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V. CONCLUSION On Adaptive EVD Asymptotic Distribution
In this correspondence, a blind adaptive (BA) FRESH filter for the of Centro-Symmetric Covariance Matrices
extraction of a desired signal from spectrally overlapped interference .
has been proposed. It has been shown that this BA-FRESH filter Jean-Pierre Delmas

converges to the same optimum value as the LMS-FRESH filter.
Furthermore, the rates of convergence of the two filters are of the ) ) ] o o
same orde()(ﬁ—,). Simulation results show that after a reasonabI%AbStraCt_Th's correspondence investigates the gain in statistical per-

length of samples, the performance of the BA-FRESH filter is very

rmance/complexity of the adaptive estimation of the eigenvalue de-
mposition (EVD) of covariance matrices when the centrosymmetric

close to that of the LMS-FRESH filter. The main advantage of thes) structure of such matrices is utilized. After deriving the asymptotic
BA-FRESH filter is that it does not require knowledge of the statistiagstribution of the EVD estimators, it is shown, in particular, that the
of the desired signal, nor does it require a copy of the signal. qlosed-form expressions for the asymptotic covariance of batch and

only needs knowledge of the cyclostationary properties of the sign

& aptive EVD estimators are very similar, provided that the number of
saimples is replaced by the inverse of the step size.

This advantage makes the use of the BA-FRESH filter an attractive

alternative.
I. INTRODUCTION
Signal processing applications often lead to structured matrix
REFERENCES . . .
problems. Algorithms that take this structure into account usually
[1] S. Haykin, Adaptive Filter Theory2nd ed. New York: Wiley, 1991, require fewer computations and have better numerical properties
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(7]
(8]

(9]
[20]
[11]

[12]

ch. 1,910, 15 o [1]. An important matrix structure is the centro-symmetric struc-
\'{'Y.arf\s: (é?)?rjwrr]nedh v%lyczi Vg;)enleéf”tlesr?gja-;hel(gggand methodEEE  tyre of covariance matrices of stationary signals, for which the
A. Chevreuil and P. Loubaton, “On the use of conjugate cycloSYMMetric To_eplltz structure is a particular case. This structure is
stationarity: A blind second-order multi-user equalization methodinstrumental in the realm of EVD problems. It is well known [2]

in Proc. ICASSP 1996, pp. 2439-2442. that an orthonormal eigenbasis of a symmetric CS matrix can be
G. B. Giannakis, “Filterbanks for blind channel identification andgptained from orthonormal eigenbases of two half-sized symmetric

igg?”zaﬂo”'"'EEE Signal Processing Leftvol. 4, pp. 184-187, June eq| matrices [2]. This property has already been used in [3] and [4]

A. Chevreuil and P. Loubaton, “Blind second-order identification of0'> réspectively, a parameterized adaptive eigenspace algorithm and
FIR channels: Forced cyclostationarity and structured subspace methadfy adaptive eigenfilter bank. However, no asymptotic performance
IEEE Signal Processing Leftvol. 4, pp. 204-206, July 1997. analysis has yet been done. The purpose of this correspondence
E. Serpedin and G. B. Giannakis, “Blind channel identification angs to specify the gain in statistical performance/complexity of the
Fn?‘g?rgz.agt(:)ir.] ;VJQ.TE)%(;Ulité?n?g];—ufg eyclostationarity "firoc. Conf adaptive EVD when the CS structure of covariance matrices is used.
J. Zhang and K. M. Wong, “A new kind of adaptive frequency shifffor that, we choose, as an example, the stochastic gradient ascent

filter,” in Proc. ICASSP1995, vol. 2, pp. 913-916. algorithm (SGA), and we exhibit the asymptotic distribution of its
W. A. Gardner and L. E. Franks, “Characterization of cyclostationarg\/D estimator.

