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Asymptotic Distributions associated to Oja’s Learning

Equation for Neural Networks

Jean-Pierre Delmas ∗ Jean-François Cardoso †

Abstract

In this paper, we perform a complete asymptotic performance analysis of the stochastic approxima-

tion algorithm (denoted Subspace Network Learning algorithm) derived from Oja’s learning equation,

in the case where the learning rate is constant and a large number of patterns is available. This

algorithm drives the connection weight matrix W to an orthonormal basis of a dominant invariant

subspace of a covariance matrix. Our approach consists in associating to this algorithm a second

stochastic approximation algorithm that governs the evolution of WWT to the projection matrix onto

this dominant invariant subspace. Then, using a general result of Gaussian approximation theory, we

derive the asymptotic distribution of the estimated projection matrix. Closed form expressions of the

asymptotic covariance of the projection matrix estimated by the SNL algorithm, and by the smoothed

SNL algorithm that we introduce, are given in case of independent or correlated learning patterns

and are further analyzed. It is found that the structures of these asymptotic covariance matrices are

similar to those describing batch estimation techniques. The accuracy or our asymptotic analysis is

checked by numerical simulations and it is found to be valid not only for a ”small” learning rate but

in a very large domain. Finally, improvements brought by our smoothed SNL algorithm are shown,

such as the learning speed/misadjustment tradeoff and the deviation from orthonormality.
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1 Introduction

Over the past decade, adaptive estimation of subspaces of covariance matrices has been applied suc-

cessfully in different fields of signal processing, such as high resolution spectral analysis and source

localization, see [1] and the references therein, and more recently in the subspace approach used in blind

identification of multichannel finite impulse response filters [2]. At the same time, and independently

many neural network realizations have been proposed for the statistical technique of principal component

analysis in data compression and feature extraction and for optimal fitting in the total least squares sense

[3]. Among these realizations, several stochastic approximation algorithms have been proposed by many

authors of the neural network community.

To understand the performance of these neural network unsupervised learning algorithms, it is of

fundamental importance to investigate how they behave in the case where a large number of training

samples is available. It was rigorously established for constant [4] and for decreasing [5] [3] learning rates

that the behaviour of these algorithms is intimately related to the properties of an ordinary differential

equation (ODE) which is obtained by suitably averaging over the training patterns. More precisely, if

Θk, xk and γk denote, respectively, the vector of network weights to be learned, the training patterns

and the learning rate at time k, these stochastic approximation algorithms can be written in the form

Θk+1 = Θk + γkf(Θk,xk). (1.1)

The key tool in the analysis of the sequence Θk is the so-called interpolated process (Θt), t ∈ R+, usually

defined by

Θ(t) =
tk+1 − t
γk+1

Θk +
t− tk
γk+1

Θk+1, tk ≤ t < tk+1 (1.2)

where

t0 = 0, tk = γ1 + . . .+ γk.

If γk tends to zero at a suitable rate, the interpolated process of Θk eventually follows a trajectory which

is a solution of the associated ODE with probability one [6], [7]. As such, the study of the local or global
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stability of the equilibria of the ODE is of great importance [3]. If the sequence of learning rates is a small

constant γ, the estimates Θk usually fail to stabilize, and the analysis of the interpolated processes cannot

be carried out for fixed γ. Nevertheless, interesting asymptotic behavior may be obtained by letting γ

tend to 0 because for γ “small enough,” these algorithms will oscillate around the theoretical limit of the

decreasing learning rate scheme. In particular the corresponding interpolated processes (1.2) converge

weakly to the solution of the associated ODE [8] when γ tends to 0. In practice, as γ is necessarily

small, the stochastic approximation algorithm (1.1) follows its associated ODE from the start in a first

approximation. This transient phase is followed by an asymptotic phase where the random aspect of the

fluctuations becomes prominent with respect to the evolution of the ODE. This second phase constitutes

a second approximation. Naturally, if the learning rate γ is chosen larger [resp. smaller], the learning

speed increases [resp. decreases], but the fluctuations of the asymptotic phase increase [resp. decrease].

So a tradeoff naturally arises between the learning speed and the variances of the estimated network

weights, often called misadjustment. In stationary random input environments, it is desirable to keep γ

large at the beginning, to achieve fast learning, and subsequently to decrease its value in order to reduce

the variance of the estimates Θk. So, it is of great importance to specify these variances. A good tool

for evaluating these variances is a general Gaussian approximation result [9] which gives the limiting

distribution of the estimates Θk when k and γ tend respectively to +∞ and 0. The purpose of this paper

is to determine the asymptotic distribution of the estimates by using the approach developed in [10],

[11] [12] and [13], for two algorithms: the so-called SNL stochastic approximation algorithm [3], derived

from Oja’s learning equation, and the smoothed SNL algorithm that we introduce. However, since these

stochastic approximation algorithms converge to any orthonormal basis of the considered eigenspace of

the covariance matrix of the training patterns, and not to the eigenvectors themselves, we need to develop

a special methodology, obtained by considering the stochastic approximation algorithm governed by the

associated projection matrix.

This paper is organized as follows. In Section 2, we give an overview of Oja’s learning equation and
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of its associated stochastic approximation algorithm. Connections to very similar algorithms are enlight-

ened and a modification of this stochastic approximation algorithm, denoted smoothed SNL algorithm, is

introduced to improve the learning speed versus misadjustment tradeoff. In Section 3, after presenting a

brief review of a general Gaussian approximation result, we consider the stochastic approximation algo-

rithm that governs the associated projection matrix. This enables us to derive a closed form expression

of the covariance of the limiting distribution of the projection matrix estimator computed by the SNL

and by the smoothed SNL algorithms. These expressions are further analysed and compared to those

obtained in batch estimation, and some by-products such as mean square errors are derived. The case of

time-correlated training patterns is studied in Section 4. Finally we present in Section 5 some simulations

with two purposes. On the one hand, we examine the accuracy of the expressions of the mean square

error of the subspace projection matrix estimators and investigate the domain of learning rate for which

our asymptotic approach is valid. On the other hand, we examine performance criteria for which no an-

alytic results were obtained in the preceding sections. We thus show (by simulation) that the smoothed

SNL algorithm is better than the SNL algorithm as concerns the learning speed/misadjusment tradeoff.

