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Abstract

In this paper, we address an adaptive estimation method for eigenspaces of covariance matrices. We

are interested in a gradient procedure based on coupled maximizations or minimizations of Rayleigh

quotients where the constraints are replaced by a Givens parametrization. This enables us to provide

a canonic orthonormal eigenbasis estimator. We study the convergence of this algorithm with the

help of the associated ordinary differential equation (ODE), and we propose a performance evaluation

by computing the variances of the estimated eigenvectors and of the estimated projection matrices

on eigenspaces for fixed gain factors. In particular, we show that these misadjustments depend on

whether the successive analyzed vector signals are correlated or not, and thus greatly depend on the

origin of the covariance matrices of interest (spatial, temporal, spatio-temporal). More precisely, we

show that these misadjustments can be smaller in the case of correlated observations than in the case

of independent observations. Finally, we show that performance can be improved when the symmetric-

centrosymmetric property of some of those covariance matrices is exploited.

Nous considérons dans cet article une méthode d’estimation de sous espaces propes de matrices

de covariance. Nous nous intéressons à une méthode de gradient basée sur des minimisations ou

des maximisations de quotients de Rayleigh dans lesquelles les contraintes sont remplacées par une

paramétrisation de Givens. Cela permet de fournir de facon structurelle un estimateur orthonormé de

bases orthonormées. Nous étudions la convergence de cet algorithme grâce à l’étude de son équation

différentielle associée (ODE), et nous proposons une évaluation des performances par le calcul des

variances des vecteurs propres et des matrices de projection associées estimées pour l’algorithme à

pas fixe. Nous montrons, en particulier que les erreurs quadratiques moyennes sont très sensibles à la

corrélation des observations successives entre elles, donc dépendent fortement de l’origine des signaux

observés (cas spatial, temporel ou spatio-temporel). De façon plus précise, nous montrons que ses

erreurs quadratiques moyennes peuvent être plus petites dans le cas d’observations corrélées que dans

le cas d’observations indépendantes. Nous montrons finalement que les performances peuvent être

améliorées quand la structure symétrique-centrosymétrique de certaines matrices de covariance est

prise en compte.
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1 Introduction

Over the past decade, adaptive estimation of subspaces of covariance matrices has been applied suc-

cessfully to both temporal and spatial domain high-resolution spectral analysis. The interest for these

methods, a tool of outstanding importance in many fields of signal processing, has recently been renewed

by the subspace approach used in blind identification of multichannel finite impulse response filters [14].

Numerous solutions have been proposed to recursively update the eigendecomposition of a covariance

matrix. Most of them can been gathered into five families. In the first one, classical batch eigendecompo-

sition or singular value decomposition methods like the QR algorithms, Jacobi rotation methods, power

iteration methods have been rendered adaptive. In the second family, variations of Bunch’s rank-one

updating method [3] have been proposed. The third family considers a first order perturbation analysis

[5] and the fourth family stems from stochastic approximations of power method, (see [15] and the refer-

ences therein). Finally, the last family relies on either unconstrained or constrained optimizations. In this

last family, some algorithms are derived from unconstrained optimizations of a specific cost function. In

particular a recursive least square algorithm [22] (resp. a Newton-based adaptive algorithm [13]) enables

one to estimate a dominant (resp. a minorant eigendecomposition). As for the constrained optimizations,

they can be performed adaptively by a stochastic gradient algorithm where the constraints are taken into

account by a Gram-Schmidt orthogonalization at each iteration [21]. To get rid of these constraints, an

alternate solution consists in using an appropriate parametrization [18].

One can find in the literature many papers dealing with convergence analyses, but comparatively

few papers concerning the performance analysis of adaptive eigenspace estimation are available by now.

Among them, Larimore and Calvert [11] present a study of the convergence rate and the steady-state
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variance of the Thompson algorithm. Then, Yang and Kaveh made an analysis of the convergence rate

and stability of their constrained gradient search procedure, under the classical independence assumption.

An analysis of the parametrized stochastic gradient algorithm by Regalia [18] was sketched out in [6] and

[7]. Finally, a deflation algorithm for tracking dominant or minorant eigensubspaces and some algorithms

tracking dominant eigensubspaces from a least square-like approach were presented and studied by the

same tools, in [19] and [23]-[24], respectively. The main aim of this paper is to study the convergence

and performances of a parametrized adaptive algorithm that gives a canonic orthonormal eigenbasis by

introducing the necessary methodology and exploiting some of the results that can be derived therefrom.

This paper is organized as follows. After introducing some notations and describing the parametriza-

tion of the orthonormal eigenvectors of the covariance matrices in Section 2, we study the convergence of

the coupled stochastic gradient algorithms with the help of the associated ODE in Section 3. A method-

ology for evaluating the performance by computing the variances of the estimated eigenvectors and of

the estimated projection matrices on eigenspaces for fixed gain factors is given in Section 4. We take into

account the origin of the covariance matrices, by studying the case where the successive vector signals

are independent (spatial case), autoregressive or moving average processes of any order (temporal case).

In Section 5, we show that the performance in terms of misadjustment and speed of convergence, can

be improved when the symmetric-centrosymmetric property of some covariance matrices is exploited.

Finally, numerical results on the asymptotic performance of the algorithm such as mean square errors

of estimated eigenvectors and of estimated projection matrices on an eigensubspace, which are evaluated

by using the analysis developed in Section 4 are presented in Section 6.

The following notations are used in the paper. Matrices and vectors are represented by bold upper

case and bold lower case character, respectively. Vectors are by default in column orientation. T stands

transpose and I is the identity matrix. E(.),Cov(.),Tr(.), ‖.‖Frob denote the expectation, the covariance,

the trace operator and the Frobenuis matrix norm respectively. Vec(.) is the “vectorization” operator

that turns a matrix into a vector consisting of the columns of the matrix stacked one below another. ⊥
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means “orthogonal to” and sp{v1, . . . ,vk} denotes the vector space spanned by the vectors v1, . . . ,vk.

AR(p), MA(q) and ARMA(p, q) denote autoregressive, moving average and autoregressive moving average

processes of order p, q and p, q respectively.

