97.4–98.1) 96.8 96.7 97.4 97.4 98.1 98.3

Neural net AC 42.4 97.8 (97.5–98.1) 97.9 96.9 97.4 97.7 98.2 98.4

Neural net NF 44.1 98.1 (97.8–98.4) 96.9 97.0 98.3 98.0 98.5 98.8
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Interestingly, only cog and sdev matter, while the other

variables (such as zcr, dur, and even speaker information)

are considered as not relevant by the model. This suggests

that the information captured by cog and sdev does not vary

much across speakers (see also Sec. V).

Finally, the confusion matrix generated by this decision

tree on the testing subset is shown in Table IV. It can be

seen that, for example, the testing set includes 358þ 15

þ7 ¼ 380 [f] sounds and that the classifier predicted 358

þ36þ 6 ¼ 400 sounds as [f] sounds, correctly predicting

358 [f] sounds, while 36 were in fact [s] and six were in fact

[S]. Of the actual [f] sounds, 358 were predicted correctly,

while 15 [f] sounds were misjudged as being [s] sounds and

seven [f] sounds were misinterpreted as [S] sounds.

To sum up, the single tree classifier performs generally

well on the data and reaches similar performances across the

three ACETs, but NF consistently ranks first in terms of

accuracy.3 Focusing on one such tree shows that cog and

sdev are the most relevant variables for identifying frica-

tives, a finding supported by the other trees, which all con-

verge in that cog is always at the root, and the two following

branches depend on sdev.

B. Random forest

The accuracy of the random forest classifiers is shown

in Table III, and we can see that, in general, the accuracy is

better when compared to the single decision trees across all

ACETs, all performing comparably well (accuracy between

97.7 and 97.3). NF has a better accuracy than the other

ACETs. However, its accuracy is lower than MFCC-based

extraction.

Random forests allow the estimation of the importance

of each predictor. Here, we used three measures: minimal
depth, the decrease in accuracy, and node purity. The mini-
mal depth of a variable indicates how far from the root node

is the first node where that specific variable matters (for

example, in Fig. 7, cog appears at the root node, having thus

a minimal depth of zero). A variable frequently close to the

root node (thus, with a low minimal depth) is considered to

have a high importance. Table V shows the ranked impor-

tance of the acoustic cues in terms of minimal depth, of the

mean decrease in the accuracy of the model when excluding

a variable (a high decrease means that the variable has pre-

dictive power), and of the mean decrease in the purity (the

Gini coefficient), indicating how the variable contributes to

the homogeneity of the nodes at the bottom of the tree (a

high drop in the purity when removing the variable suggests

strong predictive power). While different measures result in

slightly different rankings, there is a high degree of consis-

tency, with cog and sdev being ranked in the top three most

important variables.

Figure 8 shows how “consistent” the model is when

making decisions, estimated as the probability of the votes

TABLE IV. The confusion matrix generated from the decision tree in

Fig. 7. The columns indicate the actual values, and the rows refer to the pre-

dictions of the classifier. The values in the matrix are from the test set used

to evaluate the accuracy of the classifier, which represents approximately

30% of the data.

[f] [s] [S]

[f] 358 (19.7%) 36 (1.9%) 6 (0.3%)

[s] 15 (0.8%) 741 (40.7%) 10 (0.5%)

[S] 7 (0.4%) 25 (1.4%) 621 (34.1%)

TABLE V. The acoustic cues ranked on their importance as estimated by

minimal depth, mean decrease in accuracy, and purity. These numbers are

based on acoustic cues from the NF data.

Ranking Minimal depth Accuracy Purity

1 cog 2.3 sdev 56.9 cog 625.5

2 peak 2.4 cog 38.8 sdev 516.0

3 sdev 2.4 peak_a 31.5 zcr 483.5

4 zcr 2.6 skew 27.3 peak 437.8

5 peak_a 2.8 zcr 26.3 kurt 167.3

6 skew 2.9 peak 24.6 peak_a 164.1

7 kurt 2.9 kurt 23.2 skew 120.0

8 dur 3.4 dur 14.6 dur 38.8

FIG. 8. (Color online) The confidence of the random forest classifier for

correct and wrong decisions across [f], [s], and [S] for NF.

