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V. CONCLUSION

In this correspondence, a blind adaptive (BA) FRESH filter for the
extraction of a desired signal from spectrally overlapped interference
has been proposed. It has been shown that this BA-FRESH filter
converges to the same optimum value as the LMS-FRESH filter.
Furthermore, the rates of convergence of the two filters are of the
same orderO( 1

N
). Simulation results show that after a reasonable

length of samples, the performance of the BA-FRESH filter is very
close to that of the LMS-FRESH filter. The main advantage of the
BA-FRESH filter is that it does not require knowledge of the statistics
of the desired signal, nor does it require a copy of the signal. It
only needs knowledge of the cyclostationary properties of the signals.
This advantage makes the use of the BA-FRESH filter an attractive
alternative.
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On Adaptive EVD Asymptotic Distribution
of Centro-Symmetric Covariance Matrices

Jean-Pierre Delmas

Abstract—This correspondence investigates the gain in statistical per-
formance/complexity of the adaptive estimation of the eigenvalue de-
composition (EVD) of covariance matrices when the centrosymmetric
(CS) structure of such matrices is utilized. After deriving the asymptotic
distribution of the EVD estimators, it is shown, in particular, that the
closed-form expressions for the asymptotic covariance of batch and
adaptive EVD estimators are very similar, provided that the number of
samples is replaced by the inverse of the step size.

I. INTRODUCTION

Signal processing applications often lead to structured matrix
problems. Algorithms that take this structure into account usually
require fewer computations and have better numerical properties
[1]. An important matrix structure is the centro-symmetric struc-
ture of covariance matrices of stationary signals, for which the
symmetric Toeplitz structure is a particular case. This structure is
instrumental in the realm of EVD problems. It is well known [2]
that an orthonormal eigenbasis of a symmetric CS matrix can be
obtained from orthonormal eigenbases of two half-sized symmetric
real matrices [2]. This property has already been used in [3] and [4]
for, respectively, a parameterized adaptive eigenspace algorithm and
an adaptive eigenfilter bank. However, no asymptotic performance
analysis has yet been done. The purpose of this correspondence
is to specify the gain in statistical performance/complexity of the
adaptive EVD when the CS structure of covariance matrices is used.
For that, we choose, as an example, the stochastic gradient ascent
algorithm (SGA), and we exhibit the asymptotic distribution of its
EVD estimator.

This correspondence is organized as follows. In Section II, we
recall the property that an orthonormal eigenbasis of a CS matrix
can be obtained from orthonormal eigenbases of half-sized symmetric
matrices. In Section III, we study the asymptotic distribution of an
adaptive estimator of EVD of CS covariance matrices. In particular,
a theorem gives a closed-form expression of the covariance of
the limiting distribution of such an estimated EVD. Finally, in
Section IV, we present some simulations.

II. EIGENVALUE DECOMPOSITION STRUCTURE

We consider ann � n CS covariance matrixRx = E(xxT ) of a
Gaussian distributed, zero mean, real random vectorx, and we denote
by �1 > � � � > �n the distinct eigenvalues ofRx and byv1; . . . ;vn
the corresponding normalized eigenvectors. The EVD estimators that
we propose stem from the property that an orthonormal eigenbasis
of Rx can be obtained from orthonormal eigenbases of half-sized
symmetric matrices [2]. This property is recalled here for convenience
of the reader and in order to fix notations.Rx can be reduced to a
block diagonal form by a data independent orthogonal transformation
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K

Rx = K
R� O

O R+ K
T (2.1)

with, respectively, forn even andn odd

K =
1p
2
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�J J
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2

I 0 I

0T
p
2 0T

�J 0 J

(2.2)

whereJ is a bn=2c � bn=2c matrix with ones on its antidiagonal
and zeros elsewhere, andI is the bn=2c � bn=2c identity matrix.
Therefore,bn=2c skew-symmetric anddn=2e symmetric orthonormal
eigenvectors ofRx (denoted,1 respectively, byv�1 ; . . . ;v

�
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dn=2e), and corresponding eigenvalues (denoted, respec-
tively, by ��1 ; . . . ; �

�
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wherevsi are connected tousi , respectively, forn even and odd by

v
s
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s
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s
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s
ou

s
i

s = �; i = 1; . . . ; bn=2c; s = +; i = 1; . . . ; dn=2e (2.4)

with K�
e

def
= 1p

2
[ I

�J ]; K
+
e

def
= 1p

2
[ I
J
] andK�

o
def
= 1p

2
[ �J ]; K

+
o

def
=

1p
2
[
0 J

]. Moreover, the setfv�1 ; . . . ;v�bn=2c;v+1 ; . . . ;v+dn=2eg
forms an orthonormal set that therefore spans the eigenspace ofRx.

