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. INTRODUCTION

Many methods can claim exact SIMO channel identification, in the

In this correspondence, we analyze the approximation performanggsejess case, under the so-called length and zero conditions [1]—[4].
of a special FIR prefilter. The results show that the convergent rate\gfyyever, their behavior may change dramatically under more realistic

the prefiltered projection is the same as that of the orthogonal projegsigitions, including the presence of tails of “small” leading and/or

tion. In addition, for bandlimited signals, the quantitative estimates ﬂfailing impulse response terms [5]. Robustness issues of blind channel

the upper bounds of the three types of errors are obtained. Particulggiyqsification methods in such scenarios are very important from a
for the Daubechies’ orthogonal wavelet base, the estimated ConSta'Hr'ﬁctical point of view [6] but are less well understood. We study the
optimal. Using these results, we can perform an initialization for theo 4, asymptotic performance offered by the linear prediction (LP)
DWT. method when the true channel is of ordef, whereas the channel
model is of ordern, withm < M. We term this case theth-order LP
method. For ease of presentation, we adopt a single-input/two-output

The authors would like to thank the anonymous reviewers for th&hannel setting. Extension to the casg autput channels witp > 2
detailed comments and one reviewer who pointed out some errordSigtraighforward.
the proof of Lemma 1 in the original version of this manuscript. The In Section II, we review the LP method for the exact order, exact
first author also thanks Prof. M. Unser and Dr. T. Blu very much foptatistics, noiseless case. In Section Ill, we bound the distance between
fruitful discussions. the impulse response estimate furnished by ttib-order LP method
and themth-order significant part of the true channel, which will be
defined in Section Ill. This distance depends on the diversity of the
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mth-order significant part, as measured by the smallest nonzero skdth-order zero-forcing zero-delay equalizer is given by the row
gular value of a certain filtering matrix, and the size of the unmodelagctorgrs = (1/vA)v"[I Au]. The impulse responde.s can be
tails. In the course of our analysis, we show that two frequent clairidentified via

concerning the LP method, namely, that a) the method is robust with ro -+ Tum

respect to channel overmodeling and b) the performance of the method hy =Suel,. withS. 2
depends critically on the size of the first impulse response term, are not M MEM> M
correctin realistic scenarios. In Section IV, we present simulations, and LY
some concluding remarks are summarized in Section V. In[7, Eq. (3.10)], itis shown tha »; = Has (has) 744 (has), with the
2(L+1)x (L+ M+ 1) matrixHz (has) defined, forL < M, as
II. LP METHOD: EXACT ORDER CASE h ... h h o,
(0) () (M)
In this section and in order to fix notation, we review the basic Hr (hay) a o
steps of the LP method for blind channel identification, under the
one-input/two-output noiseless channel setting. If the true order of hiy oo+ b
the subchannels i&/, then the output of thgth subchanne)cﬁf), for In [3], it was shown that the LP method is able to identify the un-
j = 1,2,is given by known channel in the overmodeled, with respect to identically zero im-
" pulse response terms, exact statistics case. Furthermore, it was claimed
L) Z ED s thgtthe algorithm is expected to perform well in the estimated statistics,
¢ P LA noisy, overmodeled cases, although this was not supported by theoret-
ical results.
Wherehgj) is the impulse response of thjéh subchannel, ane; is In [3] and [4], it was claimed that if the first impulse response term

the input sequence, which is assumed to be zero-mean unit-variahge 1S “small,” then the algorithm is expected to perform poorly. In

i.i.d. The data vectok, (i) A [x! --- x’ ,]", where superscript [6] and [7], it has been argued that microwave radio channel impulse

T LA () (zlfr ’ responses usually possess “small” leading and/or trailing terms. This
denotes transpose, withy = [¢; ' »;”’]", can be expressed as .

\ = T (h (i), whereh A b7 ... b7, |7 denotes comes from the fact that the impulse respohse models both the
x’/(_z') = Tr.(hur)srn (i), MA— (1()0) - (M) _ shaping filters and the propagation through the channel. Does this mean
the impulse response vector, whit) = [h), n7, Tr(har)isthe  thatthe LP method generically performs poorly in realistic cases? More
2(L +1) x (L + M + 1) generalized Sylvester matrix generally, which are the factors that determine the robustness of the LP

method in undermodeled/overmodeled cases? These are the questions
hoy -+ h ;
N we address in the sequel.
Tr.(hy) =

ho) -+ ho ll. mTH-ORDERLP METHOD

A o ) In order to study thenth-order LP method, we partition the true
ands.4as (i) = [si -+ si—L—n]" . Itis well known that if the sub- channem,; into 5] [8]:
channels oths do not share common zeros ahd> M — 1, then
71, (Har) has full-column rank.