2 Parametrization of the problem

We tackle the problem of adaptively estimating m normalized eigenvectors q1, ..,qm corresponding to

the m largest [or smallest] distinct eigenvalues (λ1 > λ2, . . . > λm) [resp. λn−m+1 > . . . > λn] of a n× n

covariance matrix Γx = E[xxT ] of a Gaussian distributed, zero mean real random vector x. To solve this

problem, a method was proposed in the real case in [18] and then extended to the complex case in [6] 1

where the constrained maximizations [resp. minimizations] of Rayleigh quotients,

max
‖q1‖=1

qT1 Γxq1 (1)

and

max
‖qi‖=1,qi⊥sp{q1,...,qi−1}

qTi Γxqi for i = 2 . . . ,m, (2)

or equivalently

max
{q1,...,qmorthonormal}

m∑
i=1

qTi Γxqi (3)

that are taken into account in [21] by a Gram-Schmidt orthogonalization are replaced by unconstrained

maximizations [resp. minimizations] thanks to a Givens parametrization of the different constraints. q1

1The complex Givens parametrization gives a very similar algorithm, the convergence analysis of which can be studied by

the same arguments as in the real case; however, as we shall show in Section 4, the performance analysis would unfortunately

lead to cumbersome calculus. For this reason we consider the real parametrization only.
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is the last column of a orthogonal matrix Q1 and the other vectors qi can be written as:

q1 = Q1

 0

1

 ,q2 = Q1


Q2

 0

1


0


, . . . ,qm = Q1



Q2



Qm

 0

1



0


0


(4)

where Qi is the following orthogonal matrix of order n− i+ 1:

Qi = Ui,1 . . .Ui,j . . .Ui,n−i with Ui,j
def
=



Ij−1 0 0 0

0 − sin θi,j cos θi,j 0

0 cos θi,j sin θi,j 0

0 0 0 In−i−j


(5)

and θi,j belongs to ] − π
2 ,+

π
2 ]. The existence of such a parametrization for all orthonormal sets

{q1, . . . ,qm} is shown in [18]. It consists of m(2n − m − 1)/2 real parameters. Furthermore, this

parametrization is unique if we add some constraints. The first component distinct from zero of the

last vector of unit norm that appears in the deflation procedure (4), Qi

 0

1

 for i = 1, . . . ,m of (4),

that is of q1, QT
1 q2, [QT

2 ,0]QT
1 q3, . . . , [Q

T
m−1,0] . . . [QT

2 ,0]QT
1 qm must be positive. We can derive from

the maximization (3) a stochastic gradient algorithm. In order to simplify this algorithm, a deflation

procedure, inspired by the maximizations (1), (2) was proposed [18]. The maximization (1) is performed

with the help of the classical stochastic gradient algorithm, in which the parameters are θ1,1, . . . , θ1,n−1

whereas the maximizations (2) are realized thanks to stochastic gradient algorithms with respect to the

parameters θi,1, . . . , θi,n−i, in which the preceding parameters θl,1(k), . . . , θl,n−l(k) for l = 1, . . . , i− 1 are

injected from the i − 1 previous algorithms. The deflation procedure is achieved by coupled stochastic

gradient algorithms. This rather intuitive part of the computational process was confirmed by simulation

results [18]. However a formal analysis of the convergence and performances had not been performed yet,

and this indeed is the main problem addressed in this paper.
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3 Convergence of the coupled algorithms

The main difficulty in studying the convergence of the stochastic gradient algorithms derived from this

deflation approach comes from the existence of coupled algorithms. In order to study their convergence,

these coupled stochastic gradient algorithms need to be globally written as: 2


Θ1(k + 1)

·

Θm(k + 1)


=


Θ1(k)

·

Θm(k)


+ γk


g1(Θ1(k),xk)

·

gm(Θ1(k), . . . ,Θm(k),xk)


(6)

with Θi
def
= [θi,1, . . . , θi,n−i]

T and g1(Θ1,x)
def
= 1

25Θ1
(qT1 x)2, . . . ,gm(Θ1, . . . ,Θm,x)

def
= 1

25Θm
(qTmx)2, or

more compactly: 3

Θ(k + 1) = Θ(k) + γkH[Θ(k),xk] (7)

with Θ
def
= [ΘT

1 , . . . ,Θ
T
m]T and H

def
= [gT1 , . . . ,g

T
m]T . The study of the convergence of the coupled stochas-

tic gradient algorithms (7) is intimately connected to the stability properties of the associated ODE

introduced by Ljung [12]:

dΘ(t)

dt
= h[Θ(t)] (8)

where h(Θ) is the mean field, i.e. h(Θ)
def
= E[H(Θ,xk)].

Stability of the ODE (8). We suppose that m = 2, as the extension to m > 2 is straightforward. We

note that the solutions Θ(t) of (8) are coupled in a “triangular form”. That is to say, Θj is dependent

on Θi for i < j but not on Θi for i > j. Therefore Θ1 can be analyzed independently of the remaining

Θi. Since g1(Θ1,x) is the derivative of a positive field, the set of the stationary points of the part of the

equation (8) which is associated with Θ1, is globally asymptotically stable for that equation. But, thanks

2We can introduce a block-diagonal gain γkdiag[diag(a1), . . . , diag(am)] in place of the scalar gain γk in order to take into

account a better tradeoff between the misadjustment and the speed of convergence of each eigenvector qi. All the following

developments can be easily extended with this block-diagonal gain.

3In case of a minimization, g1(Θ1,x)
def
= − 1

2
5Θ1

(qT
1 x)2, . . . ,gm(Θ1, . . . ,Θm,x)

def
= − 1

2
5Θm

(qT
mx)2. We consider

throughout the paper the case of a maximization only, and the case of a minimization can be studied similarly.
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to the stationary property of the Rayleigh quotient (1) and the parametrization (4), only the parameters

Θ1 solutions of the maximization (1) are globally asymptotically stable for that equation. According to

a classical result on the stability of the ODE [1], if we linearize the part of the equation (8) which is

associated with Θ1 around a stable stationary point, the locally linearized equation is stable. And as the

stable stationary points of a linear ODE are exponentially stable, the kth component of dΘ1(t)
dt behaves

as t→ +∞ as:

[
dΘ1(t)

dt
]k ∼ αk exp(−µkt) with µk > 0, (9)

meaning that the ratio between the left and right-hand sides tends to 1. Consider the Lyapunov function:

W (t)
def
= −E(qT2 (t)xt)

2 ≥ −λ1

and its time derivative

dW (t)

dt
= −dΘ

T
1 (t)

dt
E[5Θ1

(qT2 (t)xt)
2]− dΘT

2 (t)

dt
E[5Θ2

(qT2 (t)xt)
2].

