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Abstract—A common assumption of blind channel identifica-
tion methods is that the order of the true channel is known. This
information is not available in practice, and we are obliged to
estimate the channel order by applying a rank detection proce-
dure to an “overmodeled” data covariance matrix. Information
theoretic criteria have been widely suggested approaches for this
task. We check the quality of their estimates in the context of
order estimation of measured microwave radio channels and
confirm that they are very sensitive to variations in the SNR
and the number of data samples. This fact has prohibited their
successful application for channel order estimation and has cre-
ated some confusion concerning the classification into under-
and over-modeled cases. Recently, it has been shown that blind
channel approximation methods should attempt to model only the
significant part of the channel composed of the “large” impulse
response terms because efforts toward modeling “small” leading
and/or trailing terms lead to effective overmodeling, which is
generically ill-conditioned and, thus, should be avoided. This
can be achieved by applying blind identification methods with
model order equal to the order of the significant part of the true
channel called the effective channel order. Toward developing an
efficient approach for the detection of the effective channel order,
we use numerical analysis arguments. The derived criterion
provides a “maximally stable” decomposition of the range space
of an “overmodeled” data covariance matrix into signal and
noise subspaces. It is shown to be robust to variations in the
SNR and the number of data samples. Furthermore, it provides
useful effective channel order estimates, leading to sufficiently
good blind approximation/equalization of measured real-world
microwave radio channels.

I. INTRODUCTION

FOLLOWING the work of Tonget al. [1], many methods
have been proposed recently that claim blind single-

input/multi-output channel identification under the so-called
length and zero conditions [2]–[4]. A common assumption in
all these works is that the order of the true channel is known.
Of course, such information is not available in practice, and
we are thus obliged to estimate the channel order by applying a
rank detection procedure to an “overmodeled” data covariance
matrix. The use of information theoretic criteria, as proposed
in [5], has become the standard first step of many methods
that treat the blind channel identification problem.
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The development of information theoretic criteria is based
on the assumptions that successive data vectors are i.i.d. zero-
mean Gaussian random vectors and that the noise is white
Gaussian and uncorrelated from the signal. These assump-
tions seem realistic in some applications, such as directions
of arrival, but in other applications, such as blind channel
identification, they do not seem the most appropriate. First,
in blind channel identification, the data covariance matrix is
built from vectors that exhibit the so-called “shift property;”
thus, successive data vectors arenot statistically independent.
Furthermore, existence of “colored noise” due to the influence
of long tails of “small” leading and/or trailing impulse re-
sponse terms, is practically inevitable. These terms shouldnot
be modeled because the quality of our estimate may degrade
dramatically [6], [7], and thus, we consider their influence on
the data covariance matrix as “colored noise.”

Hence, the assumptions on which information theoretic
criteria are based donot hold true in the blind channel
identification context. Thus, a natural question arises: “Do
information theoretic criteria providereliableeffective channel
order estimates?” We check the quality of their estimates
in the context of order estimation of measured microwave
radio channels. We observe that they are very sensitive to
variations in the SNR and the number of data samples. This
fact has prohibited their successful application for effective
channel order estimation and has created, arguably, some
confusion concerning the classification into under- and over-
modeled cases. This, in turn, has created confusion regarding
the robustness and applicability of blind channel identification
methods under realistic conditions.

In order to overcome the shortcomings of information theo-
retic criteria, we propose a new approach based on numerical
analysis arguments. Using the concept of canonical angles
between subspaces and invariant subspace perturbation results,
we develop a criterion that provides a “maximally stable”
decomposition of the range space of an “overmodeled” data
covariance matrix into signal and noise subspaces. When used
for the effective channel order determination of measured
microwave radio channels, the proposed criterion is shown
to be insensitive to variations in the SNR and the number
of data samples. Furthermore, it permits a classification into
stable or well-conditioned and unstable or ill-conditioned
cases. In the stable cases, it provides useful effective channel
order estimates, leading to sufficiently good blind channel
approximation/equalization; this isnot always the case with
information theoretic criteria. In the unstable cases, suffi-
ciently good blind channel approximation/equalization seems
difficult.

1053–587X/99$10.00 1999 IEEE
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II. EFFECTIVE CHANNEL ORDER DETERMINATION

USING INFORMATION THEORETIC CRITERIA

In this section, we recall the information theoretic criteria
[5], [9], [10], and we apply them to the effective channel order
determination problem.