La_nltion‘l]asri]gnlag7pSrocesseSEEE Trans. Inform. Theoryol. IT-21, pp. This correspondence is organized as follows. In Section Il, we

W. A. Gardner Introduction to Random Processéd ed. New York: recall the property that an orthonormal eigenbasis of a CS matrix

McGraw-Hill, 1990, ch. 12. can be obtained from orthonormal eigenbases of half-sized symmetric
W. A. Gardner Statistical Spectral Analysis: A Non-Probabilistic The-matrices. In Section Ill, we study the asymptotic distribution of an
ory. Englewood Cliffs, NJ: Prentice-Hall, 1987, ch. 14. adaptive estimator of EVD of CS covariance matrices. In particular,

G. H. Golub and C. F. Van LoarMatrix Computations Baltimore, . . .
MD: Johns Hopkins Univ. Press, 1996, ch. 2. a theorem gives a closed-form expression of the covariance of

S. Haykin,Communication Systemand ed. New York: Wiley, 1983, the limiting distribution of such an estimated EVD. Finally, in
ch. 9. Section IV, we present some simulations.

Il. EIGENVALUE DECOMPOSITION STRUCTURE

We consider am x n CS covariance matriR, = E(xx”) of a
Gaussian distributed, zero mean, real random vectand we denote
by A1 > --- > A, the distinct eigenvalues @& . and byvy,..., v,
the corresponding normalized eigenvectors. The EVD estimators that
we propose stem from the property that an orthonormal eigenbasis
of R, can be obtained from orthonormal eigenbases of half-sized
symmetric matrices [2]. This property is recalled here for convenience
of the reader and in order to fix notatiorB.. can be reduced to a
block diagonal form by a data independent orthogonal transformation
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K eigenvectorsv;, [resp. the[n/2] symmetric eigenvectors;]. The
R~ O - parametersy;, (i = 1 andaj > 0, k = 1,...,n%) afford a
R, = K{ o R+}K (2.1)  petter tradeoff between the convergence speed and misadjustment

[9], and v is the step size. As the computational cost of the SGA

with, respectively, for» even andr odd algorithm isO(n?) flops by iteration, the number of operations of

I 0 I our split procedure is roughly halved. As this split SGA algorithm
K — L{ I I} and K= - |o" 3 o (2.2) (3:5)and (3.6) can be globally written in the form (we wrétg for

V23 3 V2 _J o 3 ' the seqeunce of estimates to emphasize the dependenge on

o7 QY (DY
whereJ is a |n/2] x |n/2] matrix with ones on its antidiagonal Ol =67 +79(67.x) @.7)

and zeros elsewhere, addis th_e [n/2] x |n/2] idgntity matrix. \ith O, = Ved©;,OF) where ©; def Vee(u ... Whe 12 N.o.

Therefore,Ln/QJ skew-symmetric angﬂ_n/ﬂ symmetric orthonormal . A%e4), 5= —,+, we can use a general apprOX|mat|on result 8,

e?envectors oR, (denoted, respectively, byvy,....v[, ,; and o p. 108], which is shortly recalled in [9, Sec. IIl.A] to evaluate

Vi..... V], s7), and corresponding eigenvalues (denoted, respage asymptotic distribution of this EVD estimator. Of course, the

tively, by ALs-ee0 A, o) and AT, rn/zw) are determined from study set out in this section could be immediately extended to other

the solutlons of the equations gradient-type (for example, algorithms studied in [9]) or RLS-type
Ru =\u i=1....|[n/2] and algorithms.