Furthermore, it is showed that the deviation from orthonormality is proportional to γ2 and to γ4 for the

SNL and the smoothed SNL algorithms, respectively.

The following notations are used in the paper. Matrices and vectors are represented by bold upper

case and bold lower case characters, respectively. Vectors are by default in column orientation. T

stands transpose and I is the identity matrix. E(.),Cov(.),Tr(.) and ‖ . ‖Fro denote the expectation, the

covariance, the trace operator and the Frobenius matrix norm, respectively. Vec(.) is the “vectorization”

operator that turns a matrix into a vector consisting of the columns of the matrix stacked one below

another and Vec−1(.) is the inverse of the “vectorization” operator that turns an n2-vector into an n× n

matrix. They are used in conjunction with the Kronecker product A ⊗ B as the block matrix whose

(i, j) block element is ai,jB. For a projection matrix P, P⊥ denotes the complementary projector I−P.

Diag(a1, . . . , an) is a diagonal matrix consisting of the diagonal elements ai. The symbol 1A denotes
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the indicator function of the condition A, which assumes the value 1 if the condition is satisfied and 0

otherwise.

2 The SNL and smoothed SNL algorithms

2.1 The algorithm associated to Oja’s learning equation

For a given n × n covariance matrix Rx = E(xxT ) of a Gaussian distributed, zero mean real random

training pattern vector x, let λ1 ≥ . . . ≥ λr > λr+1 ≥ . . . ≥ λn denote the eigenvalues of Rx and

v1, . . . ,vn the corresponding eigenvectors. We consider the recursive updating of an (approximately)

orthonormal basis Wk of the r-dimensional dominant invariant subspace of Rx. In neural networks,

the integer r stands for the number of neurons, n the number of inputs and Wk the connection weight

matrix.

The algorithm that we consider was introduced independently by Williams [14], Baldi [15] and Oja

[16]. It was reformulated in [3] and [17] as a stochastic approximation counterpart of the “simultaneous

iteration method” of numerical analysis [18]. This stochastic approximation algorithm reads:

W′
k+1 = Wk + γkRkWk (2.3)

Wk+1 = W′
k+1S

−1
k+1 (2.4)

in which Wk = (wk,1, . . . ,wk,r) ∈ Rn×r is a matrix whose columns wk,i ∈ Rn are orthonormal and

approximate r dominant eigenvectors of Rx. We suppose that the learning rate sequence γk satisfies the

conditions:

∞∑
k=1

γk = +∞ and lim
k→+∞

γk = 0.

The matrix Rk in (2.3) is an estimate of the covariance matrix Rx. In (2.4), Sk+1 is a matrix depending

on W′
k+1 which orthonormalizes the columns of W′

k+1. Depending on the form of Sk+1 and on the

choice of the estimate of Rk, variants of the basic stochastic algorithm are obtained. In the algorithm

that we consider, the instantaneous estimate xkx
T
k is used for Rk and the matrix Sk+1 orthonormalizes
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the columns of W′
k+1 in (2.4) in a symmetrical way. Since Wk has orthonormal columns, for small γk the

columns of W′
k+1 in (2.3) will be linearly independent, although not orthonormal. Then W′T

k+1W
′
k+1 is

positive definite, and Wk+1 will have orthonormal columns if Sk+1 = (W′T
k+1W

′
k+1)1/2. When, assuming

γk is small, S−1
k+1 is expanded and when the term O(γ2

k) is neglected from its expansion, the algorithm

reads:

Wk+1 = Wk + γk[In −WkW
T
k ]xkx

T
kWk. (2.5)

The ODE associated to (2.5), called Oja’s learning equation, enables us to study the convergence of the

stochastic approximation algorithm (2.5). It reads:

dWt

dt
= [In −WtW

T
t ]RxWt. (2.6)

If r = 1, in which case Wt is a vector, (2.5) gives the simplified neuron model of Oja [19] and ±v1 is the

only global asymptotically stable solution of (2.6). Furthermore, in [17], it is shown that if the algorithm

(2.5) is used with uniformly bounded inputs xk, Wk remains inside some bounded subset. Thus, applying

Kushner’s ODE method [7], Wk converges almost surely either to −v1 or +v1 under these conditions.

For r > 1, Oja conjectured in [17] similar properties: namely, Wk tends to an orthonormal basis of the

eigenspace generated by v1, . . . ,vr. Following Oja’s work, there has been considerable interest generated

in understanding equation (2.6). For exemple, Baldi and Hornik [20] found the general form of equilibria

W = [vi1 , . . . ,vir ]Q where 1 ≤ i1 < . . . < ir ≤ n and Q is an orthogonal r × r matrix. Krogh and Hertz

[21] examined the local properties of these equilibria and show that only W = [v1, . . . ,vr]Q are locally

stable. More recently it is proved in [22] that if Rx is positive definite and if the initial condition W0 is

of rank r, the solution of (2.6) converges to an orthonormal basis of the r-dominant eigenspace of Rx.

Although this last result is a global asymptotic analysis of (2.6), the question of the theoretical study of

the stochastic approximation algorithm (2.5) appears to be extremely challenging.
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2.2 Connections with other algorithms

Written in the form Wk+1 = Wk + γk[xkx
T
k −WkW

T
k xkx

T
k ]Wk, the SNL algorithm is quite similar to

the algorithm presented independently by Russo [23] and Yang [24] and further analyzed in [25]. This

latter algorithm, which we will call the Yang algorithm, is a stochastic gradient algorithm based on the

unconstrained minimization of E‖xk −WWTxk ‖2Fro, and it reads:

Wk+1 = Wk + γk[2xkx
T
k − xkx

T
kWkW

T
k −WkW

T
k xkx

T
k ]Wk, (2.7)

in which the term between brackets is the symmetrization of the term xkx
T
k −WkW

T
k xkx

T
k of the SNL

algorithm. In [24], it is shown that the Yang algorithm globally converges, almost surely, to the set of the

orthonormal bases of the r-dominant invariant subspace of Rx. Based on this observation, the matrix

