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Performance analysis of an adaptive algorithm for

tracking dominant subspaces.

Jean-Pierre Delmas ∗ Jean-François Cardoso †

Abstract

This paper provides a performance analysis of a Least Mean Square (LMS) dominant invariant

subspace algorithm. Based on an unconstrained minimization problem, this algorithm is a stochastic

gradient algorithm driving the columns of a matrix W to an orthonormal basis of a dominant invari-

ant subspace of a correlation matrix. We consider the stochastic algorithm governing the evolution

of WWH to the projection matrix onto this dominant invariant subspace and study it asymptotic

distribution. A closed form expression of its asymptotic covariance is given in case of independent

observations and is further analyzed to provide some insights into the behavior of this LMS type al-

gorithm. In particular, it is shown that, even though the algorithm does not constrain W to have

orthonormal columns, there is deviation from orthonormality at first order. We also give a closed form

expression of the asymptotic covariance of DOAs estimated by the MUSIC algorithm applied to the

adaptive estimate of the projector. It is found that the asymptotic distributions have a structure very

similar to those describing batch estimation techniques because both algorithms are obtained from

the minimization of the same criterion. Finally, the accuracy of the asymptotic analysis is checked

by numerical simulations and is found to be valid not only for a “small” step size but in a very large

domain.
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1 Introduction

Subspace tracking. Over the past decade, adaptive estimation of subspaces of covariance matrices has

been applied successfully to high resolution spectral analysis in signal processing and principal component

analysis in data compression and feature extraction. The interest for these methods, a tool of growing

importance in many fields of signal processing, has recently been renewed by the subspace approach

used in blind identification of multichannel FIR filters [1]. Numerous solutions have been proposed to

recursively updating subspaces of covariance matrices (see for example the references in [2] and in [3]),

but there are relatively few performance analyses concerning stochastic gradient algorithms derived from

constrained or unconstrained optimization problems. Among them, Larimore and Calvert [4] presented a

convergence study of the Thompson algorithm, while Yang and Kaveh [5] made an analysis of convergence

rate and stability of their constrained gradient search procedure resorting to the classical independence

assumption. Studies of convergence with the help of the associated ordinary differential equation (ODE)

were carried out by many authors from Oja and Karhunen [6]. Evaluation of the performance by providing

the asymptotic distributions of the estimated eigenvectors were proposed in [7], [8] and [9]. It is the

purpose of this paper to provide a thorough study of the behavior of a LMS type approximation algorithm

presented by Yang in [2].

Algorithm under study. For a given n × n covariance matrix R, denote λ1 ≥ . . . ≥ λn the eigen-

values of R and v1, . . . ,vn corresponding eigen-vectors. The r-dimensional dominant invariant subspace

of R is the span of v1, . . . ,vr and it is well defined if, as assumed throughout the paper, λr > λr+1.

Denote Π the orthogonal projector onto this subspace. One has:

Rva = λava Πva = πava 1 ≤ a ≤ n. (1)

2



where we have defined π1 = · · · = πr = 1 and πr+1 = · · · = πn = 0. Defining the rank-one projection

matrices Πa onto each eigen-vector, one can also write

Πa
def
= vav

H
a R =

∑
a=1,n

λaΠa Π =
∑
a=1,n

πaΠa =
∑

1≤a≤r
Πa (2)

Subspace tracking consists in recursively updating at time t an (approximately) orthonormal basis of

this subspace upon reception of sample xt of a stationary process with covariance R = Extx
H
t ,1 xt is

supposed to be a zero-mean complex circular Gaussian random vector.

There are several interesting algorithms described in Yang’s paper [2], based on the unconstrained

minimization of the objective function:

Ja(W)
def
= E‖xt −WWHxt ‖2Fro (3)

with respect to the n× r matrix W. In this contribution, we consider the stochastic gradient algorithm

for the minimization of Ja(W). This yields the following algorithm where γt > 0 is a step size:

Wt+1 = Wt + γth(Wt,xt) (4)

h(Wt,xt)
def
= (2xtx

H
t − xtx

H
t WtW

H
t −WtW

H
t xtx

H
t )Wt. (5)

Baldi and Hornik [10] have shown (in the real case) that the stationary points of Ja(W) are W =

{W|W = VrU} where Vr is any r-dimensional eigenvector basis of R and U is an r × r arbitrary

orthogonal matrix. All these points are saddle points except when Vr = VS
def
= [v1, . . . ,vr]. In this case

Ja(W) attains the global minimum. These results are restated in [2] in the complex case, and subsequent

work in this subject has been carried out by L. Xu [11]. In stationary situations and if the step size γt

satisfies the conditions
∑∞
t=1 γt = +∞ and limt→∞ γt = 0, the study of convergence of algorithm (4) is

intimately connected to the associated ordinary differential equation (ODE):

dWt

dt
= E(h(Wt,x)). (6)

So, we can conjecture that the stochastic algorithm (4) converges almost surely toWS = {W|W = VSU}.
1Complex valued quantities are implicitly assumed here. Most of the paper deals with the complex case, but the real

case is also considered in section 3.1.
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Projector tracking. A difficulty arises in the study of the behavior of Wt because the setWS forms a

continuum of attractors: the column vectors of Wt do not in general tend to the eigenvectors v1, . . . ,vr

and we have no proof of convergence of Wt to a particular orthonormal basis of their span.2 Therefore,

the approach followed in this paper is to study the trajectory of matrix Pt

Pt
def
= WtW

H
t (7)

whose dynamic is governed by the stochastic equation:

Pt+1 = Pt + γtf(Pt,xtx
H
t ) + γ2t g(Pt,xtx

H
t ) (8)

f(P,M)
def
= P(2M−MP−PM) + (2M−MP−PM)P (9)

g(P,M)
def
= (2M−MP−PM)P(2M−MP−PM) (10)

obtained by combining (4), (5) and (7). In the following, we are interested in first order asymptotic

effects: we derive the asymptotic variance of Pt around Π for a small fixed value γ of the step size. At

first order (in γ), this covariance is proportional to γ and is not affected by the O(γ2t ) term in (8), so

that this term can be neglected. A remarkable feature of (8) is that the field f actually depends only on

Pt and not on Wt. This fortunate circumstance makes it possible to study the evolution of Pt without

determining the evolution of the underlying matrix Wt. The characteristics of Pt are indeed the most

interesting since they completely characterize the estimated subspace.

