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An Equivalence of the EM and ICE
Algorithm for Exponential Family

Jean Pierre Delmas

Abstract—In this correspondence, we compare the expectation maxi-
mization (EM) algorithm with another iterative approach, namely, the
iterative conditional estimation (ICE) algorithm, which was formally
introduced in the field of statistical segmentation of images. We show that
in case the probability density function (PDF) belongs to the exponential
family, the EM algorithm is one particular case of the ICE algorithm.

I. INTRODUCTION

In many signal processing applications, direct calculations of
maximum likelihood (ML) parameter vector estimates are intractable
due to the complexity of the likelihood functions. Using the notion
of complete data, the EM algorithm and its variations have been used
extensively and successfully in many signal processing applications.
An alternative iterative estimation method called the called iterative
conditional estimation (ICE) was introduced by Pieczynski [1] in
the field of statistical segmentation of images [2]–[4]. It is no
longer based on the notion of likelihood but on that of conditional
expectation. Therefore, this approach is of wider application because
it encompasses probability distributions that have both a discrete and
a continuous part, which is a case where the notion of likelihood is
no longer relevant [5].

After formulating the principle of ICE reshaped in the familiar
EM terminology, we compare the EM and ICE algorithms. We
show in particular that for the exponential family of PDF’s, unlike
the EM algorithm, which is invariant to the parameterization, the
ICE algorithm yields a specific algorithm for each parameterization.
Furthermore, we show that the EM and ICE algorithms are equivalent
for the canonical parameter of the structure. Therefore, the EM
algorithm appears to be a particular case of the ICE algorithm for
these structures. A similar fact has already been pointed out in the
context of hidden Markov fields [4]. We conclude by illustrating these
parameterizations in some signal processing examples.

II. THE ICE ALGORITHM

Let y be a realization of the measured random variable (RV)
Y, the probability distribution of which depends on a parameter
vector �. In the classical formulation of the EM algorithm [6],
[7], [9], one supplements the observed signalsy (which are often
called incomplete data) to form the complete datax [y = h(x),
whereh is a many-to-one mapping]. The EM algorithm iteratively
alternates between an E-step, calculating the conditional expectation
of the complete data log likelihood, and a M-step, maximizing that
expectation with respect to the parameter�. The mappingh (and,
thus, the datax) is chosen in such a way that this M-step is made
as simple as possible.

The ICE algorithm, which was introduced in [1] in the context
of hidden models (Markov fields), also uses the notion of complete
datax, which are now made of the concatenation of the available
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datay and of some hidden datax0 that one would like to estimate
x = (x0; y). This estimator is based on the notion of conditional
expectation, which is applied to an estimator that is function of the
complete data. Reformulated in the EM terminology, the principles
of ICE are as follows.

• We suppose that we have at our disposal an estimator�̂ that is
a function ofX (�̂ not necessarilyan ML estimator)

�̂ = �̂(X): (1)

• Since onlyy is observable, we must look for an approximation
of �̂ that is a function ofY. The best approximation in the
minimum mean square error sense is a natural choice, i.e.,
E� [�̂(X)=Y], as this conditional expectation depends on�,
which is unknown by nature; therefore, the following iterative
approach was proposed [1].

�k+1 = E� �̂(X)=Y = y : (2a)

• If this conditional expectation cannot be computed analytically,
but the conditional lawPX=Y is known, then one can simulateN
realizationsx1; x2; � � � ; xN of X according to this distribution.
�k+1 can be approximated thanks to the law of large numbers by
the empirical mean (in practice, one can use only one realization
[1])

�k+1 =
1

N
[�̂(x

k
1) + �̂(x

k
2) + � � �+ �̂(x

k
N )] (2b)

in which xki denotes a realization of the RVX according to
the law PX=Y for the value�k of �. This yields a stochastic
approximation of the ICE algorithm.