WT
k Wk that appears in (2.7) can be approximated by Ir. We note in this case that the Yang algorithm

gives the SNL algorithm. Connected to the SNL algorithm, Oja et al [26] proposed an algorithm denoted

Weighted Subspace Algorithm (WSA) similar to the SNL algorithm (2.5) except for the diagonal matrix

∆
def
= Diag(β1, . . . , βr). It reads:

Wk+1 = Wk + γk[In −Wk∆
−1WT

k ]xkx
T
kWk∆. (2.8)

If βi = 1 for all i, this algorithm reduces to the SNL algorithm. However, if all of them are chosen

different and positive: 0 < β1 < . . . < βr, then it has been shown by Oja et al [27] that the eigenvectors

±v1, . . . ,±vr are the global asymptotically stable solutions of the ODE associated to (2.8). Thus Oja et

al [27] conjectured that wk,1, . . . ,wk,r converge almost surely to the eigenvectors v1, . . . ,vr.

To improve the learning speed and misadjustment tradeoff, we propose in this paper to use the

following recursive estimate for Rk:

Rk+1 = Rk + γk(xkx
T
k −Rk), (2.9)

so that the modified SNL algorithm, which we call the smoothed SNL algorithm, reads:

Rk+1 = Rk + αγk(xkx
T
k −Rk), (2.10)

Wk+1 = Wk + γk[In −WkW
T
k ]RkWk. (2.11)
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α is introduced in order to normalize both algorithms because if the learning rate of eq.(2.10) has no

dimension, the learning rate of eq.(2.11) must have the dimension of the inverse of the power of xk.

Furthermore α can take into account a better tradeoff between the misadjustments and the learning

speed, as we will see in section 5. We note that such a recursive estimator was introduced by Owsley [28]

in his Orthogonal Iteration algorithm.

3 Asymptotic performance analysis

A difficulty arises in the study of the behavior of Wk because the set of orthonormal bases of the r-

dominant subspace forms a continuum of attractors: the column vectors of Wk do not in general tend

to the eigenvectors v1, . . . ,vr, and we have no proof of convergence of Wk to a particular orthonormal

basis of their span. Thus, considering the asymptotic distribution of Wk is meaningless. To solve this

problem, in the same way as Williams [14] did when he studied the stability of Pt
def
= WtW

T
t in the

dynamics induced by Oja’s learning equation (2.6), viz

dPt

dt
= (In −Pt)RxPt + PtRx(In −Pt), (3.1)

we consider the trajectory of the matrix Pk
def
= WkW

T
k whose dynamics are governed by the stochastic

equation

Pk+1 = Pk + γkf(Pk,xkx
T
k ) + γ2

kh(Pk,xkx
T
k ) (3.2)

with

f(P,M)
def
= (In −P)MP + PM(In −P) (3.3)

h(P,M)
def
= (In −P)MPM(In −P). (3.4)

A remarkable feature of (3.2) is that the field f and the complementary term h depend only on Pk

and not on Wk. This fortunate circumstance makes it possible to study the evolution of Pk without

determining the evolution of the underlying matrix Wk. The characteristics of Pk are indeed the most
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interesting since they completely characterize the estimated subspace. Since (3.1) has a unique global

asymptotically stable point P∗
def
= [v1, . . . ,vr][v1, . . . ,vr]

T [22], (3.2) converges almost surely to P∗ if Pk

remains inside a bounded subset. To evaluate the asymptotic distributions of the subspace projection

matrix estimators given by the previous algorithms, we shall use a general Gaussian approximation result

([9, theorem 2, p. 108]) which we now recall for convenience of the reader.

3.1 A short review of a general Gaussian approximation result

Consider a constant learning rate recursive stochastic algorithm (we write Θγ
k for the sequence of estimates

to emphasize the dependence on γ):

Θγ
k+1 = Θγ

k + γf(Θγ
k ,xk) + γ2hk(Θ

γ
k ,xk) (3.5)

with xk = g(ξk), where ξk is a Markov chain independent of Θγ
k and with hk(Θ,x) a uniformly bounded

function for (Θ,x) in some fixed compact set. Suppose that the parameter vector Θγ
k converges al-

most surely to the unique asymptotically stable point Θ∗ in the corresponding decreasing learning rate

algorithm. Consider the continuous Lyapunov equation:

DCΘ + CΘDT + G = O (3.6)

and where D and G are respectively the derivative of the mean field and the covariance of the field of

the algorithm (3.5):

D
def
= E[

∂f

∂Θ
(Θ,xk)]Θ=Θ∗ (3.7)

G
def
=

∞∑
k=−∞

Cov[f(Θ∗,xk), f(Θ∗,x0)] (3.8)

If all the eigenvalues of the derivative of the mean field D have strictly negative real parts, then, in a

stationary situation, when γ → 0 and k →∞, we have:

1
√
γ

(Θγ
k −Θ∗)

L→ N (0,CΘ) (3.9)

where CΘ is the unique symmetric solution of the Lyapunov equation (3.6).
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3.2 Asymptotic distributions of projection matrix estimators

3.2.1 Local characterization of the field

According to the previous section and following the methodology explained in [13], one needs to char-

acterize two local properties of the field f(P,xxT ): the mean value of its derivative, and its covariance,

both evaluated at the point P = P∗. To proceed, it will be convenient to define the following orthonor-

mal basis for the n × n symmetric matrices (vi is defined in section 2.1 and the inner product under

consideration is (A,B)
def
= TrATB):

Sij =


viv

T
j i = j

viv
T
j +vjv

T
i√

2
i < j.