Outline of the paper. This paper is organized as follows. In section 2, after presenting a brief review

of a general Gaussian approximation result, we obtain in closed form the asymptotic covariance of Pt for

the case where xt is a white complex circular Gaussian sequence. Several lemmas are included, the proofs

of which are reported at the end of the paper. In section 3, we extend this result to real signals and we

compare the asymptotic performance of the algorithm with the performance of the PAST algorithm [2]

2We note, that in the particular case r = 1 and xt real, (6) admits only two asymptotically stable points. Under some

additional technical assumptions, a result of [14] asserts that each solution of (6) converges to one of the points {−v1,+v1}

and consequently Wt converges almost surely to one of these points.
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and of batch algorithm for subspace estimation. We also investigate the performance of DOA (direction

of arrival) estimation based on the adaptive subspace algorithm. Section 4 presents some simulation

results and investigates the validity of the asymptotic approach.

2 Asymptotic performance analysis

2.1 A short review of a general Gaussian approximation result

In this section, we evaluate the asymptotic performance of algorithm (4). For this purpose, we shall use

the following result [12, theorem 2, p. 108]). Let

θt+1 = θt + γφ(θt,xt) (11)

be a constant step size recursive stochastic algorithm. Suppose that the n×1 real parameter θt converges

almost surely to the asymptotically stable point θ∗ in the corresponding decreasing step size algorithm.

Then, in real stationary situation we have when γ → 0 and t→∞, (where →L denotes the convergence

in distribution):

1
√
γ

(θt − θ∗)→L N (0,Cθ) (12)

where Cθ is the unique symmetric solution of the continuous Lyapunov equation:

DCθ + CθD
T + Γ = 0 (13)

and where D and Γ are respectively the derivative of the mean field and the covariance of the field:

D
def
= E[

∂φ

∂θ
(θ,xt)]θ=θ∗

(
[D]i,j

def
=

∂φj
∂θi

)
(14)

Γ
def
=

∞∑
t=−∞

Cov[φ(θ∗,xt), φ(θ∗,x0)] (15)

Thus θt behaves asymptotically, for t “large enough” and γ “small enough” like an unbiased Gaussian

estimator of θ∗ with covariance matrix γCθ. In cases where a closed form for the EVD of DT is available:

DTmi = µimi, for 1 ≤ i ≤ n, we have:

mT
i Cθmj = −mT

i Γmj

µi + µj
(16)
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Further, if D is symmetric, the eigenvectors m1, . . . ,mn can be chosen orthonormal and equation (16)

yields

Cθ = −
∑

1≤i,j≤n

mim
T
i Γmjm

T
j

µi + µj
(17)

Further, if Γ and D share the same set of eigenvectors i.e. if we have Γmi = νimi for 1 ≤ i ≤ n, the

above reduces to

Cθ =
n∑
i=1

νi
−2µi

mim
T
i . (18)

The main objective of this paper is to give an explicit form of the asymptotic covariance matrix for

the algorithm (4) . This requires solving the Lyapunov equation (13) in closed form. This turns out to

be analytically tractable because we shall exhibit a basis where matrices D and Γ are both diagonal;

therefore Cθ will become available in closed form via equation (18).

2.2 A short review of an asymptotic property of M-estimates

In this subsection, we recall the asymptotic distribution of M-estimates ([13, theorem 1, p. 312]), which

we shall use to evaluate the asymptotic distribution in the case of batch estimation. If xt is a sequence

of independent identically distributed zero mean random vectors and if θT is an isolated solution of

1

T

T∑
t=1

φ(θ,xt) = 0 (19)

with E(φ(θ∗,xt)) = 0, then, if φ is sufficiently smooth, the following convergence in distribution result

holds when T tends to ∞:

√
T (θT − θ∗)→L N (0,Cθ) (20)

where Cθ = D−TΓD−1, D is defined in (14) and Γ = Cov[φ(θ∗,xt), φ(θ∗,xt)]. Further, if Γ and D

(symmetric) share the same set of eigenvectors, i.e. if we have Γmi = νimi and Dmi = µimi for

1 ≤ i ≤ n, the matrix Cθ reduces to

Cθ =
n∑
i=1

νi
µ2i

mim
T
i . (21)
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2.3 Local characterization of the field

According to previous section, one needs to characterize two local properties of the field f(P,xxH): the

mean value of its derivative and its covariance, both evaluated at point P = Π. To proceed, it will

be convenient to define the following set of orthonormal Hermitian matrices, (the inner product under

consideration is (A,B)
def
= Tr(AHB)):

Hab =



vav
H
a a = b

vavH
b +vbv

H
a√

2
a < b

vavH
b −vbv

H
a

i
√
2

a > b.

(22)

With this definition, a first order approximation of the mean field in the neighborhood of Π is given by

the following lemma:

Lemma 1 For 1 ≤ a, b ≤ n,

Ef(Π + ε Hab, xtx
H
t ) = ε µab Hab + O(ε2) (23)

with

µab
def
= 2λa(1− πa) + 2λb(1− πb)− (λa + λb)(πa + πb). (24)

To characterize the covariance of the field at point P, we use the Vec operator which turns a p× q matrix

into a pq × 1 vector by stacking successive columns one below another. It will be used in conjunction

with the Kronecker product A⊗B as3 the block matrix whose (i, j) block element is b∗i,jA. We have the

classic properties (see for example in the real case [16, Appendix A]):

Vec(ABC) = (A⊗CH) Vec(B) (25)

(A⊗B)(C⊗D) = AC⊗BD (26)

(A⊗B)H = AH ⊗BH . (27)

Define then the following two matrices:

Π⊥
def
= In −Π Q

def
= Π⊥ ⊗Π + Π⊗Π⊥. (28)

3This slightly unusual convention makes it easier to deal with complex matrices.
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The covariance of the field at point P = Π is given by the following lemma:

Lemma 2 For a circular complex vector x,

Cov(Vec(f(Π,xxH))) = Q(R⊗R)QH . (29)

The eigen-structure of this covariance matrix is characterized as follows:

Lemma 3 For 1 ≤ a, b ≤ n, Cov(Vec(f(Π,xxH))) Vec(Hab) = νab Vec(Hab) with

νab
def
= (πa − πb)2λaλb. (30)

2.4 Real parameterization.

The Lyapunov equation (13) deals with a vector θ of real parameters. Herein, the parameter P of interest

is an n× n rank-r complex Hermitian matrix. To adapt the results recalled in section 2.1 to our needs,

matrix P should be parameterized by a vector θ of real parameters. Counting degrees of freedom shows

that the set of n×n rank-r complex Hermitian matrices is a r(2n−r)-dimensional manifold. This section

introduces a parameterization of this manifold in a neighborhood of Π by a r(2n− r)× 1 vector θ of real

parameters.