III. RELATIONS BETWEEN EM AND ICE

At first sight, ICE and EM algorithms are based on completely
different principles. Nevertheless, these algorithms can be compared
if we use the same complete datax and if the estimator̂� in (1) is
chosen to be the ML estimator. Therefore, if we denote byfX(x; �)

the PDF ofx, we have, according to the EM terminology

�k+1 = Arg Max
�
E� [Log fX(X; �)=Y = y] (3)

and in accordance with the ICE principle, we have, thanks to (2a)

�k+1 = E� Arg Max
�

Log fX(X; �)=Y = y : (4)

Consequently, if the operations “maximization with respect to�”
and “conditional expectation” commute, the two algorithms become
identical. We wish to clarify this condition in the case where the PDF
of the complete data belongs the exponential family [8], which is a
very frequent case in signal processing applications. LetfX(x; �) be
such a PDF with respect to a measure independent of the conventional
parameter� 2 IRp [with a( ) 6= 0]

fX(x; �) = b(x) exp [h�; s(x)i � a(�)]: (5)

As expected, the invariance property of the ML estimator implies
that the EM algorithm does not depend on the choice of the selected
parameterg(�), provided only thatg is a one-to-one mapping. On
the other hand, the ICE algorithm depends on this choice. We shall
illustrate this point in Section IV. To show that in the exponential
family, the EM algorithm is a particular case of the ICE algorithm,
we now prove two propositions.
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Proposition 1: The ICE and EM algorithms are equivalent for the
canonical parameter = r�a(�) (which sometimes coincides with
the conventional parameter�).

Proof: Since

E [Log fX(X;  )=Y = y] =E 
b(X)

Y
= y

+ h�; E [s(X)=Y = y]i � a(�)

the E-step of EM consists of computing

sk(y)
�
= E [s(X)=Y = y]:

SinceE [b(X)=Y = y] does not depend on , the M-step yields
 k+1 = sk(y). As for the ICE algorithm, if in (1) the ML estimator
is chosen, then

 ̂ = Arg fMax
 

Log [fX(X; )]g = s(X)

and the iteration (2a) of ICE reads

 k+1 = E [s(X)=Y = y] = sk(y): (6)

Proposition 2: The algorithms EM and ICE are equivalent for the
natural parameter� if and only if

a(�) = �
T
A�+ b

T
�+ c: (7)

Proof: The EM algorithm yields

�k+1 =Arg
�

fE� [s(X)=Y = y] = r�a(�)g

=g
�1fE� [s(X)=Y = y]g

whereg(�)
�
= r�a(�). As for the ICE algorithm built on a ML

estimator�̂(x), it gives

�k+1 =E� Arg
�

[s(X) = r�a(�)]=Y = y

=E� g
�1
s(X)=Y = y :

Last, the operationsE� andg�1 commute if and only ifg�1(:) is
affine , g(:) is affine, (7) holds.

IV. A PPLICATION EXAMPLES

We now illustrate the choice of the different parameterizations by
some signal processing examples. First of all, we clarify a case in
which the EM and ICE algorithms are different for the parameter�

but equivalent for the parameter .
Example 1—Finite Mixture of Gaussian Distributions:Consider a

sequence of n independent RV’s (1li1; � � � ; 1l
i
j ; � � � ; 1l

i
q�1;

Yi)
j=1; ���; q�1
i=1; ���; n , where 1lij denotes the indicator variable of the

distribution j at time i. Each distributionj has a probability�j ,
and the conditional distribution ofYi given 1lij = 1 is Gaussian
N (mj ; �

2
j ) for j = 1; � � � ; q. The conventional parameter is

� = (�1; �2; � � � ; �q�1; m1; m2; � � � ; mq; �
2
1 ; �

2
2 ; � � � ; �

2
q)

and it is easy to show that the PDF ofX = (11; 12; � � � ; 1q�1; Y)