A. Information Theoretic Criteria

Let us assume that we measure a sequence of-dimensional
data vectors , which obey the model

is a full-column rank matrix . is a
sequence of zero-mean stationary ergodic circular complex
Gaussian -dimensional random vectors with nonsingular co-
variance matrix

where superscript denotes Hermitian transpose;
is a sequence of zero-mean stationary ergodic circular com-
plex Gaussian -dimensional random vectors with covariance
matrix

where denotes the identity matrix, (its dimension becomes
clear from the context); furthermore, and are
uncorrelated. Under these assumptions, the covariance matrix
of is

where is a rank- matrix. The -dimensional subspace
spanned by the columns of is usually calledsignalsubspace,
whereas its orthogonal complement is callednoisesubspace.

A very important problem arising in many application areas
is the determination of the dimension of the signal subspace.
Denoting the eigenvalues of as

, we obtain that the smallest eigenvalues of
are equal to , i.e.,

Hence, in theory, we can determine the dimension of the signal
subspace from the multiplicity of the smallest eigenvalue of

However, in practice, we do not have access to the true
data covariance matrix but to its finite data sample estimate

(1)

In this case, the smallest eigenvalues ofare all different
with high probability, thus complicating the determination of
the dimension of the signal subspace.

Akaike’s information theoretic criterion (AIC) [9] selects
the model that minimizes

AIC

where is a parametrized family of prob-
ability densities, is the maximum likelihood estimate of

a parameter vector and is the number of free adjusted
parameters in

The minimum description length (MDL) criterion [10] se-
lects the model that instead minimizes

MDL

In the estimated data covariance matrix case described by (1),
assuming that the observed vectors are zero-mean
i.i.d Gaussian random vectors, one may show that [5]

AIC

and

MDL

where denote the eigenvalues of
The dimension of the signal subspace is taken to be the value
of for which either AIC or MDL
is minimized. The MDL criterion is shown to be asymptoti-
cally consistent, whereas the AIC tends to overestimate the
dimension of the signal subspace [5]. Taking into account
the sensitivity of blind channel identification methods, with
respect to effective channel overmodeling, the MDL criterion
has often been favored over the AIC.

B. Application of Information Theoretic Criteria for
Effective Channel Order Determination

A very important application area requiring the determina-
tion of a subspace dimension is blind channel identification.
In Fig. 1, we present the one-input/two-output channel setting
that is derived either by channel oversampling by a factor of
2 or by using two sensors at the receiver. Although, in the
sequel, we present the one-input/two-output case, the results
can be trivially extended to the one-input/-output case, with

If the true channel order is , and the channel impulse
response is denoted by , where superscript

denotes transpose, then the data vector composed
of the most recent samples of each subchannel, i.e.,

, can be expressed as

where
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Fig. 1. One-input/two-output channel setting.

The convolution matrix is defined as

with the matrix given by

...
...

The input is assumed zero-mean unit-variance white
noise, whereas the additive channel noise is assumed tem-
porally and spatially white, i.e.,

Furthermore, the input and the additive channel noise are
assumed to be uncorrelated.

If and subchannels do not share
common zeros, then is of full-column rank, i.e.,

rank

Thus, the data covariance matrix

is the sum of a rank- matrix and a multiple of
the identity. By determining the rank of , we can estimate
the order of the channel as

rank

However, in reality, the situation is somewhat different. The
true impulse response is often very long [11], that is,
usually , and it can be partitioned into the significant
part and the tails. Bysignificant part, we mean the part that is
usually found near the middle of the true impulse response and
contains the “large” terms; it may contain some intermediate
“small” terms as well. Its order, calledeffective channel order,
is denoted by (the unknown integer) By tails we mean
the part of the true channel that is complementary to the
significant part; it is composed of “small” leading and/or

trailing terms. Notationally, this partitioning can be expressed
for as [6]–[8]

where superscript means “appropriately zero-padded” and

with

and

(2)

With , we denote the truncated significant part of the
channel

In this case, the data covariance matrix is

where denotes the covariance matrix associated with the
significant part of the channel, and expresses the influence
of the tails. Due to (2), is assumed to be “small” with
respect to ; is also assumed to be “small.”

As shown in [6] and [7], blind channel identification meth-
ods should attempt to model only the significant part of
the channel because efforts toward modeling “small” leading
and/or trailing terms lead to effective overmodeling, which is
generically ill-conditioned and thus should be avoided. This
can be achieved by applying blind identification methods with
model order equal to the effective channel order. Thus, the
development of efficient approaches for the determination of
the effective channel order is of great importance.