(2.3)
+F T :

RTul =A'uf i=1,....[n/2] B. Asymptotic Distribution

wherev; are connected ta;, respectively, for: even and odd by 1) Local Caracterization of the Field:According to [8, Th. 2, p.
108], we need to characterize two local properties of the field

vi =Kiu;, [resp.vi = Kjuj] g(©,x:): the mean value of its derivativ® and its covariance

s=—, i=1,...,[n/2], s=4, i=1,...,[n/2] (2.4) G, both evaluated at the poirh, = 0. = Vec(©,,O0]) with
s def s E s -
] _ der 4odef g _def 4 X 4 def (M Vec(ui,...,ups, AT, .., 0s), s = —, +.
with Ifel = ﬁ[_J]v K. = W[J] andK, = ﬁ[ ol Ko = Derivative of the field: It is straightforward to see thdD can
7z[¥2 §7]. Moreover, the set{vi.....v[, .. vi.....v], o1} be partitioned as
forms an orthonormal set that therefore spans the eigenspd&e.of D, e e 0
D,-,.- -I_ o) (0]
D= uT LA n 3.8
Il. ADAPTIVE ESTIMATOR 0O 0O D,+ 0] (3:8)
o o Du+ At _I'n+
A. Adaptive Algorithm with
Every adaptive EVD algorlthm can be adapted to our CS structured p . A =2 D|ag(/\“’u1 f;suf,f)v 5= —,+. (3.9)
situation. Becauséﬂ[ iye yi ] =R S ] with [ o

D,s aren® x n® block matrices, the blockD,-); ; of which is
K'x,, each adaptlve EVD algorlthm can be split into two decouple@ven in [9] by (3.10), shown at the bottom of the page.
algorithms. To give prominence to this improvement brought by this  Covariance of the field:The field of the algorithm (3.5) and
splitting, we take, as an example, an adaptive algorithm introduced(i#6) can be globally written in the form

the neural network literature by Oja [the so-called stochastic gradient T

ascent algorithm (SGA)] because of the simplicity of its asymptotic 7 (Oryr f_T)
distribution [9]. Its convergence is studied in [7] and, as was shown (O1,%,) = {G (9 Ve Vi T)} — ( Y yz )
in [9], it achieves a good convergence speed/misadjustment tradeoff T TOer.yiyi ) Gut (OT,yL v )
among a family of numerically simple algorithms. (Q+ vyl )
- A O B [O
wi 4 =l +aiy|Le —ulul, _ (BT O |[Vedlyey )] AT gy
O A*Y||Vecly/yi") o '
k_l a: 5 ST S ST s O B+ -1\_+
—Z 1+ — W0 | Ve Y Up (3.5) .
— ) with
8 £ sT 5 sT 5 5 IE'H 9] 1 1 e =
Akirr = A+ [Ulc,th Ye Upe — )\Ic,t] (3.6) def ul @A . def e
A° = : , B = : and
for s = — 4+ andk = 1.....n° (0~ = [n/2] andn™ & [n/2]). T AL, wls ouls
u,, [resp. uf,] is associated with then/2| skew-symmetric )\3 i (3.12)
, , H
1We introduce this notation because, in general, we havea rwiori At : s=—,+
information on the order of the eigenvalues associated to skew-symmetric ;
and symmetric eigenvectors. ns

—a? [Z (/\‘* E/\-;;)uzuzT Fonwul 4+, (- AZ)u‘,’;uZT], i=j
(Du,s)i‘j = O-, P < ] (3.10)

s
@

—af(l—i— 3>/\uuT, P>

@

N
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and Therefore,C,,- are solutions of the Lyapunov equati@,:C,s +
R s . CusDL. + Gy = O, the block(C.:);,; of which is given in [9] by
At =of [~ = Y (14 2 Jul ] AL
i=1 “k Z1§k¢i§ns n;m\(:f:; fujui, i=j
k=1,...,n°, s=—,+ (3.13) (Cus)ij = WS asns ik (3.19)
, B s S S i#i
thanks to the classic relation \e8BC) = (CT ® A)VecB). 2|A5—A8 !
The covarianceG of the field evaluated at® = 0. = ; ; ;
Vec(v—,A~,vT,AT), in the case where the observatiors are fors = =+ Itis proved in the Appendix that
independent, can be partitioned as Cusxs =0, and Cys = Dlag(( ) ()\;S)'z) (3.20)
Gu_ Gz:* AT O O . . .
G, - G,\; o) o) for s = — +. Lasatfﬁ we apply the linear mapping deduced from
G= o 6] G, GT, .| (3.14) (2.4), in whichv® = Vec(vy,...,v,s) is equal fors = —, +
o O Gurar Gar . _ [Diag(K;,....K:)u', formeven ..
We prove in the Appendix that Vo= Diag(K:,....K;)u®, for n odd (3.21)