III. A DAPTIVE ESTIMATOR

A. Adaptive Algorithm

Every adaptive EVD algorithm can be adapted to our CS structured

situation. BecauseE[
y

y
][y�t y+t ] = [R

O

O

R
] with [

y

y
]
def
=

KTxt, each adaptive EVD algorithm can be split into two decoupled
algorithms. To give prominence to this improvement brought by this
splitting, we take, as an example, an adaptive algorithm introduced in
the neural network literature by Oja [the so-called stochastic gradient
ascent algorithm (SGA)] because of the simplicity of its asymptotic
distribution [9]. Its convergence is studied in [7] and, as was shown
in [9], it achieves a good convergence speed/misadjustment tradeoff
among a family of numerically simple algorithms.

u
s
k;t+1 = u

s
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�sk;t+1 = �sk;t +  usk;ty
s
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s
t u

s
k;t � �sk;t (3.6)

for s = �;+ andk = 1; . . . ; ns (n�
def
= bn=2c andn+

def
= dn=2e).

u�k;t [resp. u+k;t] is associated with thebn=2c skew-symmetric

1We introduce this notation because, in general, we have noa priori
information on the order of the eigenvalues associated to skew-symmetric
and symmetric eigenvectors.

eigenvectorsvi, [resp. thedn=2e symmetric eigenvectorsvi]. The
parameters�sk (�s1 = 1 and �sk > 0; k = 1; . . . ; ns) afford a
better tradeoff between the convergence speed and misadjustment
[9], and  is the step size. As the computational cost of the SGA
algorithm isO(n2) flops by iteration, the number of operations of
our split procedure is roughly halved. As this split SGA algorithm
(3.5) and (3.6) can be globally written in the form (we write�

t for
the seqeunce of estimates to emphasize the dependence on)

�
t+1 = �

t + g �
t ;xt (3.7)

with �t = Vec(��
t ;�

+
t ) where�s

t
def
= Vec(us1;t; . . . ;u

s
n ;t; �

s
1;t;

. . . ; �sn ;t); s = �;+, we can use a general approximation result [8,
th. 2, p. 108], which is shortly recalled in [9, Sec. III.A] to evaluate
the asymptotic distribution of this EVD estimator. Of course, the
study set out in this section could be immediately extended to other
gradient-type (for example, algorithms studied in [9]) or RLS-type
algorithms.

B. Asymptotic Distribution

1) Local Caracterization of the Field:According to [8, Th. 2, p.
108], we need to characterize two local properties of the field
g(�t;xt): the mean value of its derivativeD and its covariance
G, both evaluated at the point�t = �� = Vec(��

� ;�
+
� ) with

�s
�
def
= Vec(us1; . . . ;u

s
n ; �s1; . . . ; �

s
n ); s = �;+.

Derivative of the field: It is straightforward to see thatD can
be partitioned as

D =

Du O O O
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(3.8)

with

Du ;� = 2Diag �s1u
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s
n ; s = �;+: (3.9)

Du are ns � ns block matrices, the block(Du )i;j of which is
given in [9] by (3.10), shown at the bottom of the page.

Covariance of the field:The field of the algorithm (3.5) and
(3.6) can be globally written in the form
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thanks to the classic relation Vec(ABC) = (CT 
 A)Vec(B).
The covarianceG of the field evaluated at� = �� =
Vec(v�;��;v+;�+), in the case where the observationsxt are
independent, can be partitioned as

G =

Gu G
T
u ;� O O

Gu ;� G� O O

O O Gu G
T
u ;�

O O Gu ;� G�

: (3.14)

We prove in the Appendix that

Gu ;� = O; and G� = 2Diag �
s
1

2
; . . . ; �

s
n

2
(3.15)

for s = �;+. Here,Gu are thens�ns matrices, the block(Gu )i;j
of which is given in [9] by (3.16), shown at the bottom of the page.

2) Solution of the Lyapunov EquationFor independent observa-
tionsxt and for the investigated algorithm for which the eigenvalues
of the derivative (3.8) of the mean field have strictly negative real
parts (see [9] for the eigenvalues ofDu ), the hypotheses of the
model of Benvenisteet al. ([8, th. 2, p. 108]) are fulfilled. However,
the underlying assumption for the results by Benvenisteet al. is
that the solution of the corresponding stochastic approximation type
algorithm with decreasing step size almost surely converges to the
unique asymptotically stable point of the associated ODE. Since the
normalized eigenvectors are defined up to a sign, the global attractor
�� is not unique. However, the practical use of the Benveniste
results in such a situation is usually justified (for example, in [10])
by using formally a general approximation result ([8, th. 1, p. 107]).
Furthermore, the almost-sure (a.s.) convergence of the associated
decreasing step-size algorithms are not strictly fulfilled for the SGA
algorithm. This a.s. convergence would need a boundedness condition
whose satisfaction is a challenging problem. However, as discussed
in [11], this condition was proved for only the Oja learning rule [12]
designed for extracting the most dominant eigenvector by means of
a single linear unit neuron network, where Ojaet al. [13] showed
that if this algorithm is used with uniformly bounded inputsxt, then
v1;t remains inside some bounded subset. If we allow ourselves
the Benveniste results in our situation, the Lyapunov continuous
equations ([9, Eq. (3.16)]) can be solved exactly. Since the matrices
D andG are 2� 2 block diagonal, this Lyapunov equation can
be reduced to two decoupled equations. Thus, the covariance matrix
C� of the asymptotic distribution of1p (�


t � ��) when t ! 1

and  ! 0 is

C� = Diag(C� ;C� ) (3.17)

where C� = [ C

C

C

C
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Therefore,Cu are solutions of the Lyapunov equationDu Cu +
Cu D

T
u +Gu = O, the block(Cu )i;j of which is given in [9] by
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for s = �;+. It is proved in the Appendix that
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for s = �;+. Last, if we apply the linear mapping deduced from
(2.4), in whichvs
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the following theorem is proved.
Theorem 1: 1p
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+
t )� Vec(v�;��;v+;�+)

converges in distribution (t ! 1 and  ! 0) to the zero mean
Gaussian distribution of covarianceCv;� with Cv;� = Diag(Cv ;
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Cv =
1�i6=j�n

�s
min(i;j)�

s
i�

s
j

2 �si � �sj
eie

T
i 
 v

s
jv

s
j

�
1�i6=j�n

�s
min(i;j)�

s
i�

s
j

2 �si � �sj
eie

T
j 
 v

s
jv

s
i ; s = �;+

(3.23)

where esi is the ith unit vector inRn . Therefore, if is “small
enough” andt “large enough,” the mean square error of�t is
approximately equal toTrC�; therefore, in particular

Ek�t � �k2Fro � 

n

k=1

�
2
k (3.24)

Ekvt � vk
2
Fro � 
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+
k

2 �+j � �+k
: (3.25)

We note that the asymptotic MSE of the estimated eigenvectors are
reduced when the CS structure is taken into account [9, rel. (3.62)].
The number of terms in the summations (3.25) are roughly halved,
and the difference between two successive eigenvalues�sk is generally
larger than between successive eigenvalues�k. In particular, if
successive eigenvalues�k interlace (i.e.,�2k = ��k and �2k+1 =
�+k ), the asymptotic MSE can be considerably reduced. Necessary
conditions for this interlaced distribution are given in [2] for the
general CS structure and in [6] for the Toeplitz structure. As far as the
asymptotic distribution is concerned, similar results could be derived
from other gradient-like algorithms such as the generalized Hebbian
algorithm, the weighted subspace algorithm, and the optimal fitting
analyzer. It would be sufficient to use the asymptotic distributions of
their unstructured eigenvectors estimators given in [9].
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Fig. 1. Learning curves of the MSEEkvt � v�k2Fro and Ek�t � ��k2 averaging 100 independent runs for, respectively, the SGA algorithm when
the CS structure is taken into account (2) or not (3), compared with the theoretical asymptotic values Tr(Cv) and  Tr(C�) when the CS structure
is taken into account (0) or not (1).

Fig. 2. Estimated [respectively, theoretical asymptotic] eigenvectors and eigenvalues MSE as a function of the step size when the CS structure is
taken into account(�) [respectively, (0)] or not (o) [respectively, (1)].

C. Comparison Between Batch and Adaptive EVD Estimators

It is easy to show that the ML batch EVD estimator and the
SGA adaptive estimator have very similar asymptotic distributions.
With �i = 1; i = 1; . . . ; n, these distributions are equivalent2 if
we substitute2

t
(t is the sample number) by and the differences

(�j � �k)
2 by j�j � �kj.

It is worth noticing that the ML batch estimators and the SGA
adaptive estimators derive from the same cost functions, which is
undoubtedly the reason for such similar asymptotic properties. On
the one hand,Us

k

def
= (us1; . . . ;u

s
n ) derives from the successive

constrained minimizations of Tr(Us
k R

s
tU

s
k); k = 1; . . . ; ns with

respect tousk under the constraint thatUs
k U

s
k = Ik in ML batch

estimation. On the other hand,Us
n derives from the minimiza-

tion of Tr(Us
n R

s
tU

s
n ) from a projected gradient-like procedure

in SGA instantaneous adaptive estimation. The projection on the
constraintUs

n U
s
n = In is realized thanks to an expansion of

a Gram–Schmidt orthogonalization [9].

2The proof is omitted for want of space.