[with 1j
�
= (1l1j ; 1l

2
j ; � � � ; 1l

n
j ) andY

�
= (Y1; Y2; � � � ; Yn)] with re-

spect to the product measure of the discrete measure onf0; 1gn(q�1)

by the Lebesgue measure onIRn belongs to the exponential family
(5), where the vectors� ands(X) with 3q�1 components anda(�)
are, respectively, given by

�=n Log
a1

1��1�� � ���q�1
�
m2
1

2�21
+
m2
q

2�2q
+Log

�q

�1

� � � ; Log
�q�1

1��1�� � ���q�1
+Log

�q

�q�1

�
m2
q�1

2�2q�1
+
m2
q

2�2q

m1

�21
; � � � ;

mq

�2q
�

1

2�21
; � � � ;�

1

2�2q

T

s(X)=
1

n

n

i=1

[1l
i
1; � � � ; 1l

i
q�1

Yi1l
i
1; � � � ; Yi1l

i
q�1Yi(1�1l

i
1�� � ��1l

i
q�1)

Y
2
i 1l

i
1; � � � ; Y

2
i 1l

i
q�1Y

2
i (1� 1l

i
1�� � ��1l

i
q�1)]

T

and

a(�)=�Log (1� �1 � � � � � �q�1) +
m2
q

2�2q
+ Log (�q):

According to (6), the EM and ICE algorithms are equivalent for
the canonical parameter . Sinces(X) is an unbiased estimator of
 = r�a(�), we obtain immediately

 = [�1; � � � ; �q�1; �1m1; � � � ; �q�1mq�1

(1� �1 � � � � � �q�1)mq

�1(m
2
1 + �

2
1); � � � ; �q�1(m

2
q�1 + �

2
q�1)

(1� �1 � � � � � �q�1)(m
2
q + �

2
q)]

T

and the iterations (6), which are common to both algorithms, read

 
j

k+1 =
1

n

n

i=1

�
i; j

k j = 1; � � � ; q � 1

 
q�1+j

k+1 =
1

n

n

i=1

yi�
i; j

k j = 1; � � � ; q

 
2q�1+j

k+1 =
1

n

n

i=1

y
2
i �

i; j

k j = 1; � � � ; q

where�i; jk
�
= Pk(1l

i
j = 1=Yi = yi) is given by Bayes’ rule.

The EM and ICE algorithms, however, are no longer equivalent
for the parameter�, although they keep this equivalence for the
components�1; � � � ; �q�1 of �. If the ML estimator is used as
estimator (1), then

�̂ =
U1

n
;
U2

n
; � � � ;

Uq�1

n
;
V1

U1
; � � � ;

Vq

Uq
;
W1

U1
; � � � ;

Wq

Uq

in which

Uj
�
=

n

i=1

1l
i
j ; Vj

�
=

n

i=1

yi1l
i
j ;

Wj
�
=

n

i=1

yi �
Vj

Uj

2

1l
i
j j = 1; � � � ; q

then, the ICE algorithm yields the iterations

�
j

k+1 =
1

n

n

i=1

�
i; j

k j = 1; � � � ; q � 1:

As for the parameters�j for j = q; � � � ; 3q�1, it is proposed in [1] to
use the stochastic version of ICE (2b) because the exact expressions of
the conditional expectation are too complex to calculate. Therefore,
for example

�
q�1+j

k+1 =

1 2f0; 1g

Vj(1j ; y)

Uj(1j)
Pk(1j=Y = y)

j = 1; � � � ; q:

Therefore, EM and CE are different algorithms for the parameter
� but are equivalent for the parameter .