Gusae =0, and Gi: = szg(()‘i)zw--v()‘fﬁ)z) (3:15)  the following theorem is proved.

for s = —, +. Here,G - are then” xn* matrices, the blockG.. ); ; Theorem 1: J— (Vee(vi, A7, v AT) = Vee(v, A7, v, AT))

of which is given in [9] by (3.16), shown at the bottom of the page&Onverges in distributiont(— oc and~y — 0) to the zero mean
2) Solution of the Lyapunov EquatioRor independent observa—G""USS'an distribution of covariand@, » with C., x = Diag(C, -

tionsx; and for the investigated algorithm for which the elgenvaluegr ot Cot)

of the derivative (3.8) of the mean field have strictly negative real

parts (see [9] for the eigenvalues Bf,s), the hypotheses of the Cae = Dlag(( ) s Aue b) 2’ §= (3:22)
model of Benvenistet al. ([8, th. 2, p. 108]) are fulfilled. However, C.: = Z amm(z,:)A Aj 7 eiel @ vsvsT

the underlying assumption for the results by Benveneteal. is < i 2|27 = A3 J

that the solution of the corresponding stochastic approximation type - S A -

algorithm with decreasing step size almost surely converges to the - Z %elef @vivi , s=—,+
unique asymptotically stable point of the associated ODE. Since the 1<i#j<n® 2[00 = A5

normalized eigenvectors are defined up to a sign, the global attractor (3.23)

O, is not unique. However, the practical use of the Benveniste
results in such a situation is usually justified (for example, in [LOJyheree; is the ith unit vector inR"™". Therefore, ify is “small
by using formally a general approximation result ([8, th. 1, p. 107]gnough” and¢ “large enough,” the mean square error ®t is
Furthermore, the almost-sure (a.s.) convergence of the associ@Bgroximately equal taTrCe; therefore, in particular
decreasing step-size algorithms are not strictly fulfilled for the SGA
algorithm. This a.s. convergence would need a boundedness condition  E||A; — Allf‘m ~ Z Ai (3.24)
whose satisfaction is a challenging problem. However, as discussed k=1
in [11], this condition was proved for only the Oja learning rule [12] o ATAT
designed for extracting the most dominant eigenvector by means of  E|jv, — v|[fye ~ 7 Z %
a single linear unit neuron network, where Gjaal. [13] showed 1<j#k<|n/2] 227 = AL
that if this algorithm is used with uniformly bounded inputs then " s
vi+ remains inside some bounded subset. If we allow ourselves + a’min(j,k)kj AL (3.25)
the Benveniste results in our situation, the Lyapunov continuous i o 2|AF = A
equations ([9, Eqg. (3.16)]) can be solved exactly. Since the matrices -
D and G are 2 x 2 block diagonal, this Lyapunov equation canWe note that the asymptotic MSE of the estimated eigenvectors are
be reduced to two decoupled equations. Thus, the covariance mateduced when the CS structure is taken into account [9, rel. (3.62)].
Ce of the asymptotic distribution of—(()' — ©.) whent — oo The number of terms in the summations (3.25) are roughly halved,
andy — 0 is and the difference between two successive eigenvalligsgenerally
. \ larger than between successive eigenvaligs In particular, if
Co = Diag(Ce-: Co+) G171 uccessive eigenvalues. interlace (i.e.\or = A, and oy =

where Cos = [C = Cs AS] are solutions of the Lyapunov A), the asymptotic MSE can be conS|derany reduced. Necessary
equation ’ conditions for this interlaced distribution are given in [2] for the

b o c cT general CS structure and in [6] for the Toeplitz structure. As far as the