For an n× n matrix M and any pair 1 ≤ a, b ≤ n of indices, define

θab(M)
def
= Tr{Hab(M−Π)}. (31)

These are real scalars if M is Hermitian. Since {Hab |1 ≤ a, b ≤ n} is an orthonormal basis for the linear

space of n× n matrices, the scalars θab(M) are the coordinates of M−Π on this basis. Thus any n× n

matrix is parameterized by the values of θab(M) according to:

M = Π +
∑

1≤a,b≤n
θab(M) Hab. (32)

Matrices close to Π are parameterized by small values of these parameters: by definition θab(M) =

O(‖M−Π‖) for any pair (a, b). The relevance of these parameters is shown by this lemma:
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Lemma 4 If P is an n× n rank-r Hermitian matrix, then

P = Π +
∑

(a,b)∈Ph

θab(P) Hab + O(‖P−Π‖2) (33)

where Ph is the complement of {(a, b) | r < a, b ≤ n}, i.e. Ph
def
= {(a, b) | 1 ≤ a ≤ r or 1 ≤ b ≤ r}.

In other words, a rank-r Hermitian matrix lying less than ε away from Π (i.e. ‖P − Π‖ < ε) have

negligible (of order ε2) components in the direction of Hab for r < a, b ≤ n. Eq. (33) is more compactly

expressed by using an n2 × r(2n− r) matrix H:

H def
= [. . . ,Vec(Hab), . . .], (a, b) ∈ Ph (34)

so that the r(2n− r)× 1 vector θ(P) defined by

θ(P)
def
= HHVec(P−Π) (35)

contains the values of θab(P) for (a, b) ∈ Ph and equation (33) reads, after vectorization

Vec(P) = Vec(Π) + Hθ(P) + O(‖P−Π‖2). (36)

Note that the particular ordering of the pairs in the set Ph is irrelevant in expressions like Hθ. There are

n2 − (n − r)2 = r(2n − r) pairs in Ph and this is exactly the dimension of the manifold of n × n rank-r

Hermitian matrices. This point, together with eq. (33), shows that the matrix set {Hab | (a, b) ∈ Ph} in

fact is a basis of the tangent plane to this manifold at point Π. It follows that, in a neighborhood of Π,

Hermitian rank-r matrices are uniquely determined by the (real) values of θ. This is the required real

(local) reparameterization of a rank-r Hermitian matrix by a r(2n− r)-dimensional vector θ: we denote

P(θ) the unique (for small enough ‖θ‖) Hermitian matrix with rank r such that HHVec(P(θ)−Π) = θ.

It is not necessary to express explicitly P(θ): as will turn out, it is sufficient to use the property derived

from (36):

Vec(P(θ)) = Vec(Π) + Hθ + O(‖θ‖2). (37)
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2.5 Solution of the Lyapunov equation.

We are now in position to solve the Lyapunov equation in the new parameter θ defined in the previous

subsection. The stochastic equation governing the evolution of this vector parameter is obtained by

applying the transformation Pt → θt = HHVec(Pt −Π) to the original equation (8).

θt+1 = θt + γtφ(θt,xt) +O(γ2t ) (38)

where function φ appears to be

φ(θ,x)
def
= HH Vec(f(P(θ),xxH)). (39)

We need to evaluate the derivative matrix D of Eφ(θ,x) at point θ = 0 and, since we first consider

only the case of independent observations, the covariance matrix Γ of φ(0,x). With these notations, the

results of section 2.3 are recycled as follows.

Eφ(θ,x) = HHVecEf(P(θ),xxH)

= HHVecEf
(
Π +

∑
θabHab +O(‖θ‖2), xxH

)
= HHVec

(∑
θabµabHab) +O(‖θ‖2)

)
= HH(H∆µθ) +O(‖θ‖2) = ∆µθ +O(‖θ‖2),

where the above summations are over (a, b) ∈ Ph. First equality uses definition (39) and the linearity

of the Vec operation; second equality stems from property (36) of the reparameterization; third equality

uses lemma 1 and the differentiability of f ; fourth equality is by definitions (34) and (40); last equality

is due to the orthonormality of the basis {Hab} and allows to conclude that

D
def
=

∂Eφ(θ,x)

∂θ

∣∣∣∣
θ=0

= ∆µ with ∆µ
def
= Diag(. . . , µab, . . .) (a, b) ∈ Ph. (40)

We proceed with evaluating the covariance of the field at θ = 0:

Cov(φ(0,x)) = Cov(HHVec(f(Π,xxH))) = HH Cov(Vec(f(Π,xxH))) H

= HHH∆ν = ∆ν
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First equality is by definition of φ; second equality is by bilinearity of the Cov operator; third equality

is by noting that lemma 3 also reads Cov(Vec(f(Π,xxH)))H = H∆ν with ∆ν defined by (41); last

equality is due to the orthonormality of the basis {Hab} and allows to conclude that for independent

observations

Γ
def
= Cov(φ(0,x)) = ∆ν with ∆ν

def
= Diag(. . . , νab, . . .) (a, b) ∈ Ph. (41)

Thus both Γ and D are diagonal matrices. In this case, the Lyapunov equation (13) reduces to r(2n− r)

uncoupled scalar equations. The solution then trivially is

Cθ = −1

2
∆ν∆

−1
µ . (42)