In the sequel, we review how thé&/th-order linear prediction
error filter associated witkx; can be used for the identification of
the Mth-order impulse responde;; [3]. At first, we compute the
coefficients of th& x 20 minimum mean-square error multichannel
linear predictor

1) them-th order significant part which is themth-order con-
tiguous part of the true channel that has the largest energy among
all its mth-order contiguous parts; it usually lies near the middle
of the impulse response;

2) the unmodeled tailswhich is the complementary part to the
mth-order significant part; the unmodeled tails usually contain
“small” leading and/or trailing terms.

[A -+ Ayl=-[r1 - ru]Ry., Notationally, we express this partitioning for< m, < m, = m; +
—~ m < M, as
A LY
where hyr = h:nl,mz + d:nl,mz
A T N T where superscript® denotes “appropriatelly zero-padded,” and
Ruy—1= E{xpy—1(D)xn—1(0)}y = Tar—1(hp Y Tos— (hyy - . !
M A (s ,Tl() =1 (D) = Tat—s (Bad) Tag -1 (hao) hy,, .., andd;,, .., are defined by the expression at the bottom of
ry, = E {X:‘XH@} . the page. With.,,., ..., , we denote the truncatedth-order significant
N parth,,, ., = [h/,.y -+ h{,,]". Our study proceeds in two
If we defineD = ry; + Amsz, then it can be shown that steps. We first consider theth-order LP method, assuming that the
D = h(o)h%). If A and v are, respectively, the nonzero eigenirue channel is thenth-order significant parh,., ..,, and then, we
value of the rank-one matriD, and its associated unit two-normstudy the behavior of thexth-order LP method upon augmenting this
eigenvector, i.e.A = |[|hqll5 andv = h/||he,ll2, then an significant part with the tails.
il il
P A T T4.T T T T z A T T T Ty.T T
hml,mz = |0 --- 0 h(ml) h(rrL2)0 - 0 ',\dml,mz = h(O) h(ml—l)o - 0 h(1712+1) h(i\/f)
e N e’ v

m A — m—41
1 m—+1 M—mgq my + M—mg
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Thus, let us initially assume that the true impulse response listhe sequel, we provide a first-order upper bound|ff1rn1,mz —
h..., m,. Then, themth-order autocorrelation matrix is hoof s lle.

A. First-Order Analysis

Iro r

R7n = |: T R—rn_] :| = ,Tnz(hm,l,rnz)Tg(hnzlnn,z)- (1)

L

Result 1: If h.., .., iS the truncatednth-order significant part of
the true channéi,,, with ||has|]2 = 1, and the size of the unmodeled

If the subchannels oh,,, .., do not share common zeros, the@ilS iIS[|d%., m,[l2 = €n, then themth-order LP method furnishes
mth-order LP method furnishes h;,,,m, for which there holds to a first-order, with respectto

B - (2m 4+ 3)em 1
Am = I‘ Rm 1s D =Typ —+ A,n 7777 h(ml)h(lml) (2) ‘ h1n1,m2 - hm,l,mz 5 S ||h(ml—)||2 1 + {ggn
h.)
A= Bl V=t 4 Yyt len (10)
(m1) 112 Om
1
gm Tvl (LA ®) . A : .
A . With 6, = d2m(Trm—1(him, m,)), Wheres; (M) denotes théth sin-
ho\me =Smgnm gular value of matrixM.

With Son = Hom (B y ) Zz(h7"1:7n2 ). (4) The proof is given in the Appendix.
Using arguments similar to those used in [5, Th. 2], it can be shown

that
Now, let us assume that the true impulse responkg,is,., . Since

Sm < min (|||

by ll2) - (11)

z T z E N T . 3
T (Mg o) Do (M) i) = Ton(Bing g ) T (B i) From these two bounds, it becomes clear tht if, ) andhy,,,, are
“large,” i.e.,O(1), then the performance limitations of theth-order
it is simple to show that by following the same sequence of steps, we method are dominated iy, Th'_s can happen when is chosen
can “identify” the nonzero part di: namely,h small enough so that theth-order significant part of the true channel
mi,ma g g - . “ ” . . .
Finally, let us consider our augmented problem, in which the true "Hoes not contain any “small” leading and/or trailing terms, lfis suf-

pulse response isxs, which, without loss of generality, is conS|dereo“'C'(':‘ntly large, with respect te,., then themth-order LP method pro-
to be normalized to unit 2-norm, i.d{h.s|j> = 1, under the assump- vides good channel approximations; otherwise, its performance may be
tion thatd” is small. i.e poor. Sincé,,, is the distance, in the matrix 2-norm, Bf,—1 (h,. 1, )

e from the matrices with rank one less than the assumed rank, it may be
considered to be a measurediersityof h,.,, ...
|5y s, = €m < 1. (5) If, on the other handh,,,) and/orhy,,,, are “small,” i.e.,O0(e;n),
thené,,, = O(en), thatis,é,, becomes of the order of the perturba-