(3.10)

With this definition, a first order approximation in the neighborhood of P∗ of the mean field, and the

eigenstructure of the covariance matrix of the field, are given by the following lemma:

Lemma 1 For 1 ≤ i ≤ j ≤ n, in case of independent learning patterns,

Ef(P∗ + ε Sij , xkx
T
k ) = ε µij Sij + O(ε2), (3.11)

Cov(Vec(f(P∗,xkx
T
k ))) Vec(Sij) = νijVec(Sij), (3.12)

with, respectively,

µij
def
= λi(1i>r − 1i≤r) + λj(1j>r − 1j≤r) and νij

def
= 2(1i≤r − 1j≤r)

2λiλj . (3.13)

3.2.2 Real parameterization.

To apply the Benveniste results recalled in section 3.1, we must check that the required conditions on

f and h hold. Since ‖h(Pk,xkx
T
k )‖ ≤ 4‖In − Pk‖2‖Pk‖‖xk‖4, the required condition A3 (ii) for the

complementary term mentioned in [9, p. 216] is fulfilled. As for the field f , we note from (3.13) that

some eigenvalues of the derivative of the mean field are positive real, whereas the Benveniste results

require strictly negative real parts for these eigenvalues. To adapt these results to our needs, the n × n
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rank-r symmetric matrix P should be parameterized by a vector Θ of real parameters. Counting degrees

of freedom, for example from the singular value decomposition, shows that the set of n × n rank-r

symmetric matrices is a r
2(2n − r + 1)-dimensional manifold. Let us now consider the parameterization

of Pk in a neighborhood of P∗. If {θij(P)|1 ≤ i ≤ j ≤ n} are the coordinates of P−P∗ in the basis Si,j ,

then,

θij(P) = Tr{Sij(P−P∗)} for 1 ≤ i ≤ j ≤ n, (3.14)

P = P∗ +
∑

1≤i≤j≤n
θij(P) Sij . (3.15)

The relevance of these parameters is shown by the following lemma:

Lemma 2 If P is an n× n rank-r symmetric matrix, then

P = P∗ +
∑

(i,j)∈Ps

θij(P) Sij + O(‖P−P∗‖2) (3.16)

where Ps is the complement of {(i, j) | r < i ≤ j ≤ n}, i.e. Ps
def
= {(i, j) | 1 ≤ i ≤ j ≤ n and i ≤ r}.

There are r
2(2n − r + 1) pairs in Ps and this is exactly the dimension of the manifold of n × n rank-r

symmetric matrices. This point, together with eq. (3.16), shows that the matrix set {Sij | (i, j) ∈ Ps}

is in fact an orthonormal basis of the tangent plane to this manifold at point P∗. It follows that, in a

neighborhood of P∗, the n×n rank-r symmetric matrices are uniquely determined by the r
2(2n−r+1)×1

vector Θ(P) defined by: Θ(P)
def
= STVec(P − P∗), where S denotes the following n2 × r

2(2n − r + 1)

matrix:

S def
= [. . . ,Vec(Sij), . . .], (i, j) ∈ Ps. (3.17)

We note that the particular ordering of the pairs in the set Ps is irrelevant if this ordering is preserved

for all the forthcoming diagonal matrices indiced by (i, j). If P(Θ) denotes the unique (for ‖Θ‖ small

enough) n × n rank-r symmetric matrix such that STVec(P(Θ) − P∗) = Θ, the following one-to-one

mapping is exhibited for small enough ‖Θt‖:

Vec(P(Θk)) = Vec(P∗) + SΘk +O(‖Θk‖2)↔ Θk = STVec(Pk −P∗) (3.18)
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3.2.3 Solution of the Lyapunov equation

We are now in position to solve the Lyapunov equation in the new parameter Θ defined in the previous

section. The stochastic equation governing the evolution of this vector parameter is obtained by applying

the transformation Pk → Θk = STVec(Pk −P∗) to the original equation (3.2), thereby giving

Θk+1 = Θk + γkφ(Θk,xk) + γ2
kψ(Θk,xk) (3.19)

where the functions φ and ψ turn out to be

φ(Θ,x)
def
= STVec(f(P(Θ),xxT )), (3.20)

ψ(Θ,x)
def
= STVec(h(P(Θ),xxT )), (3.21)

where, like h, ψ verifies the condition A3(ii) of [9, p. 216]. We need to evaluate the derivative matrix D

of Eφ(Θ,x) at point Θ = 0, and since we consider only the case of independent learning patterns, the

covariance matrix Γ of φ(0,x). With these notations, the results of section 3.2.1 are recycled as follows:

Eφ(Θ,x) = STVecEf(P(Θ),xxT ) = STVecEf
(
P∗ +

∑
θijSij +O(‖Θ‖2), xxT

)
= STVec

(∑
θijµijSij +O(‖Θ‖2)

)
= ST (S∆µΘ +O(‖Θ‖2) = ∆µΘ +O(‖Θ‖2),(3.22)

where the above summations are over (i, j) ∈ Ps. The first equality uses definition (3.20) and the linearity

of the Vec operation; the second equality stems from property (3.18) of the reparameterization; the third

equality uses lemma 1 and the differentiability of f ; the fourth equality is induced by definitions (3.13)

and (3.23). The final equality is due to the orthonormality of the basis {Sij}, and enables us to conclude

that

D
def
=

∂Eφ(Θ,x)

∂Θ

∣∣∣∣
Θ=0

= ∆µ, with ∆µ
def
= Diag(. . . , µij , . . .) (i, j) ∈ Ps and now µij < 0 (i, j) ∈ Ps.

(3.23)

We now proceed with evaluating the covariance of the field at Θ = 0:

Cov(φ(0,x)) = Cov(STVec(f(P∗,xxT ))) = STCov(Vec(f(P∗,xxT )))S = STS∆ν = ∆ν . (3.24)
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The first equality holds by definition of φ; the second equality is due to the bilinearity of the Cov operator;

the third equality is obtained by noting that (3.12) also reads Cov(Vec(f(P∗,xxT )))S = S∆ν , with ∆ν

defined by (3.25). The final equality is due to the orthonormality of the basis {Sij}, and it enables us to

conclude that for independent learning patterns:

G
def
= Cov(φ(0,x)) = ∆ν , with ∆ν

def
= Diag(. . . , νij , . . .) (i, j) ∈ Ps. (3.25)

Thus both G and D are diagonal matrices. In this case, the Lyapunov equation (3.6) reduces to r
2(2n−

r + 1) uncoupled scalar equations. Thus the solution is clearly

CΘ = −1

2
∆ν∆

−1
µ . (3.26)