By hypothesis we have:

dΘT
2 (t)

dt
E[5Θ2

(qT2 (t)xt)
2] = ‖E[5Θ2

(qT2 (t)xt)
2]‖2

and since q2 and dq2

dΘ1
are bounded, E[5Θ1

(qT2 (t)xt)
2] is also bounded. So, thanks to (9), we have with

α > 0 and µ > 0:

|dΘ
T
1 (t)

dt
E[5Θ1

(qT2 (t)xt)
2]| ≤ ‖dΘ1(t)

dt
‖‖E[5Θ1

(qT2 (t)xt)
2]‖ ≤ α exp(−µt).

Consequently,

dW (t)

dt
≤ +α exp(−µt)− ‖E[5Θ2

|qT2 (t)xt|2]‖2.

Then W (t) + α
µ exp(−µt) is a decreasing function of t, so limt→+∞W (t) exists, which implies

limt→+∞
dW (t)
dt = 0 and then

lim
t→+∞

E[5Θ2
(qT2 (t)xt)

2] = 0.

Therefore the stationary points of the part of the equation (8) associated to Θ2, are globally asymptot-

ically stable for that equation. And thanks to the stationary property of the Rayleigh quotient (2) and
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the parametrization (4), only the parameters Θ2 which are the solutions of the maximization (2) are

globally asymptotically stable for that equation. So the following result is established:

Result 1. The parameters Θ∗ that maximize (1) (2) are globally asymptotically stable for its associated

ODE (8).

Convergence of the stochastic gradient algorithm (7). Although the stochastic gradient algo-

rithm (7) can be viewed as a discrete time approximation to its associated ODE (8), the question of the

connection of their limiting behaviour is not straightforward because the algorithm may have a much more

complex asymptotic behaviour than a given solution of the ODE. To induce a connection, we are firstly

interested in the hypotheses of Benveniste [2] et al. which specify conditions under which the stochastic

algorithm (7) converges almost surely to the asymptotically stable points of (8). Thus we suppose that

the gain sequence γk satisfies the conditions
∑∞
k=1 γk = +∞ and limk→+∞ γk = 0. The state vector

xk of the investigated algorithm (7) must have a dynamic Markov representation controlled by Θ. This

signal model by Benveniste [2] et al. is fulfilled in our case because we consider that the observations xk

are independent or derived from the specific correlation model xk
def
= [xk, xk−1, . . . , xk−n+1]T with xk a

stationary ARMA process. Thus xk = f(ξk), where ξk is a Markov chain independent of Θ, ξk
def
= xk

in the independent case and ξk
def
= (wk−n, uk, uk−1, . . . , uk−n+1) is issued from the state representation of

an ARMA process, viz

wk = Awk−1 + buk xk = cTwk−1 + duk.

To apply the corollary (6 p.46 [2]), which states that Θ(k) defined by (7) converges almost surely

to one of the asymptotically stable points Θ∗, we encounter two difficulties if we refer to the original

Kushner Clark theorem. The equilibrium points Θ∗ must be unique and the trajectory of Θ(k) must

intersect a compact subset infinitely often. In our application, the equilibrium points Θ∗ are not unique,

and proving that the trajectory of Θ(k) intersects a compact subset infinitely often is very challenging, as

many authors believe. To our best knowledge, this condition has been proved only by Oja and Karhunen
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[16], and under the hypothesis that xk is uniformly bounded.

However, we must note at this point that qi, i = 1, . . . ,m, H and h are 2π-periodic functions of each

parameter θi,j . So, the set of the asymptotically stable points is composed of isolated points that remain

“sparse” near infinity.4 Furthermore, the stability of the ODE (8) followed from the existence of a very

regular Lyapunov function. Using these two particular properties, we can use a recent result by Fort

and Pagès (theorem 6 of [8]). This theorem transfers the convergence of the solution of the ODE to the

algorithm when the ODE has a Lyapunov function and when the equilibrium points Θ∗ are isolated.

Under these conditions, it specifies that the stochastic algorithm converges almost surely to one of the

points Θ∗.

Fixed gain γ. Unfortunately, in nonstationary environments the gain sequences γk needs to be reduced

to constant “small” steps if we want our algorithm to be able to track the slow variations of the parameters.

The convergence results cannot be applied in a strict sense. In this case, the algorithm no longer converges

almost surely. However, the weak convergence approach developed by Kushner [10] suggests that, for γ

“small enough”, the adaptive algorithm will oscillate around the theoretical limit of the decreasing step

scheme.

4 Asymptotic performance analysis

Consider a globally asymptotically stable equilibrium point Θ∗ of the ODE (8) which corresponds to a

limit to which the solution Θk of (7) converges in the decreasing gain case, we can get the asymptotic

distribution of Θk for fixed gain factors in stationary situations by using a general result by Benveniste

4In practical use, the parameters θi,j remain in [−π/2,+π/2] when initialized at θi,j = 0. A test is built into the algorithm

to ensure that |θi,j | ≤ π/2 at each iteration and if for some k, |θi,j | becomes greater than π/2, the update for that parameter

is bypassed, and only the remaining parameters are allowed to evolve.
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(see theorem 2 of ([2], p.108) 5. Consider the continuous Lyapunov equation:

G∗CΘ + CΘGT
∗ + R∗ = O (10)

where G and R are respectively the derivative of the mean field and the covariance of the field of the

algorithm (7):

G(Θ)
def
=

dh(Θ)

dΘ
(11)

R(Θ)
def
=

∞∑
k=−∞

Cov[H(Θ,xk),H(Θ,x0)] (12)

and where the subscript ∗ stands for the value of the functions calculated for the parameter Θ∗ that

maximizes the expressions (1) (2). If all the eigenvalues of the derivative of the mean field G∗ have

strictly negative real parts (condition proved in Subsection 4.3), then when γ → 0 and tk → +∞ with

tk
def
= kγ, 1/

√
γ[Θ(k) −Θ(tk)] converges in law to a zero mean Gaussian random vector of covariance

matrix CΘ, where CΘ is the unique symmetric solution of (10). Then, as Θ(tk) converges almost surely

to Θ∗,

1
√
γ

(Θ(k)−Θ∗)
L→ N (0,CΘ). (13)

We now evaluate the derivative of the mean field and the convariance of the field of algorithm (7).