According to (12), γ−1/2θt →L N (0,−1
2∆ν∆

−1
µ ). By eq. (36), we have Vec(Pt) = Vec(Π) + Hθt +

O(‖θt‖2). We conclude that for γ → 0 and t→ +∞,

1
√
γ

(Vec(Pt)−Vec(Π))→L N (0,CP ) with CP = HCθHH = −1

2
H∆ν∆

−1
µ HH . (43)

Expression (43) of the covariance matrix CP in the asymptotic distribution of Vec(Pt) may be written

as an explicit sum:

CP =
∑

(a,b)∈Ph

νab
−2µab

Vec(Hab)Vec(Hab)
H . (44)

Definitions (24) of µab and (30) of νab show that these quantities are symmetric and also that νab = 0 for

1 ≤ a, b ≤ r. Using these facts and the easily established identity:

Vec(Hab)Vec(Hab)
H + Vec(Hba)Vec(Hba)

H = Πa ⊗Πb + Πb ⊗Πa, (45)

the expression (44) of the asymptotic covariance matrix of Pt is finally rewritten as

CP =
∑

1≤a≤r<b≤n

λaλb
2(λa − λb)

(Πa ⊗Πb + Πb ⊗Πa) . (46)

See corollary 1 for an even simpler expression in the case where R = Σ+σ2I and Π is the projector onto

the range of a rank-deficient non-negative matrix Σ.
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2.6 Analysis.

Several simple MSE characterizations can be derived from the regular structure of the covariance matrix

CP as expressed by (44) or (46). A word of caution is nonetheless necessary because the convergence of

1√
γVec(Pt −Π) to a limiting Gaussian distribution with covariance matrix CP does not guarantee the

convergence of its moments to those of the limiting Gaussian distribution (or even that these limiting

moments exist). In the following sections, we assume the convergence of the first and second-order

moments allowing us to write

‖E(Pt)−Π ‖2Fro = o(γ), Cov(Vec(Pt)) = γCP + o(γ). (47)

The numerical experiments presented in section 4 show an excellent prediction of various MSE quantities,

confirming this assumption.

According to equation (47), the MSE between Pt and Π is given by the trace of the covariance matrix

in the asymptotic distribution of Pt. The trace being invariant under orthonormal changes of basis and

{Vec(Hab)‖1 ≤ a, b ≤ n} being an orthonormal basis, we obtain from eq. (44) or eq. (46)

E‖Pt −Π ‖2Fro|2 = γ
∑

1≤a≤r<b≤n

λaλb
λa − λb

+ o(γ). (48)

A finer picture is obtained by decomposing the error Pt −Π into three terms

P1
def
= Π(P−Π)Π, P2

def
= ΠPΠ⊥ + Π⊥PΠ, P3

def
= Π⊥PΠ⊥. (49)

Using In = Π + Π⊥, this is easily seen to be an orthogonal decomposition:

P = Π + P1 + P2 + P3, ‖P−Π‖2 = ‖P1‖2 + ‖P2‖2 + ‖P3‖2. (50)

The relevance of this orthogonal decomposition stems from this lemma (see proof in appendix):

Lemma 5 Let P be a rank-r Hermitian matrix, and let Π̂ be the orthogonal projection matrix on the

range space of P. Then

P1 = P2 −P +O(‖P−Π‖2), (51)
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P2 = Π̂−Π +O(‖P−Π‖2), (52)

P3 = O(‖P−Π‖2). (53)

Thanks to this lemma, each term can be given a simple interpretation. The term P1 represents the first

order of the deviation of P from orthogonality since if P was an orthogonal projector, we would have

P2 = P. Maybe more strikingly, recalling that P = WWH , one finds that

‖P1‖2 = ‖WHW − Ir‖2 +O(‖P−Π‖2),

since from eqs (98) and (99): ‖P1‖2 = ‖V(Λ − Ir)V
H‖2 + O(‖P − Π‖2) where ‖V(Λ − Ir)V

H‖2 =

‖Λ − Ir‖2 = ‖U(Λ − Ir)U
H‖2 with U is the r × r unitary matrix of the singular decomposition of

WHW = UΛUH . According to this lemma, the term P2 represents the deviation between the subspace

of interest and the one estimated by P. Finally, the last term P3 is of order O(‖P−Π‖2) because P has

rank r (we already expressed this property in lemma 4).

The above decomposition is purely geometric. Statistical results are obtained by combining it with

expressions (44) or (46) of the asymptotic covariance matrix CP of Pt. In doing so, massive simplifications

occur due to orthogonality. This is summarized by

Vec(vav
H
b )H(Πc ⊗Πd)Vec(vev

H
f ) = δc,aδc,eδd,bδd,f 1 ≤ a, b, c, d, e, f ≤ n.

where δi,j denotes the Kronecker notation: δi,j = 1 if i = j and δi,j = 0 elsewhere. Many terms are

canceled by these orthogonality relations. The resulting asymptotic variances are

E‖P1,t ‖2Fro = E‖WH
t Wt − Ir ‖2Fro + o(γ) = O(γ), (54)

E‖P2,t ‖2Fro = E‖Pt −Π ‖2Fro + o(γ) = γ
∑

1≤a≤r<b≤n

λaλb
λa − λb

+ o(γ), (55)

E‖P3,t ‖2Fro = o(γ). (56)

A very striking result is observed here: the deviation of Wt from orthonormality, as quantified by ‖P1‖,

has a stochastic order lower than γ
1
2 ! This results from the fact that the summation in (46) only is over

pairs such that a ≤ r < b. This is a remarkable feature of this algorithm that there seems to be no price
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to pay for not constraining matrix W to have orthonormal columns, at least in the stationary setting

considered herein. What is then the order of the deviation from orthonormality? This question cannot

be answered by first order performance analysis, but the order can be determined experimentally. We

show in section 4 that the MSE of orthonormality is, in first approximation, proportional to γ2.