Since the significant part of the channel has order
, if and subchannels do not share

common zeros, then is of full-column rank, i.e.,

rank

It can be verified easily that
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Fig. 2. Portion of the real part of subchannels.

yielding

rank rank (3)

This means that the estimated covariance
matrix is “close” to the rank- matrix

By computing the rank of , we can deduce the effective
channel order Now, however, our problem is more demand-
ing than that attacked in the previous subsection because the
perturbation onto the “ideal” matrix is no longer a multiple
of the identity. Despite this difference, the only methods that
have been suggested for channel order estimation are the
information theoretic criteria, as proposed in [5]. Therefore,
their behavior in realistic cases is of great importance.

In Fig. 2, we plot a portion of the real part of the two
subchannels constructed by the complex-valued oversampled,
by a factor of 2, FIR microwave radio channelchan10.mat,
which is found at http://spib.rice.edu/spib/microwave.html.
The partitioning into the significant part and the tails is clear.
Intuitively satisfying effective channel order estimates are two
or three, that is, three or four taps, for each subchannel.

In order to estimate the effective channel order, we perform
the following experiment: We put as input to the channel

independent samples from a 4-QAM constellation.
At the channel output, we add spatially and temporally white
noise, with SNR 90, 70, 50, and 30 dB. The SNR is defined
as

SNR

where is the variance of the circular complex additive
white subchannel noise. Then, we compute the “overmodeled”
covariance matrix of the noisy channel output (with
dimensions ). In Fig. 3, we plot the Akaike criterion,
that is, AIC versus , for the various SNR’s. The estimates
of the rank of , i.e., the ’s for which AIC is minimized,
are 40, 41, 30, and 23, respectively. Using (3), we compute
the corresponding effective channel order estimates as 19, 20,
9, and 2. The application of the MDL criterion is illustrated
in Fig. 4; the effective channel order estimates are 19, 19, 9,
and 2.

The most striking observation in the cases presented in
Figs. 3 and 4, and in extensive studies using all the measured

channels found at this site, is that the estimates of information
theoretic criteria are very sensitive to variations in the SNR
and the number of data samples. For high SNR (SNR
dB) and/or many data samples ), they usually lead to
effective overmodeling. Such estimates are practically useless
[6], [7]. For low SNR and few data samples, they may provide
useful estimates, leading to sufficiently good blind channel
approximation/equalization. However, their high sensitivity is
clearly unsatisfactory and has arguably created some confusion
concerning the correct classification into under- and over-
modeled cases. This, in turn, has created confusion regarding
the robustness and applicability of blind channel identification
methods in realistic cases.

In the sequel, we provide an entirely different approach,
based on numerical analysis arguments. The derived criterion
appears to be much more robust than information theoretic
criteria and its estimates much more useful, as validated in
many simulations.

III. A N EW RANK DETECTION CRITERION

Let us consider the -dimensional estimated data
covariance matrix , which is assumed to be the sum of
the unknown “ideal” rank- matrix and the unknown
“perturbation” matrix , i.e.,

where with being the assumed effective
channel order; and, thus, remain to be determined. The
“ideal” matrix denotes the exact statistics covariance
matrix associated with the significant part of the channel, i.e.,

The “perturbation” matrix incorporates the influence of
the tails, the influence of the additive, not necessarily white,
channel noise, and the influence of the estimated, inexact
statistics; is assumed to be “small” with respect to

Let us denote the eigenvalues of as

The smallest nonzero eigenvalue of being the
distance, in the matrix 2-norm of from the matrices with
rank measures “how well” fulfilled our assumption
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Fig. 3. AIC(k) versusk; for SNR = 90, 70, 50, and 30 dB.

Fig. 4. MDL(k) versusk; for SNR = 90, 70, 50, and 30 dB.

concerning rank is. Since

(4)

with being the th singular value of matrix , we may
consider as a measure ofdiversityof channel

Let the spectral decomposition of be



LIAVAS et al.: BLIND CHANNEL APPROXIMATION: EFFECTIVE CHANNEL ORDER DETERMINATION 3341

The “ideal” signal subspace is theunknown -dimensional
subspace spanned by the columns of , denoted
However, in practice, we considerincorrectly as signal sub-
space the “perturbed” subspace , where is the matrix
associated with the largest eigenpairs of i.e.,

and noise subspace as its orthogonal complement, which is
spanned by the columns of defined as

(5)

The assumption that is of rank implies that

(6)

which means that the unknown “ideal” and the estimated
“perturbed” subspaces and , respectively, are
related through a perturbation whose size, as measured by
the matrix 2-norm, is greater than or equal to Hence,
assuming that rank , (6) is theonly information we
may deduce for the perturbation

Since is assumed to be “small” with respect to ,
we would like to be “close” to However, (6)
is insufficient to calculate the distance between and

We can, however, examine the sensitivity of
with respect to “small” perturbations. To this end, we shall
compute how far may be moved by a perturbation,
which is denoted , whose 2-norm is the smallest that the
actual perturbation may have, that is

(7)

If is insensitive to , then we have reason to believe
that and are close each other. If, on the other
hand, is sensitive to , then and may
be far from each other.