According to (3.9), γ−1/2Θk →L N (0,−1
2∆ν∆

−1
µ ). By eq. (3.18), we have Vec(Pk) = Vec(P∗) + SΘk +

O(‖Θk‖2). We conclude that for γ → 0 and k → +∞,

1
√
γ

(Vec(Pk)−Vec(P∗))→L N (0,CP ) with CP = SCΘST = −1

2
S∆ν∆

−1
µ ST . (3.27)

The expression (3.27) of the covariance matrix CP in the asymptotic distribution of Vec(Pk) may be

written as an explicit sum:

CP =
∑

(i,j)∈Ps

νij
−2µij

Vec(Sij)Vec(Sij)
T . (3.28)

From the definitions (3.13) of µij and νij , and noting that νij = 0 for i ≤ j ≤ r and Vec(viv
T
j ) = vj ⊗vi,

the expression (3.28) is finally rewritten as

CP =
∑

1≤i≤r<j≤n

λiλj
2(λi − λj)

(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)
T (3.29)

This expression coincides with the expression of the covariance matrix CP of the Yang algorithm (2.7)

given in [13], despite some differences in the expression of µij and νij . In fact the “symmetrization” of

the SNL algorithm implies that the terms
νij
µij

remain invariant for (i, j) ∈ Ps. Furthermore, we note that

the expression (3.29) is the limit when βi tends to 1 for all i of the expression of the covariance matrix

CP of the WSA algorithm given in [12].
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3.3 Study of the smoothed SNL algorithm

To study the smoothed SNL algorithm, we note that eqs.(2.10) and (2.11) take globally the form (3.5)

if we set Θk
def
=

 Vec(Rk)

Vec(Wk)

. Then, if we consider the trajectory of the associated matrix Rk, as

Pk remains symmetric (when the initial condition R0 is symmetric), it is natural to use the parameter

Θk =

 Θ1,k

Θ2,k

, i.e., the respective coordinates of Rk in the basis Sij , 1 ≤ i ≤ j ≤ n and of Pk in the

basis Sij , (i, j) ∈ Ps. So, Θ1,k = S ′TVec(Rk), in which

S ′ def
= [. . . ,Vec(Sij), . . .], (i, j) ∈ Ps′ , with Ps′

def
= {(i, j)|1 ≤ i ≤ j ≤ n},

and Θ2,k = STVec(Pk − P∗). As such, Θk follows a stochastic equation of the form (3.19). In this

equation φ(Θk,xk)
def
=

 φ1(Θk,xk)

φ2(Θk,xk)

 and ψ(Θk,xk)
def
=

 0

ψ2(Θk,xk)

, where

φ1(Θ,x)
def
= α(S ′TVec(xxT )−Θ1), (3.30)

φ2(Θ,x)
def
= STVec

(
f(P(Θ2),Vec−1(S ′Θ1))

)
, (3.31)

ψ(Θ,x)
def
= STVec

(
h(P(Θ2),Vec−1(S ′Θ1))

)
. (3.32)

Note firstly that Rγ
k converges almost surely to R∗ = Rx =

∑
1≤i≤n λiSii when γ → 0 and k →∞. So Θ1,k

converges almost surely to Θ1,∗ = {θ1,ij,∗}(ij)∈Ps′
with θ1,ii,∗ = λi for 1 ≤ i ≤ n and θ1,ij,∗ = 0 elsewhere.

This type of coupled algorithm introduces a form of relaxation: the solution of the first equation is fed

directly back into the second. According to section 3.1, we must check that the required condition on φ

and ψ holds and we need to characterize the mean value of the derivative and the covariance of the field

φ(Θ,xk). Like h, ψ verifies the condition mentioned in [9, A3 (ii), p. 216]. To evaluate the derivative

matrix D of Eφ(Θ,xk) at point Θ∗ =

 Θ1,∗

0

, we need the following lemma:

Lemma 3 For 1 ≤ i ≤ j ≤ n,

f(P∗,R∗ + ε Sij) = ε κij Sij (3.33)
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with

κij
def
= 1i≤r≤j + 1j≤r≤i. (3.34)

So, in the neighborhood of Θ∗, we have

Eφ1(Θ,x) = α(Θ1,∗ −Θ1) (3.35)

and

Eφ2(Θ,x) = STVec

f(P∗ +
∑

(i,j)∈Ps

θ2,ijSij +O(‖Θ2‖2),R∗ +
∑

(i,j)∈Ps′

(θ1,ij − θ1,ij,∗)Sij)


= STVec

 ∑
(i,j)∈Ps

θ2,ijµijSij +O(‖Θ2‖2) +
∑

(i,j)∈Ps′

(θ1,ij − θ1,ij,∗)κijSij


= ST (S∆µΘ2 +O(‖Θ2‖2) + S ′∆′κ(Θ1 −Θ1,∗))

= ∆µΘ2 +O(‖Θ2‖2) +
[
Ir(2n−r+1)/2,0

]
∆′κ(Θ1 −Θ1,∗), (3.36)

where the second equality uses the differentiability of f with lemmas 2 and 3, the third equality uses the

diagonal matrix ∆′κ
def
= Diag(. . . , κij , . . .) for (i, j) ∈ Ps′ , and the last equality is due to the orthonormality

of the basis Sij . Eq. (3.36) enables us to conclude that:

D
def
=

∂Eφ(Θ,x)

∂Θ

∣∣∣∣
Θ=Θ∗

=

 −αIn(n−1)/2 0

∆κ 0 ∆µ

 (3.37)

with ∆κ
def
= Diag(. . . , κij , . . .) for (i, j) ∈ Ps. We note that like ∆µ, the eigenvalues of D are real and

strictly negative. We proceed with evaluating the covariance of φ(Θ,x) at Θ = Θ∗:

G
def
= Covφ(Θ∗,x) =

 Covφ1(Θ∗,x) 0

0 0

 (3.38)

with

Covφ1(Θ∗,x) = α2Cov(S ′TVec(xxT )−Θ1,∗) = α2S ′TCov(Vec(xxT ))S ′

= α2S ′T (Rx ⊗Rx)(In2 + K)S ′

= 2α2S ′TS ′∆ξ = 2α2∆ξ. (3.39)
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The third equality uses (A.6), and the fourth equality stems from (A.7), (A.10) and the definition