A frequently encountered situation is when the observation vector xt is the superposition of a sig-

nal with a rank-deficient covariance matrix Σ, corrupted by a spatially incoherent additive noise with

covariance matrix σ2I, so that R = Σ + σ2I. The projector of interest is Π, the projector onto the

range of Σ (this space is usually called the signal subspace) or, equivalently, the projector Π⊥ onto its

ortho-complement: the noise subspace. In this situation, this corollary follows:

Corollary 1 If R = Σ + σ2I with Rank(Σ) = r < n and Π is the projector onto the range of Σ, then

expression (46) of CP becomes,

CP = Γ⊗Π⊥ + Π⊥ ⊗ Γ with Γ =
σ2Π + σ4Σ#

2
=
σ2

2
Σ#R.

In addition, Tr(CP ) = σ2(n− r)Tr(Σ#R).

The proof uses a decomposition of Σ as Σ =
∑
a≤r ρaΠa giving λa = ρaπa + σ2 and Σ# =

∑
a≤r ρ

−1
a Πa

and also the property Tr(Π⊥ ⊗ Γ) = Tr(Π⊥) Tr(Γ). The corollary follows by elementary algebra.

3 Further investigations

3.1 The real case

To address the case of real signals, only slight modifications are needed: we outline below the differences

with the complex case. Regarding the parameterization of Pt, an appropriate orthonormal basis for the

real symmetric matrices is:

Sab =


vav

T
a a = b

vavT
b +vbv

T
a√

2
a < b

(57)

14



A lemma similar to lemma 4 holds, replacing Ph by Ps
def
= {(a, b) | 1 ≤ a ≤ b ≤ n and a ≤ r}. Keeping

the same definitions for µab and νab, the results of lemmas 1 and 3 become:

Ef(Π + ε Sab, xtx
T
t ) = ε µab Sab + O(ε2), 1 ≤ a ≤ b ≤ n (58)

Cov(Vec(f(Π,xxT )))Vec(Sab) = 2νabVec(Sab), 1 ≤ a ≤ b ≤ n. (59)

Using the same arguments as in the real case, with the only difference ([16], p. 57) that

Cov(Vec(xxT )) = R⊗R + (R⊗R)K (60)

where K is an n2 × n2 block matrix, acting as a permutation operator, i.e. KVec(xyT ) = Vec(yxT ) for

any vectors x and y, the asymptotic covariance matrix for P is

CP =
∑

(a,b)∈Ps

νab
−µab

Vec(Sab)Vec(Sab)
T , (61)

which is the real counterpart of eq. (44). CP is finally written as:

CP =
∑

1≤a≤r<b≤n

λaλb
2(λa − λb)

(I + K)(Πa ⊗Πb + Πb ⊗Πa). (62)

Because of the similarity between the asymptotic covariance matrices for Pt in the real case (62) and in

the complex case (46), similar conclusions can be drawn. In particular, (55) holds.

3.2 Comparisons with other estimation techniques

PAST algorithm The expression (62) can be compared to those derived from the asymptotic distribu-

tion of the real PAST estimator given by Yang in [9]. As this PAST algorithm converges to W∗ = VrU

(where U is an r × r arbitrary orthogonal matrix), Yang considers the covariance CW̃ of the limiting

distribution of W̃t
def
= WtU

T . The nr × nr block matrix CW̃ reads

(CW̃ )i,j =


O 1 ≤ i 6= j ≤ r

∑
a>r

λa
2(λi−λa)vav

T
a 1 ≤ i = j ≤ r.

(63)

Applying a continuity theorem (e.g., theorem 6.2a in [19], p. 386) to the differentiable mapping W̃ =

(w̃1, . . . , w̃r)→ P =
∑r
k=1 w̃kw̃

T
k gives 1√

γ (Vec(Pt)−Vec(Π))→L N (0,CP ) with

CP =
∑

1≤a≤r<b≤n

λb
2(λa − λb)

(I + K)(Πa ⊗Πb + Πb ⊗Πa), (64)
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where γ
def
= 1 − λ, with λ the forgetting factor of the RLS-type PAST algorithm. The relations (62)

and (64) are very similar, except for the multiplicative term λa. Further comparison of these covariance

matrices is questionable because the step size γ cannot be compared. In our algorithm, γ has the

dimension of the inverse of the power of xt and in the PAST algorithm, γ has no dimension. algorithm.

Batch estimation technique Consider the minimization of the sample version of the Yang/Xu cri-

terion (3)

Jb(W)
def
=

1

T

T∑
t=1

‖xt −WWHxt ‖2Fro. (65)

Let WT be a minimizer of (65). Because all the properties derived from the minimization of (3) also

hold in case (65) is minimized, (just replace E(xtx
H
t ) by 1

T

∑T
t=1 xtx

H
t ), the corresponding estimate of

the projector Π has a common value denoted by PT
def
= WTWH

T and coincides with the standard batch

estimator. So, since WT is solution of 1
T

∑T
t=1 h(W,xt) = 0, with h defined in (5), PT is solution of

1

T

T∑
t=1

f(P,xtx
H
t ) = 0, (66)

with f defined in (9). Applying the results on M-estimates recalled in subsection 2.2 and using the

common set of eigenvectors Vec(Hab)1≤a,b≤n of D and Γ, and the associated eigenvalues (24), (30), we

obtain

√
T (Vec(PT )−Vec(Π))→L N (0,CP ) (67)

with

CP =
∑

1≤a≤r<b≤n

λaλb
(λa − λb)2

(Πa ⊗Πb + Πb ⊗Πa). (68)

Comparison The covariance matrices CP of the asymptotic distribution of the projection matrix

estimated by our LMS algorithm and by the standard batch estimation technique have the same structure

[see (18) and (21)] because these estimations derive from the same criterion [see (3) and (65)] . The

matrices CP share the same eigenbasis Hab, in the complex case and Sab in the real case. Only the

associated eigenvalues are distinct λaλb
2(λa−λb) for our LMS algorithm and λaλb

(λa−λb)2 for the standard batch

16



estimation. The covariance matrix CP associated to the real PAST algorithm shares the same eigenbasis,

Sab but with eigenvalues λb
2(λa−λb) .

Algorithm LMS algorithm batch estimation PAST algorithm

Eigenvalues λaλb
2(λa−λb)

λaλb
(λa−λb)2

λb
2(λa−λb)

3.3 Application to DOA Tracking

By continuity, the behavior of any differentiable function of the projection matrix Pt can be obtained.