{ u? } { us us%s} asymptotic distribution is concerned, similar results could be derived
Dusae —In [[Cusne - Coo from other gradient-like algorithms such as the generalized Hebbian

4 { C.. Cl. >\<:| {D Di-<./\-<:| __ {Gus o } algorithm, the weighted subspace algorithm, and the optimal fitting
Cysas Gy o =L,- O Gy analyzer. It would be sufficient to use the asymptotic distributions of

(3.18) their unstructured eigenvectors estimators given in [9].
(GMH:{2&@mﬁwwm3+zzwﬁm%mmmf,ww (3.16)
_(afnin(i»i)) A Ajujug i #j.
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eigenvectors MSE
eigenvalues MSE

©.(0 TN iy P o,

L
o 500 1000 1500 2000 2500 o 500 1000 1500 2000 2500
iteration number iteration number

Fig. 1. Learning curves of the MSE||v; — v.||3,, and E||A; — A.||* averaging 100 independent runs for, respectively, the SGA algorithm when
the CS structure is taken into account (2) or not (3), compared with the theoretical asymptotic vani€s,) and v Tr(C,) when the CS structure
is taken into account (0) or not (1).

eigenvectors MSE
eigenvalues MSE

107 ! 107 L )
107 107 107 107 107 10
stop size step size

Fig. 2. Estimated [respectively, theoretical asymptotic] eigenvectors and eigenvalues MSE as a function of the stewhsnethe CS structure is
taken into accountx) [respectively, (0)] or not (0) [respectively, (1)].

C. Comparison Between Batch and Adaptive EVD Estimators IV. SIMULATIONS

It is easy to show that the ML batch EVD estimator and the We consider throughout this section independent observations
SGA adaptive estimator have very similar asymptotic distributiong, in R* associated with the symmetric Toeplitz matik, =
With a; = 1,i = 1....,n, these distributions are equivalérit Toeplitz 1, —0.3633,0.0209, —0.0043) obtained from an ARMA
we substitute% (t is the sample number) by and the differences process generated by the linear filtdf(z) = 57.7293(1 —
(A\j = ) by [Aj = Al 0.032"1)/(1 — 0.03z~" — 0.01z~2) driven by an unit variance

It is worth noticing that the ML batch estimators and the SGAgise.R,, has the following eigenvalues; = A7 = 1.6079, X, =
adaptive estimators derive from the same cost functions, whichx'? = 1.2028,)3 = A, = 0.7597. M = X\ = 0.4296.

undoubtedly the reason for such similar asymptotic properties. QRjs experiment presents the case of SGA adaptive estimation

the one handU; = (uj.....u;.) derives from the successive(a? = 1,5 = —,+.i = 1,...,n"). Fig. 1 shows the learning
constrained minimizations of II'UZTR; x). k =1,....n° with curves (averaged over 100 independent runs) of the eigenvalue MSE
respect tou; under the constraint thaItIiLT + = I in ML batch and eigenvector MSE when the CS structure is taken into account
estimation. On the other handJ; . derives from the minimiza- or not, with the common step size= 0.01. These MSE’s tend to
tion of Tr( :;fR;’U:;s) from a projected gradient-like procedurevalues in excellent agreement with the theoretical values predicted
in SGA instaTntaneous adaptive estimation. The projection on thg (3.24) and (3.25). We observe a reduction of the eigenvector MSE
constraintU; .U, = I,- is realized thanks to an expansion ofof 7 db when the CS structure is taken into account. Furthermore,
a Gram-Schmidt orthogonalization [9]. in this latter case, the convergence speed is improved as well.