∆ξ
def
= Diag(. . . , λiλj , . . .) for (i, j) ∈ Ps′ . Thus,

G
def
= Covφ(Θ∗,x) =

 2α2∆ξ 0

0 0

 . (3.40)

The Lyapunov equation (3.6) then has a block triangular form, the unique symmetric solution of which

is:

CΘ =

 CΘ1 CT
Θ1,Θ2

CΘ1,Θ2 CΘ2

 , (3.41)

with

CΘ2 = −α(αIn(2n−r+1)/2 −∆µ)−1∆2
κ∆
−1
µ ∆ξ. (3.42)

Then, as in section 3.2.3, we deduce CP = SCΘ2ST . From the definition of µij , κij and ξij and noting

that κij = 0 for i ≤ j ≤ r, the matrix CP is finally written in a similar form to (3.29), except for the

term αij
def
= α

α+λi−λj < 1, yielding

CP =
∑

1≤i≤r<j≤n

αijλiλj
2(λi − λj)

(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)
T . (3.43)

3.4 Analysis of the results

Firstly, the expressions (3.29) and (3.43) can be compared to the covariances of the asymptotic distri-

butions obtained in batch estimation. If Pk =
∑

1≤i≤r wk,iw
T
k,i denotes the batch estimated orthogonal

projection matrix, we have from [13]

√
k (Vec(Pk)−Vec(P∗))

L→ N (O,CP ) (3.44)

when k tends to +∞ with

CP =
∑

1≤i≤r<j≤n

λiλj
(λi − λj)2

(vi ⊗ vj + vj ⊗ vi)(vi ⊗ vj + vj ⊗ vi)
T (3.45)

which is also in close similarity with (3.29) and (3.43).

17



Secondly, a simple global measure of performance is the MSE between Pk and P∗. Indeed, since the

projection matrix Pk characterizes the estimated subspace, E‖Pk −P∗ ‖2Fro is a measure of the distance

between the estimated and the desired principal component subspaces.

To give a MSE expression, we assume, as is customary, that the first and second asymptotic moments

of Pk are those of its asymptotic distribution. This implies:

‖E(Pk −P∗) ‖2Fro = o(γ), Cov(Vec(Pk)) = γCP + o(γ). (3.46)

In particular, the MSE between Pk and P∗ is given by the trace of the covariance matrix of the asymptotic

distribution of Pk. Since trace is invariant under an orthonormal change of basis with {Vec(Sij)|1 ≤ i ≤

j ≤ n} being an orthonormal basis, we obtain from eq. (3.28) and (3.43) that

E‖Pk −P∗ ‖2Fro = γ
∑

1≤i≤r<j≤n

αijλiλj
λi − λj

+ o(γ) (3.47)

where αij < 1 for the smoothed SNL algorithm and αij
def
= 1 for the SNL algorithm.

Finally, following the methodology explained in [13], a finer picture of the MSE of CP can be derived

from the regular structure (3.29) and (3.43) of the covariance matrix CP by decomposing the error

Pk − P∗ into three orthogonal terms. Furthermore, we note that as for the Yang algorithm, our first-

order analysis does not provide the order of deviation from orthonormality. We show in section 5 that

this MSE of orthonormality is, to a first-order approximation, proportional to γ2 for the SNL algorithm,

and to γ4 for the smoothed SNL algorithm.

4 Extension to correlated training patterns

This section gives explicit solutions for the case of real correlated training patterns for the SNL algorithm;

the extension to the modified SNL algorithm is straightforword. The covariance of the field has a more

involved expression: from (A.5) we have

Cov[Vec(f(P∗,xkx
T
k )),Vec(f(P∗,x0x

T
0 ))] = QCov(Vec(xkx

T
k ),Vec(x0x

T
0 ))Q (4.1)
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According to the following property ([29] p. 57) for Gaussian real signals

Cov(Vec(xkx
T
k ),Vec(x0x

T
0 )) = Rk,0 ⊗Rk,0 + (Rk,0 ⊗Rk,0)K (4.2)

where Rk,0
def
= E(xkx

T
0 ), we have

Cov[Vec(f(P∗,xkx
T
k )),Vec(f(P∗,x0x

T
0 ))] = Q(Rk,0 ⊗Rk,0)(I + K)Q. (4.3)

Thus, we can write

+∞∑
k=−∞

Cov[Vec(f(P∗,xkx
T
k )),Vec(f(P∗,x0x

T
0 ))] = QR(I + K)Q (4.4)

where we define

R def
=

∞∑
k=−∞

Rk,0 ⊗Rk,0. (4.5)

To solve the Lyapunov equation for the asymptotic covariance of Pk, we resort to the parameterization

of Pk by a vector Θ = {θij}(i,j)∈Ps
as in section 3.2.2. However, as the matrix Γ is no longer diagonal,

we must use a component-wise expression for the asymptotic covariance matrix CΘ. This is

(CΘ)ij,i′j′ =
Vec(Sij)

TQR(I + K)QVec(Si′j′)

−(µij + µi′j′)
(i, j) ∈ Ps, (i′, j′) ∈ Ps (4.6)

This may be simplified using the following properties: for any pair (i, j), we have KVec(Sij) = Vec(Sij)

from (A.7), eq. (A.9) and finally the particular expressions of µij and µi′j′ . This results in:

(CΘ)ij,i′j′ =


2(1i≤r−1j≤r)2(1i′≤r−1j′≤r)2

(λi−λj)+(λi′−λj′ )
Vec(Sij)

TRVec(Si′j′) for 1 ≤ i, i′ ≤ r < j, j′ ≤ n

0 elsewhere

(4.7)

Unfortunately, no significantly simpler expressions seem to be available for CΘ in the correlated case.

In order to proceed, we focus on the total MSE for Pk. As above, this is closely related to TrCP .