FIG. 7. (Color online) A decision tree generated with the acoustic cues

from the ACET of NF. The rules for its interpretation are similar to those of

the tree in Fig. 3 except for the color of the “buckets,” which now represent

the sound.
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across all the trees considered (e.g., if 270 of the 300 trees

assign a token to [f], then the confidence of the decision is

270/300¼ 90%). We can see that the model generally has a

confidence level >85% for correct decisions and �35% for

the wrong ones, indicating that the model is “confident”

about decisions that turn out to be correct but that it also

“knows” that a decision is likely to be wrong when it actu-

ally is wrong.

In sum, the results of the decision trees and of the ran-

dom forests with 300 trees converge in identifying a set of

variables considered important for predicting fricatives in

Russian. The accuracy of these two classifiers exceeds by

far the majority baseline.

C. Support vector machine

Again, we perform ten replications using randomly

selected training and testing subsets. Their mean output is

shown in Table III, and, as for the tree-based classifiers, the

accuracy is quite similar across the ACETs (between 98.5%

and 98%). NF also has the highest accuracy.

The accuracy of the SVMs is higher, on average, by

�1% compared to the random forests, showing that the tree-

based classifier already captures most of the information

encoded in the acoustic cues.

D. Neural networks

Once more, we use ten replications, and their mean out-

put is shown in Table III. As for the tree-based classifiers

and the SVM, the accuracy of the ACETs does not vary

much (between 98.1% and 97.7%), NF again has the highest

accuracy, but the differences between ACETs are extremely

small (0.4%).

Thus, the different classifiers have very comparable per-

formances, reaching extremely high accuracies across the

ACETs, showing that there is enough information in the

acoustic cues to correctly classify the fricative sounds [f],

[s], and [S]. Interestingly, NF seems to (very slightly) out-

perform the other ACETs, suggesting that focusing on the

extracted noise may provide the best information for classi-

fying fricatives.

V. DISCUSSION AND CONCLUSIONS

This paper has four (five) inter-related main aims, two

substantive and two methodological. Substantively, we

wanted (i) to check whether using the entire sound, only a

fixed-duration window in the middle of the sound, or only

the noise part makes any difference to the amount of useful

information contained in the extracted acoustic cues and (ii)

to investigate whether conventional acoustic cues do, in

fact, contain enough information to correctly classify frica-

tives, despite previous claims to the contrary.

Methodologically, we tested whether four different compu-

tational classifiers (decision trees, random forests, support

vector machines, and feed-forward neural networks with

backpropagation) are capable of (iii) identifying the noise

part of a fricative sound using only basic acoustic

information and (iv) correctly classifying the Russian frica-

tives [f], [s], and [S] using acoustic cues. Finally, (v) we

compare the predictive power of the acoustic measures with

that of the MFCCs.

Starting with aims (i) and (iii), we defined three ACETs

using either the full consonant duration (AC), its middle

30 ms (AW), or only the noise part of each sound file (NF)

(the noise detection used our classifier-based method).

We found that the accuracy of classifying the fricatives

from acoustic cues does not vary much among these ACETs

or among the four classifiers, but differences do exist and

are informative scientifically and methodologically. All four

classifiers perform far above the majority baseline of 44%

accuracy (reaching between about 93% and 98% across

ACETs). The accuracy of the decision trees is generally

lower than of the other three classifiers (as expected, given

that this has the simplest architecture), but, importantly, ran-

dom forests perform almost at ceiling; this result is poten-

tially very important as there is a high interpretability of the

decision rules used.

In particular, extracting acoustic measurements from

the full noise duration seems better than from a 30 ms win-

dow (e.g., for cog, sdev, and peak) for all three fricatives

and especially for [f]. That is to say, the most invariant

parameters are the ones estimated from the largest section

that does not show strong co-articulatory effect. Therefore,

we suggest that, depending on the main aim of the investiga-

tion, future work should extract acoustic measurements

from the full noise duration instead of from a small spectral

slice, more so if non-sibilants are the focus of the study.