We shall then take our rank estimate as the index,
for which is the least-sensitive, with respect to all
perturbations with over all

Thus, let us consider

with spectral decomposition

The eigenpartitionings defined analogously to and
become

(8)

A distance measure between two linear subspaces, commonly
employed in numerical analysis, is the sine of theircanonical

angles, [12, p. 43] [13]

(9)

where is the orthogonal projector onto , and
is the orthogonal complement of Since

and are related through the perturbation , we can
compute an upper bound for this distance using invariant
subspace perturbation results. It turns out [13] that the distance
between and is determined by the size of and
theseparationbetween the eigenvalues associated with
and , which is defined as

(10)

As we are going to see shortly, we useonly in the cases in
which its positivity is guaranteed.

Denoting by the Moore–Penrose generalized inverse of
, we obtain

Then, (9) yields [12, p. 268], [13]

(11)

Defining and using (5), (8) and
(10), we obtain from (11)

which simplifies to

Using standard eigenvalue perturbation results [15, p. 411],
we have further that

giving that if , then and

Otherwise, our upper bound is equal to 1. Thus, we have

if

otherwise.
(12)

Relation (12) reveals that the sensitivity of , with
respect to perturbations satisfying (7), is governed by the
separation of the eigenvalues and
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If , meaning that , then the “estimated”
signal subspace is insensitive to perturbations with size

, lending credence to its proximity to the unknown “ideal”
signal subspace Furthermore, from an eigenvalue
point of view, since , it does not seem plausible
that the “perturbed” eigenvalues and , which have
been associated with different subspaces, come from the same
multiple “ideal” eigenvalue

If, on the other hand, , meaning that ,
then the “estimated” signal subspace may be very
sensitive to perturbations with size , casting serious doubt
as to its proximity to the unknown “ideal” signal subspace

Furthermore, since , it seems plausible
that and , which have been associated with different
subspaces, come from the same multiple “ideal” eigenvalue,
for example,

Our rank estimate for will be taken as the integer,
leading to the effective channel order estimation, which
minimizes

Thus, our criterion becomes

(13)

If , then there is agap between and
Subspaces and are insensitive to perturbations
with size This fact makes us consider the problem of
decomposition into signal and noise subspaces, namely,
and , stable or well-conditioned. On the other hand,
absence of such a gap, i.e., , means that there does
not exist a clear-cut separation between the signal and the
noise, making us consider the problem of decomposition into
signal and noise subspacesunstableor ill-conditioned.

A. Connections with the Blind Channel Approximation Problem

In order to give a physical interpretation to our results, we
may say that if the diversity of the th-order significant part of
the true channel, which is denoted by , is sufficiently
large with respect to the size of the “noise”—here, “noise”
is a generic term that incorporates the influence of the tails,
the additive, not necessarily white, channel noise and the
estimated, inexact statistics—expressed as [recall (4)]

then

which means that there will exist a gap between two con-
secutive eigenvalues of the estimated data covariance matrix,
making us consider the decomposition into signal and noise
subspaces stable.

As shown in the blind channel identification context [6], if
the diversity of the th-order significant part of the channel
is sufficiently large with respect to the size of the tails, then
the th-order subspace method can approximate the unknown
channel sufficiently well.

The measures of diversity in these cases are not identi-
cal. In the subspace decomposition problem, the measure is

, whereas in the blind channel approx-
imation problem, it is These quantities
are not orderable, in general, that is, one is not always larger
than the other. However, since they measure the distance
of and , respectively, from the
matrices with rank one less than the assumed rank, we expect
that if one measure is “large” (resp. “small”) then the other will
be “large” (resp. “small”), as well. Extensive simulations have
revealed that they are reasonably close. Thus, we should expect
a close relationship between the stability of the decomposition
of the data covariance matrix into signal and noise subspaces
and the stability of the approximation of unknown channels
by blind channel identification methods.