4.1 Derivative of the mean field

We consider the case m = 2. The case m = 1 is a byproduct of the case m = 2, while the extension

to m > 2 is straightforward but tedious. Thanks to the property (obtained easily by a flowgraph, see

[18],[6]), we have:

dq1(Θ1)

dΘ1
= Q

′
1(Θ1)D1(Θ1) (14)

5A thorough derivation of this result has been established only under the necessary assumption that the global attactor is

unique. However, its practical use in more general situations is usually justified by a general diffusion approximation result

(see theorem 1 of [2], p.107). For instance in [24], this result was applied to a situation where the globally asymptotically

stable set is the continuum {(v1, . . . ,vm) ∈ Rn×m|(v1, . . . ,vm) = (q1, . . . ,qm)U with UTU = Im}.
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and

∂q2(Θ1,Θ1)

∂Θ2
= Q

′
1(Θ1)Q

′
2(Θ2)D2(Θ2) (15)

with Q1(Θ1)
def
= [Q

′
1(Θ1),q1(Θ1)], Q2(Θ2)

def
= [Q

′
2(Θ2),v(Θ2)] and with D1(Θ1), D2(Θ2) respectively

a n − 1 × n − 1 and a n − 2 × n − 2 diagonal matrix where D1(Θ1)n−1,n−1 = D2(Θ2)n−2,n−2 = 1 and

D1(Θ1)k,k =
∏n−1
l=k+1 cos(θ1,l) for 1 ≤ k ≤ n − 2, D2(Θ2)k,k =

∏n−2
l=k+1 cos(θ2,l) for 1 ≤ k ≤ n − 3. As

such, the mean field h(Θ1,Θ2) of the algorithm (7) can be partitioned as: h1(Θ1)

h2(Θ1,Θ2)

 =

 D1(Θ1)Q
′T
1 (Θ1)Γxq1(Θ1)

D2(Θ2)Q
′T
2 (Θ2)Q

′T
1 (Θ1)Γxq2(Θ1,Θ2)

 .
Consequently,

G∗ =

 G11 O

G21 G22

 . (16)

It is shown in Appendix A that G11, G22 and G21 are respectively given by:

G11 = D1(Θ1∗)Q
′T
1 (Θ1∗)(Γx − λ1In)Q

′
1(Θ1∗)D1(Θ1∗) (17)

G22 = D2(Θ2∗)Q
′T
2 (Θ2∗)Q

′T
1 (Θ1∗)(Γx − λ2In)Q

′
1(Θ1∗)Q

′
2(Θ2∗)D2(Θ2∗) (18)

G21 = D2(Θ2∗)Q
′T
2 (Θ2∗)Q

′T
1 (Θ1∗)(Γx − λ2In)Q1,2(Θ1∗,Θ2∗) (19)

where Q1,2(Θ1,Θ2) is defined in Appendix A.

Lastly, let us note that the performance analysis could be extended to complex data if the relation

(14) could be easily extended. In fact (14) becomes in the complex case

dq1(Θ1)

dΘ1
= [Q

′
1(Θ1)D1(Θ1),Q1(Θ1)K1(Θ1)] (20)

where now Θ1 denotes the parameter (ψ1,1, . . . , ψ1,n−1, . . . , φ1,1, . . . , φ1,n−1) of the complex parametriza-

tion [6],[7], D1(Θ1) is the n − 1 × n − 1 diagonal matrix with D1(Θ1)n−1,n−1 = 1 and D1(Θ1)k,k =

∏n−1
l=k+1 cos(ψ1,l) exp(φ1,l) for 1 ≤ k ≤ n − 2 and K1 a n × n non diagonal matrix. Because the relation

(20) is much more complicated than the relation (14), the performance analysis in the complex case would

be much more cumbersome.
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4.2 Covariance of the field

4.2.1 Independent observations

For independent observations xk which generally correspond to spatial situations, we also consider the

case m = 2 for the same reason as for the derivative. H(Θ1,Θ2,xk) can be partitioned as H1(Θ1,xk)

H2(Θ1,Θ2,xk)

 =


dqT

1 (Θ1)
dΘ1

xkx
T
k q1(Θ1)

∂qT
2 (Θ1,Θ2)
∂Θ2

xkx
T
k q2(Θ1,Θ2)

 .

Because E[Hi(Θ∗,xk)] =
∂qT

i (Θ)
∂Θ ∗Γxqi(Θ∗) = 1

2λi
∂‖qi(Θ)‖2

∂Θ ∗ = 0, for i = 1, 2 the expression (12) becomes

R∗ =
+∞∑

k=−∞
E[H(Θ1∗,Θ2∗,xk)H

T (Θ1∗,Θ2∗,x0)] = E[H(Θ1∗,Θ2∗,x0)HT (Θ1∗,Θ2∗,x0)].

Therefore, R∗ can be partitioned as

R∗ =

 R11 R12

R21 R22

 (21)

where

Rij =
∂qTi (Θ)∗
∂Θi

E[x0x
T
0 qi(Θ∗)q

T
j (Θ∗)x0x

T
0 ]
∂qj(Θ)∗
∂Θj

. (22)

Is is shown in appendix B that

R21 = RT
12 = O, (23)

R11 = D1(Θ1∗)Q
′T
1 (Θ1∗)λ1ΓxQ

′
1(Θ1∗)D1(Θ1∗), (24)

R22 = D2(Θ2∗)Q
′T
2 (Θ2∗)Q

′T
1 (Θ1∗)λ2ΓxQ

′
1(Θ1∗)Q

′
2(Θ2∗)D2(Θ2∗). (25)

4.2.2 Correlated observations

We consider the specific correlation model xk
def
= [xk, xk−1, . . . , xk−n+1]T with xk being an MA(q), an

AR(p) or an ARMA(p, q) stationary process which in general corresponds to temporal situations. In this

case R∗ is no longer block diagonal. Is is shown in Appendix C that:

R11 = D1(Θ1∗)Q
′T
1 (Θ1∗)(λ1Γx + Γ11)Q

′
1(Θ1∗)D1(Θ1∗) (26)
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R22 = D2(Θ2∗)Q
′T
2 (Θ2∗)Q

′T
1 (Θ1∗)(λ2Γx + Γ22)Q

′
1(Θ1∗)Q

′
2(Θ2∗)D2(Θ2∗) (27)

R21 = RT
12 = D2(Θ2∗)Q

′T
2 (Θ2∗)Q

′T
1 (Θ1∗)Γ21Q

′
1(Θ1∗)D1(Θ1∗) (28)

where, for an MA(q) process, Γi,j takes the value

Γi,j =
q+n−1∑
k=1

Γkqjq
T
i Γk + ΓTk qjq

T
i ΓTk + (qTi Γkqj)Γk + (qTi ΓTk qj)Γ

T
k (29)

where Γk denotes the cross-correlation matrix E[xkx
T
0 ], and respectively for an AR(p) process

Γi,j =
n−2∑
k=1

Γkqjq
T
i Γk + ΓTk qjq

T
i ΓTk + (qTi Γkqj)Γk + (qTi ΓTk qj)Γ

T
k +

p∑
k=1

p∑
l=1

αkαl
(ρkρl)

n−1

1− ρkρl
[Γρkqjq

T
i Γρl + ΓTρkqjq

T
i ΓTρl + (qTi Γρkqj)Γρl + (qTi ΓTρkqj)Γ

T
ρl

] (30)

For an ARMA(p, q) process, it is shown that the relation (30) also holds provided n is replaced by

n+Sup(0, q + 1− p).