IV. SIMULATIONS

We consider throughout this section independent observations
xt in R4 associated with the symmetric Toeplitz matrixRx =

Toeplitz(1;�0:3633; 0:0209;�0:0043) obtained from an ARMA
process generated by the linear filterF (z) = 57:7293(1 �

0:03z�1)=(1 � 0:03z�1 � 0:01z�2) driven by an unit variance
noise.Rx has the following eigenvalues:�1 = ��1 = 1:6079; �2 =

�+1 = 1:2028; �3 = ��2 = 0:7597; �4 = �+2 = 0:4296.
This experiment presents the case of SGA adaptive estimation
(�s

i = 1; s = �;+; i = 1; . . . ; ns). Fig. 1 shows the learning
curves (averaged over 100 independent runs) of the eigenvalue MSE
and eigenvector MSE when the CS structure is taken into account
or not, with the common step size = 0:01. These MSE’s tend to
values in excellent agreement with the theoretical values predicted
by (3.24) and (3.25). We observe a reduction of the eigenvector MSE
of 7 db when the CS structure is taken into account. Furthermore,
in this latter case, the convergence speed is improved as well.
Fig. 2 shows the theoretical asymptotic and the estimated eigenvalue
and eigenvector MSE’s as a function of. Our present asymptotic
analysis is seen to be valid over a large range of ( < 0:03), and
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the domain of “stability” is < 0:07, for which we observe good
agreement between the theoretical and estimated MSE’s.

V. CONCLUSION

In this correspondence, we have shown that when the CS structure
of covariance matrices is taken into account, the EVD estimation
can be split into two independent EVD estimations. As a result,
we have proved, taking the SGA algorithm as an example, that
the asymptotic MSE is reduced, and the complexity of the EVD is
roughly halved. Finally, numerical simulations confirm the accuracy
of our asymptotic analysis and show that for the SGA adaptive
estimation, the convergence speed is improved, yielding a better
tradeoff between convergence speed and misadjustment.

APPENDIX A
PROOF OF THE RELATIONS (3.15)

From (3.11) and (3.14), we haveGu ;� = BsCov(Vec(yst
yst ))As andG� = BsCov(Vec(ysty

s
t ))Bs . For a Gaussian

vector yst , we have ([5, p. 57])

Cov Vec ysty
s
t = Rs


R
s + (Rs


R
s)P (A.1)

whereP is an (ns)2 � (ns)2 block matrix acting as a permutation
operator in the sense that for any vectora or matrixA and vector
b, we have

P(a
 b) = b
 a and P(A
 b) = b
A: (A.2)

On the one hand, it follows that the block(Gu ;� )i;j is given by
(A.3), shown at the top of the page. The first and second equalities
use, respectively, (A.1) and (A.2), whereas the third equality stems
from the classic property(A 
 B)(C 
 D) = (AC 
 BD), the
fourth equality uses (2.3), and final equality uses (3.13). On the other
hand, the(G� )i;j entries are given by
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s
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i (Rs


R
s + (Rs
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�i;j : (A.4)

The first and second equalities use, respectively, (A.1) and (A.2),
and the third equality uses (2.3).

APPENDIX B
PROOF OF THE RELATIONS (3.20)

From (3.18), we get

Du � I(n ) C
T
u ;� +Cu D

T
u ;� = O: (B.1)

Consider the change of basis stated in [9], which we recall for
convenience. LetUs be the (ns)2 � (ns)2 orthonormal matrix
(Us

1;U
s
2), whereUs

1 = Diag(us1; . . . ;u
s
n ), andUs

2 is the(ns)2 �
ns(ns � 1) block matrix made of then (n �1)

2
matrices(ns)2 � 2

(ei 
 u
s
j ; ej 
 u

s
i ) for all pairs(i; j) such that1 � i < j � ns. We

note that the particular ordering of these pairs is irrelevant in what
follows. Therefore, from the structures of (3.10), (3.16), and (3.9)

Du � I(n ) = Us
�D U

s
; Cu = Us

�C U
s

D
T
u ;� = Us

�D (B.2)

with �D = [
�

O

O

�
], where�0

D = �Diag(2�s1�
s
1 + 1; . . . ;

2�sn �sn +1);�C = [O
O

O

�
], and�D = [

�

O
], where

�0

D = 2Diag(�s1; . . . ; �
s
n ). As such, (B.1) becomes

�D U
s
C
T
u ;� +�C �D = O: (B.3)

Because�C �D = O and �D is a (negative) defi-
nite matrix, CT

u ;� = O. Finally, from (3.18), we getC� =
1
2
(G� +Du ;� C

T
u ;� +Cu ;� D

T
u ;� ) = 1

2
G� = Diag((�s1)

2;

. . . ; (�sn )2), where the last equality uses (3.15).
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