Since CP = SCΘST , we have

TrCP = TrCΘ =
∑

(i,j)∈Ps

(CΘ)ij,ij =
∑

1≤i≤r<j≤n

Vec(Sij)
TRVec(Sij)

λi − λj
(4.8)

Thus, for correlated learning patterns, expression (3.47) generalizes to

E‖Pk −P∗ ‖2Fro = γTr(CP ) + o(γ) = γ
∑

1≤i≤r<j≤n

λiλj + λi,j
λi − λj

+ o(γ) (4.9)
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where the additional (with respect to the independent case) terms λi,j are

λi,j
def
= 2

∞∑
k=1

(vTi Rk,0vi)(v
T
j Rk,0vj) + (vTi Rk,0vj)(v

T
j Rk,0vi). (4.10)

When xk = (xk, xk−1, . . . , xk−n+1)T with xk being an MA(q), an AR(p) or an ARMA(p, q) stationary

process, we note that λi,j can be expressed as a finite closed form sum, as shown in [10]. This particular

case has practical implications in system identification and in Karhunen Loève decomposition of time

series.

5 Simulations

We now examine the accuracy of expressions (3.47) and (4.9) of the mean square error of the projection

matrix and investigate the domain of learning rate for which our asymptotic approach is valid. Further-

more, we examine some performance criteria for which no analytical results could be derived from our

first-order analysis, such as the speed of convergence and the deviation from orthonormality.

In the first experiment, we consider the case n = 4, r = 2 associated to Rx = Diag(1.75, 1.5, 0.5, 0.25).

Clearly, the eigenvalues of Rx are 1.75, 1.5, 0.5 and 0.25 and the associated eigenvectors are the unit

vectors in R4. R0 = O and the entries of the initial value W0 are chosen randomly uniformly in [0,1],

then w0,i, i = 1, 2 are normalized, and all the learning curves are averaged over 100 independent runs.

First of all, in order to compare the SNL and the smoothed SNL algorithm, we consider different values of

(α, γ) that provide the same value of γTr(CP ). Fig. 1 shows the learning curves of the mean square error

of Pk for the SNL and the smoothed SNL algorithms. We see that the smoothed SNL algorithm with

α = 0.3 provides faster convergence than the SNL algorithm. Fig. 2 shows the associated learning curves

of the deviation from orthonormality d2(γ)
def
= E‖WT

k Wk − Ir ‖2Fro. As can be seen, the smoothed SNL

algorithm provides faster convergence as well, and a smaller deviation from orthonormality. Fig. 3 shows

the ratio of the estimated mean square error E‖Pk−P∗ ‖2Fro over the theoretical asymptotic mean square

error γTr(CP ) as a function of γ, for both the SNL and the smoothed SNL algorithms and with α = 1.

Our present asymptotic analysis is seen to be valid over a large range of γ (γ < 0.02 for the SNL algorithm
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and γ < 0.2 for the smoothed SNL algorithm), and the domain of “stability” is γ < 0.09 for the SNL

algorithm and γ < 0.25 for the smoothed SNL algorithm, for which this ratio is closed to 1. Fig. 4 reveals

something which could not be determined from our first-order analysis: the true order of deviation from

orthonormality. Indeed, our analysis yields only E‖WT
k Wk − Ir ‖2Fro = O(γ). In this figure, we plot on a

log-log scale E‖WT
k Wk − Ir ‖2Fro as a function of γ. We find a slope equal to 2 1 for the SNL algorithm

and of 4 for the smoothed SNL algorithm, which means that, experimentally, E‖WT
k Wk − Ir ‖2Fro ∝ γ2

[resp., ∝ γ4] for the SNL [resp., the smoothed SNL] algorithm. Finally the learning speed is investigated

through the iteration number until “convergence” is achieved (the convergence is considered achieved if

the ratio of the estimated mean square error E‖Pk−P∗ ‖2Fro over the theoretical asymptotic mean square

error γTr(CP ) is smaller than 1.1). Fig. 5 plots this iteration number as a function of the asymptotic

mean square error γTr(CP ) (the learning rate γ is adjusted so that γTr(CP ) keeps the same value for

the different algorithms). As can be seen, the smoothed SNL algorithm provides a much better tradeoff

between the learning speed and the misadjustment γTr(CP ). So the various merits (deviation from

orthonormality and tradeoff between learning speed and misadjustment) of the smoothed SNL algorithm

can counterbalance its more computationally demanding in some applications.

In the second experiment, we compare in Fig. 6 the learning curves of the mean square error of the

projection matrix on the eigenspace generated by the first two eigenvectors, for independent and then

AR(1) learning patterns, produced from the same covariance matrix Rx =


1 a a2

a 1 a

a2 a 1


with a = 0.3

or 0.9 and γ = 0.005. We see that the convergence speed of these mean square errors does not seem

to be affected by the correlation between the learning patterns xk, and that the misadjusments tend to

values that agree with the theoretical values (3.47) and (4.9) respectively. Fig. 7 shows, for the same

covariance matrix Rx, the theoretical mean square error of Pk (normalized by the learning rate γ) for

1This result agrees with the presentation of the SNL algorithn given in subsection 2.1 in which the term O(γ2
k) was

omitted from the orthonormalization of the columns of Wk.
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independent or AR(1) learning patterns, as a function of the parameter a of the AR model of unit power.

We observe that these errors decrease when a increases, that is when the eigenvalue spread increases.

We see that these errors are about 12 dB worse for independent learning patterns than for correlated

learning patterns. This result was previously observed in parameterized adaptive algorithms [10].

6 Conclusion

We have performed in this paper a complete asymptotic performance analysis of the SNL algorithm

and of a smoothed SNL algorithm that we have introduced, assuming a constant learning rate, and in

the case where a large number of patterns is available. A closed form expression of the covariance in

distribution of the projection matrices onto the principal component subspace estimators has been given

in case of independent or correlated learning patterns. We showed that the misadjustment effects are

sensitive to the temporal correlation between successive learning patterns. The tradeoff between the

speed of convergence and misadjustment, as well as the deviation from orthonormality, have also been

investigated. Naturally the covariance of the limiting distribution and consequently the mean square

errors of any function of the projection matrix Pk could be obtained, such as the DOAs [1] or the finite

impulse response [2] estimated by the MUSIC algorithm.