4.3 Exploitation of the Lyapunov equation (10)

As Gii =
∂qT

i
∂Θi

(Γx − λiI) ∂qi
∂Θi

, i = 1, . . . ,m and thanks to the orthogonal properties of

{q1(Θ1), . . . ,qi(Θ1, . . . ,Θi)} which implies qTj
∂qi
∂Θi

= 0T for j = 1, . . . , i, the symmetric matrices Gii are

negative definite. The eigenvalues of the block triangular matrix G thus have strictly negative real parts.

The condition required in Section 4 is thus fulfilled. The Lyapunov equation (10) cannot be solved in a

closed form expression. But since (10) is of triangular form, it can be solved numerically step by step for

successive values of m.

The application of a continuity theorem directly adapted from the theorem 6.2a ([17], p.387) to the

differentiable mapping Θ→ Q = (q1, . . . ,qm) gives the asymptotic distribution of eigenvector estimators

as

1
√
γ

(Vec(Q(k))−Vec(Q∗))
L→ N (0,CQ) (31)

where

CQ =
dVec(Q)

dΘ
CΘ

dTVec(Q)

dΘ
with

dVec(Q)

dΘ
= (

dTq1

dΘ
, . . . ,

dTqm
dΘ

)T .
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In particular

1
√
γ

(qi(k)− qi∗)
L→ N (0,Cqi) (32)

where Cqi = dqi
dΘ CΘ

dT qi
dΘ , i = 1, . . . ,m.

Then, applying a second time the same theorem of continuity to the differentiable mapping Q =

(q1, . . . ,qm)→ P =
∑m
i=1 qiq

T
i gives the asymptotic distribution of subspace projector estimators P(k):

1
√
γ

(Vec(P(k))−Vec(P∗))
L→ N (0,CP ) (33)

where CP = dVec(P)
dVec(Q)CQ

dT Vec(P)
dVec(Q) with dVec(P)

dVec(Q) = In ⊗Q + (q1 ⊗ In, . . . ,qm ⊗ In).

Thanks to the hypothesis of boundedness of the parameters Θ(k), the convergence in law of 1√
γ (Θ(k)−

Θ∗) (see eq.(13)) implies the convergence of the first two moments. So ‖E(Θ(k))−Θ∗‖2Frob = o(γ) and

Cov(Θ(k)) ∼ γCΘ when γ → 0 and k → +∞. Consequently, by expanding Q and P around Θ∗, we

obtain the mean square error of eigenvectors and subspace projection matrix estimators:

‖Q(k)−Q∗ ‖2Fro ∼ γTr(CQ) = γTr[
m∑
i=1

dqi
dΘ

CΘ
dqTi
dΘ

]∗. (34)

In particular,

‖qi(k)− qi∗ ‖2Fro ∼ γTr(Cqi) = γTr[
dqi
dΘ

CΘ
dqTi
dΘ

]∗ (35)

and

‖P(k)−P∗ ‖2Fro ∼ γTr(CP ) = 2γ(Tr(CQ) +
∑

1≤i,j≤m
qTi∗(CQ)j,iqj∗) = (36)

2γTr(
m∑
i=1

dqi
dΘ

CΘ
dqTi
dΘ

)∗ + 2γ(
∑

1≤i 6=j≤m
qTi [

dqj
dΘ

CΘ
dqTi
dΘ

]qj)∗.

5 Special case of symmetric-centrosymmetric covariance matrices

To improve the accuracy of the subspace estimation, we can exploit the symmetric-centrosymmetric

or block-symmetric-centrosymmetric property of some covariance matrices. This property occurs in

important applications: temporal covariance matrices obtained from a temporal sampling of a stationary
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signal, and spatial covariance matrices issued from uncorrelated and band-limited sources observed on a

symmetric-centrosymmetric sensor array (for example on uniform linear arrays) [20] are centro-symmetric;

spatio-temporal covariance matrices used in subspace methods for blind identification of multichannel

FIR filters [14] are block-symmetric-centrosymmetric.

In the real case, we use the property that an orthonormal eigenbasis of a symmetric centro-symmetric

matrix can be obtained from orthonormal eigenbases of two half-size symmetric real matrices [4]. For

example if n is even, Γ can be partitioned as follows:

Γ =

 Γ1 ΓT2

Γ2 JΓ1J

 , (37)

where J is a n/2× n/2 matrix with ones on its anti-diagonal and zeroes elsewhere, and ΓT1 = Γ1,JΓ2 =

ΓT2 J. Then we may determine n/2 symmetric [resp. n/2 skew symmetric] orthonormal eigenvectors qi

of Γ and corresponding eigenvalues λi from the n/2 orthonormal eigenvectors ui of Γ1 + εiJΓ2, that is

from the solutions of (Γ1 + εiJΓ2)ui = λiui with εi = +1 [resp. εi = −1] where

qi =
1√
2

 ui

εiJui

 with εi = +1 [resp. εi = −1]. (38)

If we note that Γ1 + εiJΓ2 = 1
2E((x

′
k + εiJx

′′
k)(x

′
k + εiJx

′′
k)T ) with x

def
=

 x
′

x
′′

, we can use the Givens

adaptive method described previously and we can follow the same steps until an equation similar to (10)

is solved. As in Section 4, we only consider the case m = 2 for the same reason. The eigenvectors q1

and q2 of Γ have the structure (38) with the correct signs of ε1 and ε2. If ε1 = ε2
def
= ε, the formulas

