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An Equivalence of the EM and ICE datay and of some hidden datd that one would like to estimate
Algorithm for Exponential Family x = (x', y). This estimator is based on the notion of conditional
expectation, which is applied to an estimator that is function of the
Jean Pierre Delmas complete data. Reformulated in the EM terminology, the principles

of ICE are as follows.

. ) ) * We suppose that we have at our disposal an estinfathat is
Abstract—In this correspondence, we compare the expectation maxi-

mization (EM) algorithm with another iterative approach, namely, the a function ofX (# not necessarilyan ML estimator)

iterative conditional estimation (ICE) algorithm, which was formally §= F)(X) 1)
introduced in the field of statistical segmentation of images. We show that - ’
in case the probability density function (PDF) belongs to the exponential

family, the EM algorithm is one particular case of the ICE algorithm. * Since onlyy is observable, we must look for an approximation

of 6 that is a function ofY. The best approximation in the
minimum mean square error sense is a natural choice, i.e.,
Ey[6(X)/Y], as this conditional expectation depends #n

In many signal processing applications, direct calculations of which is unknown by nature; therefore, the following iterative
maximum likelihood (ML) parameter vector estimates are intractable approach was proposed [1].
due to the complexity of the likelihood functions. Using the notion )
of complete data, the EM algorithm and its variations have been used Orr1 = Ey, [9(X)/Y = Y]- (2a)
extensively and successfully in many signal processing applications.
An alternative iterative estimation method called the called iterative "
conditional estimation (ICE) was introduced by Pieczynski [1] in
the field of statistical segmentation of images [2]-[4]. It is no
longer based on the notion of likelihood but on that of conditional
expectation. Therefore, this approach is of wider application because
it encompasses probability distributions that have both a discrete and (1)
ioc?grglgg:)trj:lé)vegtn,tvilg]l.(:h is a case where the notion of likelihood is P %[e(xi) n e(x?;) R e(xf{,)] (2b)

After formulating the principle of ICE reshaped in the familiar
EM terminology, we compare the EM and ICE algorithms. We
show in particular that for the exponential family of PDF’s, unlike
the EM algorithm, which is invariant to the parameterization, the
ICE algorithm yields a specific algorithm for each parameterization.
Furthermore, we show that the EM and ICE algorithms are equivalent
for the canonical parameter of the structure. Therefore, the EMA first sight, ICE and EM algorithms are based on completely
algorithm appears to be a particular case of the ICE algorithm fdifferent principles. Nevertheless, these algorithms can be compared
these structures. A similar fact has already been pointed out in theve use the same complete dataand if the estimato# in (1) is
context of hidden Markov fields [4]. We conclude by illustrating thesehosen to be the ML estimator. Therefore, if we denotefyx; 6)
parameterizations in some signal processing examples. the PDF ofx, we have, according to the EM terminology

fki1 = Arg Max Ey, [Log fx (X:6)/Y =] 3)

|. INTRODUCTION

If this conditional expectation cannot be computed analytically,
but the conditional lawPx /v is known, then one can simulaté
realizationsx;, x2, - - -, xny 0f X according to this distribution.
fr+1 can be approximated thanks to the law of large numbers by
the empirical mean (in practice, one can use only one realization

in which x¥ denotes a realization of the RX according to
the law Px vy for the valued, of #. This yields a stochastic
approximation of the ICE algorithm.

Ill. RELATIONS BETWEEN EM AND ICE

Il. THE ICE ALGORITHM

Let y be a realization of the measured random variable (R\And in accordance with the ICE principle, we have, thanks to (2a)
Y, the probability distribution of which depends on a parameter
vector 4. In the classical formulation of the EM algorithm [6],

[71, [9], one supplements the observed signplswhich are often Consequently, if the operations “maximization with respecf’to

called incomplete daffito form the complete datax [y = h(x), and “conditional expectation” commute, the two algorithms become

where ) is a many-to-one mapping]. The EM algorithm Iterat'velylolentical. We wish to clarify this condition in the case where the PDF

alternates between an E-step, calculating the conditional expectat . . L
of the complete data log likelihood, and a M-step, maximizing th%?%e complete data belongs the exponential family [8], which is a

. . ) ery frequent case in signal processing applications.fkét; ¢) be
expectation W'th. respect tq the parameferThe ”?app'“gh (gnd, such a PDF with respect to a measure independent of the conventional
thus, the data) is chosen in such a way that this M-step is mad