In this section, the behavior of the DOAs estimated by the MUSIC algorithm [21] applied from Pt is

derived. Recall first the standard narrow-band array data model:

xt = E(Θ)st + nt (69)

where st and nt are mutually uncorrelated zero-mean circular Gaussian stationary processes. Matrix

E(Θ) is partitioned into column vectors as E(Θ)
def
= [e(θ1), . . . , e(θr)]. In addition, we assume a spatially

white noise: E(ntn
H
t ) = σ2In, and not fully correlated sources so that Rs = E(sts

H
t ) is full rank. The

MUSIC estimates of the DOAs θk, k = 1, . . . , r are determined as the r deepest minima of the localization

function θ:

eH(θ)(In −Pt)e(θ) = Tr((In −Pt)M(θ)). (70)

with M(θ)
def
= e(θ)eH(θ). Therefore, each DOA estimate θ̂k of θk based on an estimate P of Π is solution

of:

Tr((In −P)M′(θ̂k)) = 0 (71)

where M′(θ)
def
= dM

dθ . The first order perturbation of θ̂k is easily found by a Taylor expansion of (71).

This is

θ̂k = θk + Vec(Dk)
HVec(P−Π) + o(‖P−Π‖) with Dk =

M′(θk)

Tr{Π⊥M′′(θk)}
. (72)

If the derivative matrix Dk is non zero, a continuity theorem (e.g. theorem 6.2.a [19], p. 386) gives the

convergence in distribution of Θt = (θ1, . . . , θr)t, namely γ−
1
2 (Θt − Θ) →L N (0,Cθ) when γ → 0 and
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t→ +∞ with and asymptotic covariance matrix Cθ given component-wise by

(Cθ)i,j = Vec(Di)
HCPVec(Dj) = Tr

(
DiΠ

⊥DjΓ + DiΓDjΠ
⊥
)
. (73)

where last equation uses corollary 1. Next using TrΠ⊥M′′(θ) = 2e′H(θ)Π⊥e′(θ), M′(θ) = e(θ)e′H(θ) +

e′(θ)eH(θ) where e′(θ)
def
= de(θ)

dθ and Γ = σ2

2

∑
1≤a≤r

λa
λa−σ2 Πa from lemma 6, (Covθ)i,j reads:

(Covθ)i,j = γ(Cθ)i,j + o(γ) =
γ

2αiαj

r∑
a=1

λaσ
2

λa − σ2
Re[α∗i,j(e

H(θi)va)(v
H
a e(θj))] + o(γ) (74)

so that in particular

Varθi = γ(Cθ)i,i + o(γ) =
γ

2αi

r∑
a=1

λaσ
2

λa − σ2
|eH(θi)va|2 + o(γ) (75)

where αi and αi,j are given by

αi
def
= 2e′H(θi)Π

⊥e′(θi) and αi,j
def
= 2e′H(θi)Π

⊥e′(θj) (76)

Comparison to batch estimation. We note that the expression (74) is quite close to the expression

(3.12 [22]) of the covariance of the DOAs estimated by a batch MUSIC algorithm based on T independent

snapshots xt, as given by

(Covθ)i,j ∼
2

Tαiαj

r∑
a=1

λaσ
2

(λa − σ2)2
Re[α∗i,j(e

H(θi)va)(v
H
a e(θj))] (77)

where Re() denotes “the real part of”. To gain a better insight into the result (74), we now specialize to

a simple case and present some properties.

Consider the case of a single source impinging on any array. If we denote by σ21, the power of the

signal source s1, with steering vector normalized by n (|e(θ)|2 = n) (75) gives:

Varθ1 ∼ γ
nσ21
2α1

(1 +
1

nρ1
)

1

ρ1
(78)

that we can compare to the batch MUSIC estimation

Varθ1 ∼
1

T

1

α1
(1 +

1

nρ1
)

1

ρ1
(79)
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where ρ1 denotes the SNR
σ2
1
σ2 . For example the geometrical factor α1 is given for a linear uniform array

of n sensors by α1 = n(n2−1)
6 . The results (78) and (79) are directly induced by the expressions of the

asymptotic covariance (46) and (68) issued from the minimization of the same criterion. So the ratio

γλaλb
2(λa−λb)/

λaλb
T (λa−λb)2 = γT (λa−λb)

2 , obtained for the estimated projection matrices, gives the ratio
γTnσ2

1
2

for the variances of the estimated DOA by MUSIC algorithms because λa = nσ21 + σ2 and λb = σ2.

Regarding the speed of convergence of the adaptive MUSIC algorithm, we note that the product: step

size × eigenvalues of the derivative of the mean field = γ(λa − λb) = γnσ21 must be fixed to fix the

convergence speed. This suggests that the step size γ of the adaptive algorithm must be normalized by

nσ21 to keep a fixed convergence speed (see also section 4).

Equipowered sources. In the case of r equipowered and uncorrelated sources (with normalized

steering vectors), the r variances Varθi, i = 1, . . . , r are equal and given by (78) obtained for a single

source. The influence of other sources manifests itself only in the geometrical factors αi. In batch MUSIC

estimation, the variances cannot be reduced to the form (79).

For example, for r = 2 sources impinging on a linear uniform array, the increasing variance of the

DOA estimates when the sources get closer is due only to the geometrical factors αi. From the closed

form expressions of v1 and v2 given in [23], it is straightforward to see that the {αi} are a decreasing

function of the DOA separation |θ2− θ1| in the neighborhood of θ2− θ1 = 0 and tend to 0 when |θ2− θ1|

tends to 0.

From (75), we have after some algebraic manipulations:

Varθi ∼
γσ2

2αi
(|e(θi)|2 + σ2

r∑
a=1

|eH(θi)va|2

λa − σ2
) (80)

But by symmetry, since |eH(θi)va|2 does not depend on i, we can deduce from

(σ21

r∑
k=1

e(θk)e
H(θk))va = (λa − σ2)va, a = 1, . . . , r

that rσ21|eH(θi)va|2 = λa − σ2, a = 1, . . . , r. The relation (78) is readily deduced.