(16),(17),(18),(19) for the derivative of the mean field and (21),(22) for the covariance of the field of the

algorithm still hold, provided q1, q2 and Γx are replaced by u1, u2 and 2(Γ1 + εJΓ2). But for ε1 = −ε2,

since (x
′
k + ε1Jx

′′
k) is used for computing q1 and (x

′
k − ε1Jx

′′
k) is used for computing q2, the analysis of

16



Section 4 is no longer valid. However, thanks to the parameterization of u1(Θ1) and u2(Θ2) we have:

dqi(Θi)

dΘi
=

1√
2

 I

εiJ

 dui(Θi)

dΘi
=

1√
2

 I

εiJ

Q
′
1(Θi)D1(Θi). (39)

The matrix H of (7) becomes

H =

 H1(Θ1,x
′
k + ε1Jx

′′
k)

H2(Θ2,x
′
k + ε2Jx

′′
k)


with

Hi = D1(Θi)Q
′T
1 (Θi)(x

′
k + εiJx

′′
k)(x

′
k + εiJx

′′
k)Tu1(Θi) for i = 1, 2. (40)

The equation (16) becomes immediately

G∗ =

 G11 O

O G22

 (41)

with

Gii = 2D1(Θi∗)Q
′T
1 (Θi∗)(Γ1 + εiJΓ2 − λiI)Q

′
1(Θi∗)D1(Θi∗) for i = 1, 2 (42)

and for independent observations xk, it is shown after some manipulations of a relation similar to the

relation (48), reported in Appendix D, that

R∗ =

 R11 R12

R21 R22

 (43)

with

R21 = RT
12 = O (44)

Rii = 4λiD1(Θi∗)Q
′T
1 (Θi∗)(Γ1 + εiJΓ2)Q

′
1(Θi∗)D1(Θi∗) for i = 1, 2. (45)

By solving the block diagonal system of equation (10) and obtain CΘ =

 CΘ1 0

0 CΘ2

. The estimated

parameter Θ1(k) and Θ2(k) and thus the estimated eigenvectors q1(k) and q2(k) are asymptotically

uncorrelated. Thanks to (35) and (39), we can deduce the mean square error of the estimated eigenvectors

qi(k):

‖qi(k)− qi∗ ‖2Fro ∼ γTr[
dqi
dΘi

CΘi

dqTi
dΘi

]∗ = γTr[
dui
dΘi

CΘi

duTi
dΘi

]∗ for i = 1, 2 (46)
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and the mean square error of the associated estimated projection matrix:

‖P(k)−P∗ ‖2Fro ∼ 2γ
2∑
i=1

Tr[
dui
dΘi

CΘi

duTi
dΘi

]∗ (47)

thanks to (36),(39) and the decorrelation of q1(k) and q2(k).

By taking into account the structure of the eigenvectors, we can expect a better tradeoff between the

misadjustments and the speeds of convergence because we increase the ratio of the successive eigenvalues

of the analyzed covariance matrices Γ1 + εiJΓ2 and we decrease the number of parameters to update.

The results and the simulations presented in the following section confirm this conjecture.

6 Results and Simulations

We now examine two cases where we compare the results given by numerical solutions of the Lyapunov

equation (10) with computer simulations of the algorithm (7).

Firstly, let us present the case of a 3×3 covariance matrix Γx obtained from independent or correlated

observations xk. Fig.1 shows the mean square errors (35) of the first two estimated eigenvectors and of

the associated estimated projection matrix (36) (both normalized by the gain factor γ). In each of these

two figures, two distinct cases are considered: the underlying covariance matrix Γx is always that of an

AR(1) process of power unity of parameter a, the estimates of the eigenvectors and of the associated

projection matrix are obtained either from independent observations xk or from correlated observations

xk = [xk, . . . , xk−n+1]T with xk is an AR(1) process. The same is performed for the case of MA consecutive

observations in Fig.2 as a function of the parameter b of the MA model of order 1.

We observe that these errors are a function of the eigenvalue spread. These misadjustments increase

when the eigenvalue spread decreases: For the AR(1) model, these errors decrease when a increases, since

the eigenvalue spread increases ; and for the MA(1) model these errors are minimum when the eigenvalue

spread (1 + b2 + b
√

2)/(1 + b2− b
√

2) is maximum, that is for b = 1. The values of the errors are between

10dB and 20dB worse for independent observations, than for AR or MA consecutive observations. For a

given covariance matrix Γx, the results are thus very sensitive to the independence or correlation property
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of the consecutive observations xk which gave rise to it. We observe that this misadjustment increases

very slowly for the successive eigenvectors in case of independent observations, whereas it decreases in

case of correlated observations.

A simulation of the algorithm (7) is presented where γ = 0.004. Fig.3 shows the learning curves of the

mean square error of the first two eigenvectors for a = 0.9 or a = 0.3 and for correlated or independent

observations xk. It confirms the preceding results, in particular, it perfectly agrees with the theoretical

values predicted by Fig.1. The speed of convergence of the vectors q1(θ1,1, θ1,2) and q2(θ1,1, θ1,2, θ2,1)

can be explained by examining the different speeds of convergence of the parameters θ1,1, θ1,2 and θ2,1

shown in Fig.4. The parameters θ1,1 and θ1,2 associated with q1(θ1,1, θ1,2) converge faster with increasing

a and the opposite happens for θ2,1 associated with q2(θ1,1, θ1,2, θ2,1). Because λ1 − λ2 ≈ 0.46 and

λ2− λ3 ≈ 0.29 for a = 0.3 [resp. 2.55 and 0.13 for a = 0.9], λ1− λ2 increases but λ2− λ3 decreases when

a increases from 0.3 to 0.9. Thus, as far as the speed of convergence is concerned, the eigenvalue spread

is too global a parameter. The speed of convergence depends on the gaps between successive eigenvalues.

It increases when the gaps between successive eigenvalues increase. This result is intuitive: the larger

the gap between successive eigenvalues, the better the conditioning of eigenvectors and the faster the

convergence. We note that, despite the different values of misadjusment, the speed of convergence is

not affected by the origin of the covariance matrix. This latter result is confirmed by the interpretation

of the associated ODE. Since the gain factor γ is “small”, the algorithm (7) follows its ODE (8) from

the start, so that the transient regime is completely described by its ODE which is invariant to the

type of correlation between successive observations. This result is also in accordance with the study

of the convergence speed performed by Yang and Kaveh [21] where they distinguish only the origin of

the covariance matrices by switches that are set in their eigenspace-linear combiner to one position for

sensor array data (independent observations) and to some other position for time series data (correlated

observations).