P i 4 ((af,
as simple as possible. Sarameterﬂ € RY [with a{v)) # 0]

The ICE algorithm, which was introduced in [1] in the context Ix(x;60) = b(x) exp [{¢, s(x)) — a(¢)]. 5)
of hidden models (Markov fields), also uses the notion of complete

datax, which are now made of the concatenation of the available AS €xpected, the invariance property of the ML estimator implies
that the EM algorithm does not depend on the choice of the selected
Manuscript received October 1, 1995; revised April 18, 1997. The associgarameterg(f), provided only thaig is a one-to-one mapping. On
editor coordinating the review of this paper and approving it for publicatiophe other hand, the ICE algorithm depends on this choice. We shall
was Prof. Roger S. Cheng. illustrate this point in Section IV. To show that in th tial
The author is with the Bpartement Signal et Image, Institut National ded . poin ”‘,‘ e(? 1on 1v. . 0 show that In the expongn 1a
Télécommunications, Evry, France (e-mail: delmas@int-evry.fr). family, the EM algorithm is a particular case of the ICE algorithm,
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Proposition 1: The ICE and EM algorithms are equivalent for the Cmgy  mgmy  omg 1 17"
canonical parametef = V,a(¢) (which sometimes coincides with 202_, 202 077 02 207 7 202
the conventional parameté). 13 ,

Proof: Since S(X):E Z[ JUEERI Vo
, b(X) . ;
Eylog fx(X: 0)/Y =y] = By| =~ =¥ Vil Vil V(11— =15 )
+ 6. By ls(X)/Y = y) — a(6) VAL, YA, V(1 - lli—---—ll;fl)][
the E-step of EM consists of computing and 2
) (¢p)=-log (1 —ay — - — —|— -I- Lo (
Sk(y) é Elr"’k [S(X)/Y — y]. (l( ) g ( &3] Qg— 1) g (07)

Since E,, [6(X)/Y = y] does not depend on, the M-step yields According_to (6), the EM end ICE elgorithms_ are equ_ivalent for
Yry1 = sk(y). As for the ICE algorithm, if in (1) the ML estimator the canonical parameter. Sinces(X) is an unbiased estimator of

is chosen, then 1 = Vea(e), we obtain immediately
¢ = Arg {Max Log [fx (X;¢)]} = s(X) U =[ar, o5 oo anm, s, ogoimg
° (1—a1 — - —ag_1)my
and the iteration (2a) of ICE reads ;
(22) ar(mi40a1), -y agi(mg_1 + 0y 1)
U1 = By, [s(X)/Y = y] = si(y). (6) (1= = — ag_)(m2 +a2)]"

Proposition 2: The algorithms EM and ICE are equivalent for theyng the iterations (6), which are common to both algorithms, read
natural parametes if and only if

n

a(6) = 6T Ad+bT o +c. @) Vi ==y m? =l
=1
Proof: The EM algorithm yields
5 /q 1+J_ Zyﬂ_kd j=1,--,¢q
Or+1 =Arg{Es, [s(X)/Y =y] = Vga(s)} n
&
— N . . 1 n
=g {Eo,[s(X)/Y =y]} et = - yiny?  j=1,---,¢
/ =1
where g(¢) 2 Vsa(p). As for the ICE algorithm built on a ML N v
estimator¢(x), it gives wherer;’ = Py (1; = 1/Y; =y;) is given by Bayes’ rule.
The EM and ICE algorithms, however, are no longer equivalent
Ort1 =FEgy, {Arg[s( =Vsa(9)]/Y = y} for the parametep, although they keep this equivalence for the
¢ componentsa;, « -+, aq—1 Of 6. If the ML estimator is used as
=FE,, [g7's(X)/Y =y]. estimator (1), then
Last, the operation&,, andg™' commute if and only ifg™'(.) is 6 — <l_1 l_z U i Vq‘ W W_q)
affine & g(.) is affine < (7) holds. n’on’ n U U U " U,
in which
IV. APPLICATION EXAMPLES n n

>

T i s A i

We now illustrate the choice of the different parameterizations by Ui Z L, V= yilj,

some signal processing examples. First of all, we clarify a case in "f‘

which the EM and ICE algorithms are different for the paraméter W, 2 Z <y1 B 1_J> g
but equivalent for the parameter. U;