B. Determination of the Effective Channel
Order with the Proposed Criterion

In Fig. 5, we plot the inverse of the rank detection criterion
(13), i.e., versus , for the data set used for the
computation of AIC and MDL , shown in Figs. 3 and
4. We observe that the proposed criterion is insensitive to
variations in the SNR. In all cases, the minimum of
appears at the position 23, giving 2 as the effective channel
order estimate, that is, three taps for each subchannel. In all
cases, there exists a gap between two consecutive eigenvalues
of the estimated data covariance matrix, namely,and ,
making us consider the signal-noise subspace decomposition
problem stable. Furthermore, in all cases, the first-order “zero-
forcing” or Wiener equalizers, which are computed by the
impulse responses estimated by the second-order subspace
method, can open the eye. In Fig. 6, we plot the output of
the first-order Wiener equalizer for the SNR30 dB case.

In extensive simulations, we have observed that the pro-
posed criterion is insensitive to variations in the number of
data samples.

Two quite dissapointing facts concerning the behavior of
information theoretic criteria are that, as shown in Figs. 3–5,
in many cases

1) they cannot detect a gap of about two orders of mag-
nitude between two consecutive data covariance matrix
eigenvalues;

2) they associate,erroneously, “close” eigenvalues with
different subspaces.

This means that their estimates may be poor even in cases
considered stable. This is a characteristic of unstable numerical
procedures, and clearly, it is unsatisfactory.

In some cases, there doesnot exist a big gap between
two consecutive eigenvalues of This is the case, for
example, ofchan3.mat, found at the same website. We com-
pute using noiseless data obtained at the output of
this channel. In Fig. 7, we plot versus , where it
seems that there isno clear-cut separation between the signal
and the noise, making us consider the signal–noise subspace
decomposition problem unstable. This fact implies that there
does not exist an such that the diversity of the th-
order significant part of this channel is sufficiently large, with
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Fig. 5. Inverse of the proposed criterion, i.e.,1=r(q) versusq for SNR = 90, 70, 50, and 30 dB.

Fig. 6. Best case output of first-order Wiener equalizer (delay= 2) computed
using the impulse response “identified” by the second-order subspace method
(SNR = 30 dB).

respect to the “noise.” Consequently, we may anticipate that
it is difficult to approximate and subsequently equalize this
channel sufficiently well. In some realizations of high SNR
SNR dB), it is possible to open the eye using the Wiener

equalizers corresponding to the estimates of the subspace
method with order the estimated by the proposed criterion
effective channel order, i.e., 1. However, for SNR dB,
it seems difficult to approximatechan3.matsufficiently well,
using blind channel identification methods. Thus, the value of

may provide useful information not only for the stability
of the decomposition of the data covariance matrix into signal
and noise subspaces but also for the stability of the blind
channel approximation problem.

Fig. 7. Inverse of the proposed criterion, i.e.,1=r(q) versusq for noiseless
data obtained bychan3.mat.

IV. CONCLUSIONS

Effective channel order determination is critical to the
successful application of blind channel identification proce-
dures. We considered the performance of information theoretic
criteria for this task. It turns out that they are very sensitive
to variations in the SNR and the number of data samples.
More specificaly, for high SNR and/or many data samples,
they usually lead to effective overmodeling. Such estimates are
practically useless. For low SNR and few data samples, they
may lead to useful effective channel order estimates. However,
their high sensitivity is unsatisfactory and has impeded their
successfull application to the channel order determination
problem. Furthermore, it has contributed to the creation of
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some confusion concerning the classification into under- and
over-modeled cases and the applicability of blind channel
identification methods in realistic cases.

In order to avoid these shortcomings, we proposed a new
criterion based on numerical analysis arguments. Using the
concept of canonical angles between subspaces and invariant
subspace perturbation results, we provided a “maximally sta-
ble” decomposition of the range space of the data covariance
matrix into signal and noise subspaces. Simulations with
realistic data have shown this criterion to be insensitive to
variations in the SNR and the number of data samples.

Existence of a gap between two consecutive eigenvalues of
the estimated data covariance matrix makes us consider the
subspace decomposition problem stable and gives reason to
believe that the blind channel approximation problem is stable
as well. On the other hand, absence of such a gap makes us
consider both problems unstable. In the stable cases, our crite-
rion provides useful effective channel order estimates, leading
to sufficiently good blind channel approximation/equalization;
this is not always the case with information theoretic cri-
teria. In the unstable cases, sufficiently good blind channel
approximation seems difficult.

A very important question concerning the widespread appli-
cability of blind channel identification methods is whether the
majority of real-life microwave radio impulse responses leads
to stable or unstable signal–noise subspace decompositions.
In order to answer this question, extensive experimentation
with measured data is needed. Thus, the development of an
extensive database with measured data is of great importance.
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