Next, we present the case of a 4 × 4 covariance matrix Γx of an AR(2) processs. The AR model
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of order 2 has two poles r exp(ib) and r exp(−ib) with b = π/4. Fig.5 shows the mean square error

(normalized by the gain factor γ) of the first two eigenvectors, as a function of the parameter r, for

independent observations, when the symmetric-centrosymmetric structure of Γx is taken into account

or not. We notice that when the structure of Γx is not taken into account, the mean square error of

the first eigenvector is minimum for r ≈ 0.55, which corresponds to the maximum of λ1/λ2, whereas

that of the second eigenvector is minimum for r ≈ 0.80, which corresponds to a tradeoff between the

contribution of Θ1 and Θ2, the covariances of which are related respectively to λ1/λ2 and to λ2/λ3.

And when the structure of Γx is taken into account, since the eigenvalues of Γ1 + JΓ2 (resp. Γ1 − JΓ2)

are λ1 and λ3 (resp. λ2 and λ4), the mean square errors of q1 and q2 are decreasing functions of the

ratio λ1/λ3 (resp. λ2/λ4). As these ratios are an increasing function of the parameter r, these errors

are a decreasing function of r. We see that the mean square errors are smaller in this latter case. This

advantage increases with r. This fact is explained by the substitution of the ratios λ1/λ2 and λ2/λ3 by

λ1/λ3 and λ2/λ4, respectively, which determines the behavior of the covariances of Θ1 and Θ2, and by

the reduction of the number of parameters Θ (here 2 versus 5). Figs.6, obtained for the same value of

γ = 0.004 shows that the misadjustments agree with the theoretical values predicted by Fig.5 and that

the speed of convergence is improved when we take into account the structure of the eigenvectors induced

by the symmetric-centrosymmetric structure of the covariance matrix. This avantage carries over to

higher values of n provided that the ratios of the successive eigenvalues of Γ1 + JΓ2 and of Γ1− JΓ2 are

larger than the associated ratios of the successive eigenvalues of Γx. So Fig.7 shows the learning curves

of the first three eigenvectors of the 8× 8 covariance matrix Γx of the same AR(2) process for which the

first three eigenvectors of Γ1 + JΓ2 are 3.10 0.83 0.12) and the first two eigenvectors of Γ1 − JΓ2 are

(3.39 0.45).

In conclusion of these simulations, we can draw a contrast between the effect of eigenvalue spread on

the convergence of our stochastic gradient algorithm against the stochastic gradient algorithm used for

estimating the linear prediction parameters. An increasing of the gaps between successive eigenvalues
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improves both the mean square error and the speed of convergence, while in the linear prediction stochastic

gradient algorithm, it has no direct effect on the mean square error (which is nγσ2

2 where σ2 denotes the

variance of the error prediction) and worsens the speed of convergence.

Conclusion

In this paper, we presented a convergence study of a Givens parametrized adaptive eigensubspace al-

gorithm, based on the stability of the associated ODE. Using a convergence rate result of Benveniste

et al. and a continuity theorem, we gave the asymptotic distribution of the estimated eigenvectors and

projection matrices on eigenspaces and evaluated their misadjustments. We analysed the effect of the

eigenvalue spread on the mean square error and on convergence speed by simulations.

We showed that these misadjustments are sensitive to the correlation between successive observations.

In particular, we found that these are smaller when the observations are correlated than when the

observations are uncorrelated for a covariance matrix of an AR(1) or MA(1) stationary process. We

observed the same surprising result in block estimation. Unfortunately, this result cannot be extended

to an arbitrary stationary process. On the other hand, simulations showed that the convergence speed is

not affected by the correlation between successive observations.

Finally, we proposed to improve the tradeoff between the misadjustment and the convergence speed

by exploiting the symmetric-centrosymmetric property of some covariance matrices. These results are

confirmed by simulations.

A Appendix: Proof of the relation (17),(18),(19)

G11, G22, G21 are respectively equal to

G11 =
dqT1 (Θ1)∗
dΘ1

Γx
dq1(Θ1)∗
dΘ1

+ [
∂A1

∂θ1,1
Γxq1(Θ1), . . . ,

∂A1

∂θ1,n−1
Γxq1(Θ1)]∗,

G22 =
∂qT2 (Θ1,Θ2)∗

∂Θ2
Γx
∂q2(Θ1,Θ2)∗

∂Θ2
+ [

∂A2

∂θ2,1
Γxq2(Θ1,Θ2), . . . ,

∂A2

∂θ2,n−2
Γxq2(Θ1,Θ2)]∗,

21



G21 =
∂qT2 (Θ1,Θ2)∗

∂Θ2
Γx
∂q2(Θ1,Θ2)∗

∂Θ1
+ [

∂A2

∂θ1,1
Γxq2(Θ1,Θ2), . . . ,

∂A2

∂θ1,n−1
Γxq2(Θ1,Θ2)]∗,

with A1
def
=

dqT
1 (Θ1)
dΘ1

= D1(Θ1)Q
′T
1 (Θ1) and A2

def
=

∂qT
2 (Θ1,Θ2)
∂Θ2

= D2(Θ2)Q
′T
2 (Θ2)Q

′T
1 (Θ1). Since

‖q1(Θ1)‖2 = ‖q2(Θ1,Θ2)‖2 = 1 holds for all Θ1 and Θ2, this implies A1q1 = 0 and A2q2 = 0 also

holds for all Θ1 and Θ2 and therefore:

Ai
dqi
dΘj

+ [
∂Ai

∂θj,1
qi, . . . ,

∂Ai

∂θj,n−1
qi] = O ⇒ [

∂Ai

∂θj,1
Γxqi, . . . ,

∂Ai

∂θj,n−1
Γxqi]∗ = −λiAi∗

dqi
dΘj
∗

for respectively i, j = 1, 1, 2, 2 and 2, 1. Putting all the pieces together, we get the expressions (17), (18)

and (19), where Q1,2(Θ1,Θ2) = ∂q2(Θ1,Θ2)
∂Θ1

with

∂q2(Θ1,Θ2)

∂Θ1
= [q2(θ1,1 +

π

2
, θ1,2, . . . , θ1,n−1,Θ2), . . . ,q2(θ1,1, . . . , θ1,n−2, θ1,n−1 +

π

2
,Θ2)].

We note that unlike ∂qi(Θ1,...,Θi)
∂Θi

, the term ∂qi(Θ1,...,Θi)
∂Θj

for j < i cannot be easily expressed as a product

of matrices.