Similarly, the method we propose can also be useful for

studying fricatives with secondary features such as palatali-

zation (as in Russian) or aspiration (as in Korean). In both

cases, clearly identifying the frication noise section can be

crucial for identifying the phoneme (Rabha et al., 2019).

The ACET NF does not include the speech sounds

where the noise portion was absent or too short to be

detected by the automatic segmentation, resulting in only

6068 tokens being retained (of the 6230 in total), allowing

us to test the potential impact of such errors on the detection

of the fricatives. Most such errors were found in the realiza-

tion of [f], but it is unclear whether this can be generalized

to other datasets. This prompts us to suggest that production

errors should be carefully checked and probably excluded

from the analysis; if the higher error rate for [f] is a general

feature, then this might be particularly relevant for studies

of contrasting front non-sibilant fricatives as is, for example,

the case for English. Furthermore, while our study is rela-

tively well powered in terms of number of tokens per

speaker and the set of speakers, it might be the case that

smaller samples, as typically used in previous studies, do

not have the power to extract the useful information from

the noise.

Focusing now on (ii) and (iv), we think that our study

clearly shows that acoustic cues do contain enough informa-

tion for the correct classification of the Russian fricatives

[f], [s], and [S], in particular, and gives hope that this may
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be the case for other fricative sounds in other languages. A

few acoustic cues seem to be necessary and sufficient,

including cog, sdev, and possibly zcr and peak. The impor-

tance of sdev echoes previous studies emphasizing the

importance of dynamical features and spectro-temporal var-

iations in identifying fricatives (Patil and Rao, 2008; Reidy,

2016). Interestingly, the vowel context does not seem to

matter, as is also the case for the speaker’s sex and identity,

suggesting that we may have identified context-independent
characteristics of the fricative sounds themselves beyond

and above the effects of phonetic context (Mann and Repp,

1980; Nirgianaki, 2014; Soli, 1981; Stevens, 1998) and of

sex and other individual-specific factors (Hughes and Halle,

1956; Jongman et al., 2000; Kochetov, 2017; Nirgianaki,

2014).

Concerning (v), as shown in Table III, our results did

not find a large difference in predictive power between the

acoustic measures and the MFCCs, strikingly smaller than

that reported in the literature. In fact, while the MFCCs per-

form better than the acoustic measures (formally, statisti-

cally significantly so), this difference is very small in terms

of effect size (less than 2% accuracy), both performing

effectively at ceiling (above 97% for random forests, SVMs,

and neural nets), and this difference is smaller when the full

frication noise is used. (The fact that such small real-world

differences are statistically significant here is due to the very

small variation between replications.) Thus, both methods

are very good and comparably so at classifying the sounds

[f], [s], and [S], showing that the information necessary for

correctly classifying these three fricatives can be extracted

in several manners. We also considered the performance of

models trained with both acoustic cues and MFCCs.3 While

the results indicate that merging acoustic cues and MFCCs

does not result in a better performance than the MFCCs, the

ranking of the variables represents a mix between acoustic

cues and MFCCs, suggesting that further studies should

investigate how such acoustic cues are captured by the

MFCCs. More precisely, it is not possible at this point to

determine whether the absence of improvement observed

when both acoustic cues and MFCCs are considered is due

to the simplistic merging approach or to a ceiling effect

related to the somehow limited variability offered by our

corpus. The choice of which manner to use should therefore

depend on the particular research question or practical appli-

cation at hand, each having its advantages and disadvan-

tages: the MFCCs are probably more appropriate in an

engineering context, while the acoustic measures give more

insight into the articulatory and perceptual mechanisms rele-

vant for fundamental research.