19



For high SNR, λa − σ2 ' λa for a = 1, . . . , r, so that (74) becomes

(Covθ)i,j '
γσ2

2αiαj
Re[α∗i,je

H(θi)e(θj)] (81)

and in batch MUSIC estimation, thanks to λaσ2

(λa−σ2)2
' σ2

λa−σ2 for a = 1, . . . , r, (77) gives

(Covθ)i,j '
2σ2

Tαiαj
Re[α∗i,j(R

−1
s )i,j ] (82)

In particular, the diagonal elements of (81) and (82) respectively read:

Varθi '
γσ2

2αi
|e(θi)|2 and Varθi '

2σ2

Tαi
(R−1s )i,i (83)

Thus, in striking difference to batch MUSIC, the variances in adaptive MUSIC are identical to those

predicted for a single source in a high SNR situation. Furthermore, the i and j DOA estimates are

uncorrelated in adaptive MUSIC [resp. in batch MUSIC] if and only if Re[α∗i,je
H(θi)e(θj)] = 0 [resp.

Re[α∗i,j(R
−1
s )i,j ] = 0]. This holds in particular for orthogonal steering vectors [resp. for uncorrelated

sources].

4 Simulations results

We now examine the accuracy of expressions (48) of the mean square error of the projection matrix and

of expressions (75) (78) of the misadjustment of the DOAs estimated by the MUSIC algorithm and ‘small

terms’ exhibited in section 2.6.

In the first experiment, we consider the case of the projection matrix Pt on the eigenspace spanned by

the first two eigenvectors of a 3×3 covariance matrix R derived from independent observations xt whose

covariance matrix is that of an AR(1) model of parameter a1. Fig. 1 shows the learning curve averaged

(over 100 independent runs) of the square error ‖Pt −Π ‖2Fro for a1 = 0.3 and γ = 0.005. It tends to

a value in perfect agreement with the theoretical values predicted by eq. (48). This figure also shows

the evolution of ‘small terms’ i.e. terms with scale o(γ) as predicted by eq. (47), (54), (55) and (56).

We plot the following quantities ‖E(Pt) − Π ‖2Fro, E‖WH
t Wt − Ir ‖2Fro, E‖P1,t ‖2Fro, E‖P2,t ‖2Fro and
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E‖P3,t ‖2Fro whose significance has been discussed in section 2.6. Fig. 2 shows the ratio of the estimated

mean square error E‖Pt−Π ‖2Fro to the theoretical asymptotic mean square error γTr(CP ) as a function

of γ. Our present asymptotic analysis is seen to be valid over a large range of γ (γ < 0.01) and the

domain of “stability” is γ < 0.065 for which this ratio stays near 1. Fig. 3 shows that the deviation from

orthonormality d2(γ)
def
= E‖WH

t Wt − Ir ‖2Fro is proportional to γ2 in the domain of validity of the mean

square error (48) because log10 d
2(γ) = log10 c + 2 log10 γ with c ' 1.210−2. Fig. 4 shows in the same

way, that the square norm of the bias ‖E(Pt)−Π ‖2Fro is proportional to γ2 in the domain of “stability”.

Furthermore, its contribution to the MSE E‖Pt −Π ‖2Fro proves that E‖Pt −Π ‖2Fro ∼ γTr(CP ) in the

domain of “stability”.

The third experiment presents the case of one source impinging on a linear uniform array of sensors.

After each subspace update, we apply the MUSIC algorithm. Fig. 5 shows the learning curve of the mean

square error of the DOA θ1 averaging 400 independent runs of independent observations xt. We used

the normalized step size γ = γ0
nσ2

1
with γ0 = 0.003, σ21 = 1, ρ1 = 10. We see that for n = 3 and n = 6, the

algorithms have about the same convergence speed. As for the mean square error, it agrees with (78)

which gives Varθ1 ∼ 3γσ2

n2 = 3γ0
n3ρ1

. The convergence time (T ' 1000 in Fig. 5) can be compared with the

observation time T necessary to get the same batch MSE as the sequential asymptotic MSE: eqs. (78)

and (79) give the observation time T = 2
γnσ2

1
= 2

γ0
' 667.

Finally, we present the case of 2 uncorrelated and equipowered sources impinging on a linear uniform

array of 4 sensors with ρi = 10, θi = θ0 ± δ. After each subspace update, we apply the MUSIC algo-

rithm. Fig. 6 shows the learning curve of the DOA θ1 averaging 400 independent runs of independent

observations xt for γ = 0.003, δ = 0.15(2π4 ) then δ = 0.30(2π4 ). The mean square error agrees with (78)

and the convergence speed is seen to decrease when the angle separation decreases. This agrees with the

eigenvalues of the derivative of the mean field (24): some of them are equal to λa − σ2, a = 1, 2. Since

λ2 tends to σ2 when the separation angle tends to zero, the eigenvalues λa − σ2 also tend to zero, which

implies slower convergence near the stationary point.
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5 Conclusion

We have analyzed the performance of an LMS-type algorithm for tracking dominant invariant subspaces.

Because this algorithm and other in its class do not converge to the dominant eigenvectors but only to

a rotated version, it is necessary to develop a particular methodology. The asymptotic covariance of the

estimated associated projection matrix is given in closed form and is further analyzed to provide insights

into the behavior of this LMS-type algorithm. In particular, it has been compared to the performance of

batch estimation which is derived from the same criterion and of Yang’s PAST algorithm. The accuracy

of the asymptotic analysis appears to be very good even for large step sizes as shown by numerical

experiments.
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Proofs

Proof of lemma 1. The field f in definition (9) being linear in its second argument, the mean field at

any point P is:

Ef(P,xtx
H
t ) = f(P, E(xtx

H
t )) = f(P,R) = P(2R−RP−PR) + (2R−RP−PR)P. (84)

Using the identities Π2 = Π and ΠR = RΠ = ΠRΠ and

Πvav
H
b = πavav

H
b vav

H
b Π = πbvav

H
b Rvav

H
b = λavav

H
b vav

H
b R = λbvav

H
b ,

a substitution P = Π + εvav
H
b in (84) yields after simplification,

Ef(Π + ε vav
H
b ,xtx

H
t ) = ε µabvav

H
b + O(ε2) (85)

where µab is defined in eq. (24). The lemma follows by using the symmetry µab = µba. Q.E.D.
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Proof of lemma 2. At point P = Π, using ΠΠ = Π, definition (9) of the field reduces to:

f(Π,xxH) = Π⊥xxHΠ + ΠxxHΠ⊥ (86)

which, by vectorization and using definition (28) also reads

Vec(f(Π,xxH)) = QVec(xxH ). (87)

For a circular complex Gaussian vector x, we have ([15], p. 336)

Cov(Vec(xxH)) = R⊗R. (88)

Combining eqs (87) and (88) establishes the lemma: Cov(Vec(f(Π,xxH))) = QCov(Vec(xxH))QH =

Q(R⊗R)QH . Q.E.D.