B Appendix: Proof of the relation (23),(24),(25)

We begin with the general Gaussian property

E{xk[xTk qi][q
T
j x0]xT0 } = E{xk[xTk qi]}E{qTj x0]xT0 }+E{xk[xT0 qj ]}E{qTi xk]x

T
0 }+E{[qTi xk][x

T
0 qj ]}E{xkxT0 }

(48)

applied with k = 0 and i = 1, 2 and j = 1, 2. To simplify notations, we denote q1(Θ1∗) and q2(Θ1∗,Θ2∗)

as q1 and q2 respectively where:

E{x0[xT0 qi]}E{[qTj x0]xT0 } = λiλjqiq
T
j

and E{[qTi x0][xT0 qj ]}E{x0x
T
0 } = δi,jλiΓx with δi,j = 0 if i = j and 1 elsewhere.

We then obtain:

E{x0[xT0 qi][q
T
j x0]xT0 } = λiλj(qiq

T
j + qjq

T
i ) + δi,jλiΓx

Therefore, thanks to the orthonormal properties of {q1(Θ1),q2(Θ1,Θ2)}, which imply qT1
∂q2

∂Θ2
= 0 and

qTi
∂qi
∂Θi

= 0 for i = 1, 2, the relations (22),(14) and (15) gives the relations (23),(24) and (25).
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C Appendix: Proof of the relations (29) and (30)

In the case of correlated observations xk, the relations (12) and (21),(22) imply:

Rij =
∂qTi (Θ)∗
∂Θi

+∞∑
k=−∞

E[xkx
T
k qi(Θ∗)q

T
j (Θ∗)x0x

T
0 ]
∂qj(Θ)∗
∂Θj

, (49)

where from the Gaussian property (48) gives:

E{xk[xTk qi][q
T
j x0]xT0 } = λiλjqiq

T
j + Γkqjq

T
i Γk + [qTi Γkqj ]Γk

where Γk denotes the cross-correlation matrix E[xkx
T
0 ]. Since Γ−k = ΓTk , the terms Γi,j of (26),(27) and

(28) become

Γi,j =
+∞∑
k=1

Γkqjq
T
i Γk + ΓTk qjq

T
i ΓTk + (qTi Γkqj)Γk + (qTi ΓTk qj)Γ

T
k . (50)

This infinite sum reduces to the finite sum (29) for an MA process, whereas for an AR process we use

the property that the correlation coefficients γi
def
= E(xkxk−i) can be written as [[9], (2.64) p.88]:

γk =
p∑
l=1

αlρ
|k|
l (51)

where ρ1, . . . , ρp are the roots (we have supposed that these roots are simple) of the characteristic equation

associated to the AR(p) process, and α1, . . . , αp are constants determined by the values of γ0, a1, . . . , ap

(ak, k = 1, . . . , p denote the coefficients of the AR(p) process). Since

Γk =
p∑
l=1

αlρ
k
l Γρl for k > n− 2

with |ρl| < 1, where Γρl denotes the n × n matrix, the entries of which are (Γρl)i,j = ρj−il , the term

(50) also reduces to the finite sum (30). As for an ARMA(p, q) process, the relation (51) still applies,

but only for |k| ≥Sup(0, q + 1 − p). Therefore the relation (30) also holds, provided n is replaced by

n+Sup(0, q + 1− p).

D Appendix: Proof of the relations (44) and (45)

For independent observations xk, we have:

Rij =
duTi (Θi)∗
dΘi

E[yiy
T
i ui(Θi∗)u

T
j (Θj∗)yjy

T
j ]
duj(Θj)∗
dΘj

for i = 1, 2 j = 1, 2 (52)
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with yi
def
= x

′
k + εiJx

′′
k and ε1 = −ε2. From the Gaussian property (48), using the same development of

Appendix B there follows

E{yi[yTi ui][u
T
i yi]y

T
i } = 8λ2

iuiu
T
i + 4λi(Γ1 + εiJΓ2) for i = 1, 2

and as E(y2y
T
1 ) = (1 + ε1ε2)Γ1 + (ε1 + ε2)JΓ2 = O,

E{yi[yTi ui][u
T
j yj ]y

T
j } = 4λiλjuiu

T
j for i 6= j

Therefore, thanks to the unit norm of u1(Θ1) and u2(Θ2), the relations (44) and (45) are deduced.
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Figure 1: Mean square errors of the first two eigenvectors and of the associated projection matrix (nor-

malized by the gain factor γ) estimated from independent or correlated AR(1) observations, as a function

of the AR parameter a.
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Figure 2: Mean square errors of the first two eigenvectors and of the associated projection matrix (nor-

malized by the gain factor γ) estimated from independent or correlated MA(1) observations, as a function

of the MA parameter b.
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Figure 3: Learning curves of the mean square error E‖q1(k)−q1∗ ‖2Fro and E‖q2(k)−q2∗ ‖2Fro compared

to γTrCq1 and to γTrCq2 averaging 400 independent runs for correlated or independent observations xk,

the covariance matrix Γx being issued from an AR(1) with coefficient a = 0.9 or a = 0.3
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Figure 4: Learning curves of the parameters θ1,1, θ1,2 and θ2,1 from the algorithm (7) for correlated

or independent observations xk, the covariance matrix Γx being issued from an AR(1) with coefficient

a = 0.9 or a = 0.3.
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Figure 5: Mean square error (normalized by the gain factor γ) of the first two eigenvectors as a function

of the parameter r for independent observations, the 4 × 4 covariance Γx matrix being issued from an

AR(2), in two cases: the symmetric-centrosymmetric structure of Γx is taken into account, and is not.
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Figure 6: Learning curves of E‖q1(k) − q1∗ ‖2Fro and E‖q2(k) − q2∗ ‖2Fro (averaged on 400 runs) from

the algorithm (7) with γ = 0.004 for consecutive independent observations xk, the 4 × 4 covariance Γx

matrix being issued from an AR(2) parameterized by r = 0.9 and asymptotical mean square error when

the symmetric-centrosymmetric structure of Γx is taken into account or not.
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Figure 7: Learning curves of E‖q1(k) − q1∗ ‖2Fro, E‖q2(k) − q2∗ ‖2Fro and E‖q3(k) − q3∗ ‖2Fro (averaged

on 400 runs) from the algorithm (7) with γ = 0.004 for consecutive independent observations xk, the

8×8 covariance Γx matrix being issued from an AR(2) parameterized by r = 0.9 and asymptotical mean

square error when the symmetric-centrosymmetric structure of Γx is taken into account or not.
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