It is perhaps important to note that our approach here is

to use the acoustic cues to classify the fricative sounds, iden-

tifying, in the process, those cues that matter the most, in

contrast to, for example, McMurray and Jongman (2011),

which, within a regression framework, tries to find statisti-

cally significant differences for a cue given the type of frica-

tive sound. We replicated and extended the methodology in

McMurray and Jongman (2011) using a maximum-

likelihood mixed effects regression approach where the

value of given cue is predicted from the method (the

ACETs), the sound classification ([f], [s], or [S]), and their

interaction as the predictors of interest, controlling for sen-

tence type (carrier or normal sentence), fricative position
(beginning, middle, or end), the sounds preceding and fol-
lowing the fricative (several classes), and sex (F/M) as fixed

effects and for sentence and speaker as random effects (sen-

tence embedded within speaker). In a nutshell, our findings3

suggest that, as expected, there is a high similarity within

speakers and sentences for all cues (high intra-class correla-

tions) and that there are significant differences between

sounds for all cues, with varying influences of sentence

type, fricative position, and context but, again, not of sex.

While they are concordant with our machine learning results

and confirm that, indeed, acoustic cues differ between frica-

tives, these results cannot be directly used to classify frica-

tives from acoustic measures as our classifiers do, which,

arguably, is the relevant question both scientifically and

practically.

Comparing our results of spectral and temporal cues

with the previous findings, we find both overlaps and differ-

ences. Spectral peak location is probably one of the most

promising cues in the literature, but our classifiers did not

find it as crucial for distinguishing fricatives. As for Greek

fricatives (Nirgianaki, 2014), we do not find a clear decrease

in frequency as the place of articulation moves from front to

back, in opposition to other previous research (Hughes and

Halle, 1956; Jongman et al., 2000). In our data, cog is the

most important cue for distinguishing [f], [s], and [S].

Higher values are reported for sibilants than for non-

sibilants (Tomiak, 1991) and for [s] than for [S] (Funatsu

and Kiritani, 1998; Jongman et al., 2000; Nittrouer et al.,
1989; Padgett and _Zygis, 2007; Zsiga, 2000), which our data

confirm, to a certain extent: [f] has the lowest values around

4000 Hz (but reaching up even above 7000 Hz), while the

energy of [s] is centered around 7500 Hz and that of [S] is

centered around 4500 Hz.

Despite the spectral spread being much less considered

in the literature, we found that this is one of the most impor-

tant cues in our data: the lowest spread was found for [S]

and the highest for [f] (Jongman et al., 2000; Shadle and

Mair, 1996; Tomiak, 1991).

For the other two spectral moments, skewness and kurto-
sis, our results did not match with previous findings sugges-

ting that these two cues are stable characteristics of fricatives

(McFarland et al., 1996; Nittrouer et al., 1989; Tomiak,

1991). Not only there are no significant differences across the

methods, but both measures are plagued by many outliers.

Temporal measures, such as the full consonant duration

and the frication noise duration, are not distinct cues in our

data. Only the zero crossing rate seems to contain relevant

information, but it is not an important cue for distinguishing

[f], [s], and [S].

Our study has several limitations, probably the most

important being that we are focusing here only on a subset

of the Russian fricative inventory of read speech.
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Nevertheless, we believe our study is a potentially

important contribution to several current debates in phonet-

ics and linguistic typology and to the application of machine

learning techniques to acoustic studies. First, it found that

there may be a set of acoustic cues (cog and sdev) that can

reliably distinguish the Russian fricatives [f], [s], and [S].

This supports the invariant theory and suggests that stable

and descriptive acoustic characteristics can be found

(Blumstein and Stevens, 1981). Second, the results also sup-

port the view that the configuration of the vocal tract during

the production of fricatives shapes their spectrum, with the

relevant spectral cues not residing primarily in the frequency

of the highest amplitude but in the spectral mean and spread,

but more research is needed in this direction. Finally, this

paper shows that acoustic and phonetics studies can be

helped by machine learning (and, more generally, data sci-

ence) approaches: on the one hand, they can help to identify

the voiced and unvoiced parts of a fricative and extract the

frication noise and, on the other, to find patterns in the

acoustic correlates extracted from speech sounds.
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