Appendix

Proof of lemma 1 As the field f in definition (3.3) is linear in its second argument, the mean field at

any point P is

Ef(P,xkx
T
k ) = f(P,E(xkx

T
k )) = f(P,Rx) = (In −P)RxP + PRx(In −P). (A.1)

Using P∗vi = 1i≤rvi and (In − P∗)vi = 1i>rvi, a substitution P = P∗ + ε viv
T
j in (A.1) yields after

simplification

Ef(P∗ + ε viv
T
j ,xkx

T
k ) = ε µijviv

T
j + O(ε2) (A.2)
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where µij is defined in eq. (3.13). The lemma follows by using the symmetry µij = µji.

At point P = P∗, definition (3.3) of the field reduces to

f(P∗,xxT ) = P⊥∗ xxTP∗ + P∗xxTP⊥∗ (A.3)

which, by vectorization and using Q
def
= P⊥∗ ⊗P∗ + P∗ ⊗P⊥∗ and thanks to the property

Vec(ABC) = (A⊗CT )Vec(B) (A.4)

also reads

Vec(f(P∗,xxT )) = QVec(xxT ). (A.5)

Now, for a Gaussian vector x, we have ([29, p. 57]):

Cov(Vec(xxT )) = Rx ⊗Rx + (Rx ⊗Rx)K. (A.6)

where K is an n2 × n2 block matrix acting as a permutation matrix, i.e.

KVec(xyT ) = Vec(yxT ) (A.7)

for any vectors x and y. Combining (A.5) and (A.6), we obtain

Cov(Vec(f(P∗,xxT ))) = QCov(Vec(xxT ))QT = Q(Rx ⊗Rx)(In2 + K)QT . (A.8)

For any pair 1 ≤ i, j ≤ n, by simple substitution, we find

QVec(viv
T
j ) = (1i≤r − 1j≤r)

2Vec(viv
T
j ) (A.9)

(Rx ⊗Rx)Vec(viv
T
j ) = λiλjVec(viv

T
j ) (A.10)

by using (A.4) and the properties Rxviv
T
j Rx = λiλjviv

T
j and P∗viv

T
j P⊥∗ = 1i≤r(1− 1j≤r)viv

T
j and the

identity 1i≤r(1 − 1j≤r) + 1j≤r(1 − 1i≤r) = (1i≤r − 1j≤r)
2. Combining (A.8),(A.9),(A.10) and (A.7), it

follows that

Cov(Vec(f(P∗,xxT ))) Vec(viv
T
j ) =

1

2
νij (Vec(viv

T
j ) + Vec(vjv

T
i )) (A.11)

where the scalars νij are defined in the lemma. Using νij = νji, symmetrization of eq. (A.11) completes

the proof.
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Proof of lemma 2 Denote P = VΛVT the singular value decomposition of P. This one is not

differentiable at point P = P∗ because the eigenvalues of P∗ are degenerate. However, results from ([30,

theorem 5.4 p. 111]) are available for the perturbation of the orthogonal projector VVT onto the range

of P and of the eigenvalues. This is

VVT = P∗ + P∗(P−P∗)P
⊥
∗ + P⊥∗ (P−P∗)P∗ +O(‖P−P∗‖2) (A.12)

Λ = Ir +O(‖P−P∗‖) (A.13)

Based on this, we derive thanks to (A.12) and P∗P
⊥
∗ = 0, that ‖P⊥∗ V‖2 = Tr(P⊥∗ VVTP⊥∗ ) = O(‖P −

P∗‖2), and thus

P⊥∗ V = O(‖P−P∗‖). (A.14)

It follows from (A.14) and (A.13) that: P⊥∗ PP⊥∗ = P⊥∗ VΛVTP⊥∗ = O(‖P−P∗‖2). And since P⊥∗ PP⊥∗ =

∑
r<i≤j≤n θij(P)Sij , this completes the proof of the lemma.

Proof of lemma 3 As the field f in definition (3.3) is linear in its second argument, we obtain

f(P∗,R∗ + ε viv
T
j ) = ε (P⊥∗ viv

T
j P∗ + P∗viv

T
j P⊥∗ ) = ε κij viv

T
j (A.15)

where we have used P∗vi = 1i≤rvi and P⊥∗ vi = 1i>rvi, and where κij is defined in eq. (3.34). The lemma

follows thanks to the symmetry of κij = κji.
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Figure 1: Learning curves of the mean square error E‖Pk−P∗ ‖2Fro, averaged over 100 independent runs,

for the SNL algorithm (1), and the smoothed SNL algorithm for the following different values of the

parameter α: α = 1 (2), α = 0.3 (3), compared to the theoretical value γTr(CP ) (0).
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Figure 2: Learning curves of the deviation from orthonormality E‖WT
k Wk − Ir ‖2Fro, averaged over 100

independent runs, for the SNL algorithm (1), and the smoothed SNL algorithm for the following different

values of the parameter α: α = 1 (2), α = 0.3 (3), compared to γTr(CP ) (0).
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Figure 3: Ratio of the estimated mean square error E‖Pk−P∗ ‖2Fro, averaged over 400 independent runs,

over the theoretical asymptotic mean square error γTr(CP ), as a function of the learning rate γ, for both

the SNL algorithm and the smoothed SNL algorithm with α = 1.
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Figure 4: Deviation from orthonormality d2(γ)
def
= E‖WT

k Wk − Ir ‖2Fro at “convergence”, estimated by

averaging 100 independent runs, as a function of the learning rate γ in log-log scales, for the SNL (1)

and the smoothed SNL algorithm with α = 1 (2).
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Figure 5: Iteration number until “convergence” is achieved, versus theoretical asymptotic mean square

error γTr(CP ), of the SNL algorithm (-), and of the smoothed SNL algorithm with α = 1 (+), α = 0.2

(*) and α = 0.3 (o).
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Figure 6: Learning curves of E‖Pk −P∗ ‖2Fro compared to γTr(CP ) averaging 100 independent runs for

real independent or AR(1) learning patterns and for the parameter a = 0.3 and a = 0.9 for the SNL

algorithm with γ = 0.005.
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Figure 7: Mean square error of the projection matrix (normalized by the gain factor γ) on the eigenspace

generated by the first two eigenvectors for independent or AR(1) consecutive learning patterns xk for the

same covariance matrix Rx as a function of the parameter a.
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