Proof of lemma 3. For any pair 1 ≤ a, b ≤ n, by simple substitution, we find

(R⊗R)Vec(vav
H
b ) = λaλbVec(vav

H
b ) (89)

QVec(vav
H
b ) = (πa − πb)2Vec(vav

H
b ) (90)

by using the properties Rvav
H
b R = λaλbvav

H
b and Πvav

H
b Π⊥ = πa(1 − πb)vav

H
b and the identity

πa(1 − πb) + πb(1 − πa) = πa + πb − 2πaπb = π2a + π2b − 2πaπb (since πa = π2a). The eigen-vectors of

Cov(Vec(f(Π,xxH))) follow by recalling that Q = QH and combining eqs (29), (89) and (90):

Cov(Vec(f(Π,xxH))) Vec(vav
H
b ) = νab Vec(vav

H
b ) (91)

where the scalars νab are defined in the lemma. Using νab = νba, symmetrization of eq. (91) finishes the

proof. Q.E.D.

Proof of lemma 4. The proof uses the more general lemma 5. Indeed, we have

∑
r<a,b≤n

θ2ab(P) = ‖Π⊥(P−Π)Π⊥‖2

and, by eq. (53), Π⊥(P−Π)Π⊥ = O(‖P−Π‖2). Thus θab(P) = O(‖P−Π‖2) for r < a, b ≤ n. Q.E.D.
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Proof of lemma 5. Denote P = VΛVH the eigenvalue decomposition of P and recall that Π̂ denotes

the orthogonal projector onto the range of P, thus Π̂ = VVH and we can write

P = VΛVH = VVH + V(Λ− Ir)V
H = Π̂ + V(Λ− Ir)V

H . (92)

The main difficulty is that this EVD is not differentiable at point P = Π because the eigenvalues of Π

are degenerate. However, results (see [17], theorem 5.4 p.111) are available for the perturbation of the

projector VVH and of the eigenvalues. This is

VVH = Π + Π(P−Π)Π⊥ + Π⊥(P−Π)Π +O(‖P−Π‖2) (93)

Λ = Ir +O(‖P−Π‖) (94)

Based on this, we derive two preliminary results: ‖Π⊥V‖2 = TrΠ⊥VVHΠ⊥ = TrΠ⊥Π̂Π⊥ = O(‖P −

Π‖2) where the last equality results from (93) and ΠΠ⊥ = 0. It follows that

Π⊥V = O(‖P−Π‖). (95)

Then, eq. (53) is established by the sequence:

P3
def
= Π⊥PΠ⊥ = Π⊥VΛVHΠ⊥ = O(‖P−Π‖2) (96)

where we have used (95) and (94). Then from eq. (93)

P2
def
= ΠPΠ⊥ + Π⊥PΠ = Π(P−Π)Π⊥ + Π⊥(P−Π)Π = Π̂−Π +O(‖P−Π‖2) (97)

which establishes eq. (52). Finally, property (51) is established as follows:

P2 −P = (VΛVH)2 −VΛVH = V(Λ2 −Λ)VH = V((Λ− Ir) + (Λ− Ir)
2)VH

= V(Λ− Ir)V
H +O(‖P−Π‖2) = P− Π̂ +O(‖P−Π‖2) (98)

= (Π + P1 + P2 + P3)− (Π + P2 +O(‖P−Π‖2)) +O(‖P−Π‖2)

= P1 +O(‖P−Π‖2). (99)

by using eqs (92), (50), (97) and eq. (96). This completes the proof of the lemma.
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Figure 1: Learning curves of the mean square error E‖Pt − Π ‖2Fro (1), deviation from orthogonality

E‖WH
t Wt − Ir ‖2Fro (2), square of bias ‖E(Pt) −Π ‖2Fro (3) and variances E‖P1,t ‖2Fro (4), E‖P2,t ‖2Fro

(5) and E‖P3,t ‖2Fro (6), averaging 100 independent runs compared to γTr(CP ) (7) for independent

observations xt and a1 = 0.3 and γ = 0.005.
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Figure 2: Ratio of the estimated mean square error E‖Pt−Π ‖2Fro by averaging 400 independent runs to

the theoretical asymptotic mean square error γTr(CP ) as a function of γ for independent observations

xt and a1 = 0.3.
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Figure 3: Deviation from orthogonality d2(γ)
def
= E‖WH

t Wt − Ir ‖2Fro at “convergence” estimated by

averaging 100 independent runs as a function of γ in log-log scales.
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Figure 4: Mean square error E‖Pt−Π ‖2Fro (1), square of bias ‖E(Pt)−Π ‖2Fro (2) estimated by averaging

100 independent runs and theoretical asymptotic mean square error γTr(CP ) (0) as a function of γ in

log-log scales.
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Figure 5: Learning curves of the mean square error of the DOA θ1 for one source estimated by MUSIC

algorithm where γ = γ0
nσ2

1
with γ0 = 0.003, σ21 = 1, ρ1 = 10 for n = 3 and n = 6 compared to the

theoretical asymptotic mean square error.
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Figure 6: Learning curves of the mean square error of the DOA θ1 for two equipowered sources (θi =

θ0 ± δ) estimated by MUSIC algorithm where γ = 0.003, σ21 = 1, ρi = 10 for δ = 0.15beamwidth and

δ = 0.30beamwidth compared to the theoretical asymptotic mean square error.
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