Fig. 2 shows the theoretical asymptotic and the estimated eigenvalue

and eigenvector MSE'’s as a function of Our present asymptotic

2The proof is omitted for want of space. analysis is seen to be valid over a large range ¢fy < 0.03), and
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A;

(Guse/\s )7] = (u;T 24 u;T)(RS 24 R’ =+ (Rs [o24] R”‘)P)(u; [}
= (u Rew) () R°AY ) + (u R°A ) (u)” Rus)

J

=07

o7,
- {2(Af>2uzTAfT =2(\)%aln” (Lo — wju}’)

T)_
fori#j
fori =j.
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(' ow )R R oA +A] oul)
siy(vus AT )+ (ud AT )ASS,

(A.3)

the domain of “stability” isy < 0.07, for which we observe good (e; @ uj,e; @ u;) for all pairs(4, j) such thatl <i < j < n’. We

agreement between the theoretical and estimated MSE'’s.

note that the particular ordering of these pairs is irrelevant in what

follows. Therefore, from the structures of (3.10), (3.16), and (3.9)

V. CONCLUSION

In this correspondence, we have shown that when the CS structure

of covariance matrices is taken into account, the EVD estimation
can be split into two independent EVD estimations. As a result,

we have proved, taking the SGA algorithm as an example, thaith Ap,,

the asymptotic MSE is reduced, and the complexity of the EVD is
roughly halved. Finally, numerical simulations confirm the accuracza;
of our asymptotic analysis and show that for the SGA adaptiv%
estimation, the convergence speed is improved, yielding a better
tradeoff between convergence speed and misadjustment.

APPENDIX A
PROOF OF THE RELATIONS (3.15)
From (3.11) and (3.14), we hav€t,s »s B°Cov(Vecd(y;?
y;‘;‘T‘))AST and Gys = BSCov(Vec(yfyfT))BST. For a Gaussian
vectory;, we have ([5, p. 57])

Cov(Vec(y;yi )) =R° @R’ + (R° © R*)P GO
whereP is an(n*)? x (»*)* block matrix acting as a permutation
operator in the sense that for any vectoor matrix A and vector [
b, we have

P(a@b)=b®a and P(A®b)=b® A. (A.2) (3]
On the one hand, it follows that the blo¢ka.s rs):,; is given by [4
(A.3), shown at the top of the page. The first and second equalities
use, respectively, (A.1) and (A.2), whereas the third equality stems
from the classic propertyA @ B)(C @ D) = (AC @ BD), the [5]
fourth equality uses (2.3), and final equality uses (3.13). On the oth%]
hand, the(G - );,; entries are given by

(7]
(8]
(9]

(Gars)ij = ufT @ ufT)(R"’ @R+ (R"©R")P)(u @ uj)
T QT 8 s 8 ST
u; @u; J(R°OR)(ujouj )

7

Rou) (uf Rous) = 2();)%6, ;.

T
i J

(A.4)

The first and second equalities use, respectively, (A.1) and (A'ab]
and the third equality uses (2.3).
[11]
APPENDIX B

PROOF OF THE RELATIONS (3.20)
From (3.18), we get

[12]

(23]

(Dus = I1,)2)Clie yo + CusDLs s = O. (B.1)
Consider the change of basis stated in [9], which we recall for
convenience. LefU*® be the (n®)* x (n®)? orthonormal matrix
(U3, U3), whereU; = Diag(uj. ..., u}s), andUj is the(n”) x
n*(n* — 1) block matrix made of thé-"" =) matrices(n*)? x 2

s

Dys xs —

D~ .2 = UAp, U, Cu=UAn, U

D). =U'Ap,. . (B.2)
=[%Bus ], whereA), , = ~Diag(20§A; +1,...,
wedne+1), Ac,. =g 2], andAp,. . = [ADBMS],Where

2 Diag(Ai,-..,Ans). As such, (B.1) becomes

Ap, U CL .+ Ac, Ap,.,, =0, (B.3)

BecauseAc¢, ;Ap, . s = O and Ap_. is a (negative) defi-
nite matrix, C. s = O. Finally, from (3.18), we getC,. =
(Gxs +Dys s CLs yo + Cus o DL (o) = 1Gys = Diag((A])?,
..., (A2:)?), where the last equality uses (3.15).
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