Example 1—Finite Mixture of Gaussian Distribution€onsider a

113

=1

then, the ICE algorithm yields the iterations

sequence of n independent RV's (1f, - ]ll i, 1s

V)2l 27!, where 1; denotes the indlcator varlable of the B i 1

distribution j at timei. Each distributionj has a probabilitya;, Oipr = Z 4 IR

and the conditional distribution of; given ]l] = 1 is Gaussian o )

N(mj, 62) for j =1, ---, ¢. The conventional parameter is As for the parameter; for j = ¢, -, 3¢—1, itis proposed in [1] to

use the stochastic version of ICE (2b) because the exact expressions of

B = (i, oy vy Qgeiy My, May ooy Mg, Try Toy ooy 02) the conditional expectation are too complex to calculate. Therefore,

and it is easy to show that the PDFXf= (1, 15, ---, 14—1, Y) for example

[with 1; £ (1}, 12, .-, 17) and Y £ (Y3, Y2, - -+, ¥,,)] with re- ga-1+i _ Vil ¥) po1,/¥ = y)

spect to the product measure of the discrete measufé.on} (¢~ e 1,00 1}n U;(1;)

by the Lebesgue measure @if* belongs to the exponential family ’ .

(5), where the vectors ands(X) with 3¢ — 1 components and(¢) jg=1g

are, respectively, given by Therefore, EM and CE are different algorithms for the parameter

@ m?  m? # but are equivalent for the parameter
o=n {Log <ﬁ) 201 +5= 202 +Log < ) Let us now point out a particular case of Gaussian mixture in which
! ! ! 7 the natural parameter and the canonical parametefsare not very

-+, Log <“7——1) +Log < a ) pertinent and for which the EM and ICE algorithms are different for
l—ar = =g Tq—1 the conventional parametér
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Example 2: The discrete source separation problem in a noisy Example 3—Linear Gaussian Model Cashn this case, the distri-
mixture is treated in [11] by using the EM algorithm. This case igution of Y is GaussianV(H¢, £~ '), whereH = [hy, ---, h,]
in fact, a particular case of Example 1. To show this, consider and ¥ are known [10], for whichx; = h;#; + b, is chosen
observations olR?: y; = Mx; +b; fori = 1, ---, n, with b; RV’'s  with b; independent RV's of Gaussian distributidf(0, o; ) with
of Gaussian distributiofh’(0, R) andx’ RV’s, them components >* | «a; = 1. Here, fx (x; ) is Gaussian, which, therefore, belongs
of which are independent and taken from a known alphabeif to the exponential family withy = ¢
equally likelyr values (so thak’ takes equally likelyy = »™* values
a; € A), the RV's x; and b, are independent, and1 is some T
p X m unknown mixing matrix. The conventional parameter of the s(x) = [thE_] X1, 000, hZ T xp]
model is# = [M, R]. Therefore, we have a mixture gfequally .4
likely Gaussian distributions in which the conditional law¥Yf given

— 167 diaahl T ' h.
X! = a; is M(Ma;, R). If we apply the preceding results (which a(f) =30 dlag[h, s hf’]e = g(f)

here degenerate because ¢hgriori probabilities«; are known), we _ diag[h?' o1 hv]e
obtain ' '
b —; -1 -1 I -1 1r—1¥
¢ '{ [R™"May, R™ Mas, -+, R""Ma,. 3R] in which diag[a;] denotes the diagonal matrix whokp,; entry is
¢ ==[Ma;, May, ---., Ma, a;. Therefore, the common algorithm reads
p AR
Maja;M' +RMasa; M’ +R,---,Ma,a, M' +R]" - .
and b1 = diagh! =" b
1< i i i - - r
S(X) = YOIVl YL, oL Y, : [hfs "By (X1/Y =), . IS By (X,/Y = y)]

=1
YILYIL, o YT ,
with Ey, (X;/Y =y) = h;0; + a;[y — Hb]. Then, we recognize
The application of the EM and ICE algorithms to the paraméter the given result in [10].
then lead to two different algorithms. If we use as estimator (1) the
ML estimator [we denote here = (x', y)]

-1
é(X) B [R R-! R R R- R” ] k1 =01 + diag{a;,; (hTE_‘ h,j) :|HTE_1 [?/ — Hﬁk].
= y, a/ Mgr prs Dy gy = Dy o/ Iy By o/
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Finally, we present a case where the EM and ICE algorithms are
equivalent for the parameter thanks to (7).