Let us now point out a particular case of Gaussian mixture in which
the natural parameter� and the canonical parameters are not very
pertinent and for which the EM and ICE algorithms are different for
the conventional parameter�.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 10, OCTOBER 1997 2615

Example 2: The discrete source separation problem in a noisy
mixture is treated in [11] by using the EM algorithm. This case is,
in fact, a particular case of Example 1. To show this, considern

observations ofIRp: yi =Mx0i+ bi for i = 1; � � � ; n, with bi RV’s
of Gaussian distributionN (0; R) andx0i RV’s, them components
of which are independent and taken from a known alphabetA of
equally likelyr values (so thatx0i takes equally likelyq = rm values
aj 2 A), the RV’s x0i and bi are independent, andM is some
p �m unknown mixing matrix. The conventional parameter of the
model is� = [M; R]. Therefore, we have a mixture ofq equally
likely Gaussian distributions in which the conditional law ofYi given
X0

i = aj is N (Maj ; R). If we apply the preceding results (which
here degenerate because thea priori probabilities�j are known), we
obtain

� =n R
�1
Ma1; R

�1
Ma2; � � � ; R

�1
Maq;

1

2
R
�1 T

 =
1

q
[Ma1; Ma2; � � � ; Maq

Ma1a
T
1M

T
+RMa2a

T
2M

T
+R; � � � ;Maqa

T
qM

T
+R]

T

and

s(X) =
1

n

n

i=1

[Yi1l
i
1; Yi1l

i
2; � � � ; Yi1l

i
q

Y
2
i 1l

i
1Y

2
i 1l

i
2; � � � ; Y

2
i 1l

i
q]
T
:

The application of the EM and ICE algorithms to the parameter�

then lead to two different algorithms. If we use as estimator (1) the
ML estimator [we denote herex = (x0; y)]

�̂(X) = [Ry; x R
�1

x ; x ; Ry; y �Ry; x R
�1

x ; x R
T
y;x ]

with

Ry; y
�
=

1

n

n

i=1

YiY
T
i

Ry;x
�
=

1

n

n

i=1

YiX
0T
i

and

Rx ; x
�
=

1

n

n

i=1

X
0
iX

0T
i

the ICE algorithm yields

�k+1 =

x 2A

�̂(x
0
; y)Pk x

0
=Y = y

wherePk(x0=Y = y)
�
= �i21; ���; n Pk(x

0
i=Yi = yi) is given by

Bayes’ rule. As the exact calculation of�k+1 is too complicated, we
use the stochastic version of ICE (2b). As for the EM algorithm, it
yields

�k+1 = [R
(k)

y; x
R
(k)�1

x ; x
; Ry; y �R

(k)

y; x
R
(k)�1

x ; x
R
(k)T

y;x
]

with

R
(k)

y; x

�
=

1

n

n

i=1 a2A

yia
T
j Pk x

0
i = aj=Yi = yi

and

R
(k)

x ; x

�
=

1

n

n

i=1 a2A

aja
T
j Pk x

0
i = aj=Yi = yi :

Finally, we present a case where the EM and ICE algorithms are
equivalent for the parameter� thanks to (7).

Example 3—Linear Gaussian Model Case:In this case, the distri-
bution of Y is GaussianN(H�; ��1), whereH = [h1; � � � ; hp]

and � are known [10], for whichxi = hi�i + bi is chosen
with bi independent RV’s of Gaussian distributionN(0; �i�) with

p

i=1
�i = 1. Here,fX(x; �) is Gaussian, which, therefore, belongs

to the exponential family with� = �

s(x) = h
T
1 �

�1
x1; � � � ; h

T
p �

�1
xp

T

and

a(�) = 1

2
�
T diag hTi �

�1
hi � ) g(�)

= diag hTi �
�1
hi �

in which diag[ai] denotes the diagonal matrix whose[ ]i; i entry is
ai. Therefore, the common algorithm reads

�k+1 = diag hTi �
�1
hi

�1

� h
T
1 �

�1
E� (X1=Y = y); � � � ; h

T
p�

�1
E� (Xp=Y = y)

T

with E� (Xi=Y = y) = hi�
i
k + �i[y �H�k]. Then, we recognize

the given result in [10].

�k+1 = �k + diag �i h
T
i �

�1
hi

�1

H
T
�
�1

[y �H�k]:
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