In this case, thenth-order autocorrelation matrix is the perturbed vert-Ion making the approximation probleificonditionedand leading to

sion of R..., as shown in (6) at the bottom of the page. The linear prgotentlally poor performance of theth-order LP method. This hap-
dictor and the associated prediction error power are given by pens whenn is greater than theffective channel ordgB] and means
that we try to model not only the significant part of the true channel but

also some “small” leading and/or trailing impulse response terms. This
Am = —F R;ﬂ ;,, D=rg+ Amﬂ@. (7) case is termedffective overmodeling
The sensitivity of the LP method, with respect to effective overmod-
eling, runs counter to recent claims of robustness of the LP method,
with respect to overmodeling [3], [4]. The explanation is simple. In
these works, overmodeling has been defined with respect to identically
zero impulse response terms. As a result, the multichannel linear pre-
G = L{,T 1A ®) dictor is a solution to a rank-deficient system of linear equations. In
\/X [3], a solution has been computed by using pseudoinversion, whereas,
in [4], by using order-recursions. However, a more natural definition of
(effective) overmodeling is with respect to “small” impulse response
terms [5], [8]. In this case, the linear predictor is the solution of a close
to rank-deficient linear system [recall that in this caSg,= O(e..)].
137n1,n12 =S,.gl, withS,, = Hm(har) 7, (hu (9) Inorder to avoid large enhancement of inaccuracies, which are due to

2,

Terms) andv are, respectively, the largest eigenvaludfand its
associated eigenvector, and

Finally, themnth-order impulse response estimate is given by

RTn = |:~10 - :| = ’Z;-y;,(h;\,j)’];i (h[\]) Z—Tn(h:rn mo + d:rn 7772)2- (h:vn mo + d;n1,7n2)

= Rm + {T ( ey, IILQ),]:{(drrL1 mg) + T (dm1 r:zg)zf(her1,rrL2) + O(Efn)} . (6)

ARm
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the influence of the tails, both the pseudoinversion and the order-recu 10 T T T T T T T
sions should be implemented with great care. Before the pseudoin\§
sion, we should compute the effective rank of the data covariance ng 1o’ ' 
trix, whereas the order recursions should terminate at the right point &

using an appropriate stopping criterion. These regularizing actions 1:5; il
mand, explicitly or implicitly, the detection of the effective rank of the§
data covariance matrix, which is synomynous with effective chanr®

order detection [8]. If we can estimate accurately the effective chani 'z 2 % % 20 25 %0 s 0
order, then we can implement these regularization techniques succe.. 20100,4{IlH ll2 710z 1)

fully. However, in this case, overmodeling seems superfluous. Conse-
quently, the LP method, contrary to current beliefsnag inherently
robust with respect to effective channel overmodeling.

From Result 1, it becomes clear thatif is chosen favorably, the APPENDIX
model quality depends on the size of the first “significant” térp, ) .
Thus, in our study, terrh,,,, plays the role that the first nonzero term
h(, played in previous studies [3], [4], which assumed exact knowl-
edge of the channel length and no tails.

The important problem of effective channel order detection is studi
in [8].

One may ask how can we estimate the start and end points of
m¢th-order significant par:, andm.. The answer is that their values 1, .. —h,,, .., = AS,.g,, — lgmAng};thlimz
are insignificant since during the equalization step, the factthat 0 2
changes the solution by adding a delay:of time units [5]. _S

Esti

Fig. 1. Estimation error bound (10) (thick line) and measured error.

Before proceeding to the proof of Result 1, we state the following
mma.

Lemma: If h,,, . is the truncatednth-order significant part of
the true channel, then theth-order LP method furnishds., ..., , for
W‘lich there holds, to a first-order approximation, with respect to the
tsri1zee of the unmodeled taits,

0
" RL, [Ar) AR.._i] gl

m—1

(12)

The proof can be derived by following steps analogous to those of
([3, App. A)]). The error in quantityX is AX 2 X - X, with X

In the previous section, we derived bound (10), which provides sidefined in (6)—(9) and\ defined in (1)—(4). Furthermore, instead of
nificantinsightinto the performance of the LP method in realistic casgsseudoinversion, we use inversion.
This bound is derived by repeated application of the triangle and sub- Proof of Result 1: In order to prove Result 1, we will bound the
multiplicative inequalities (see the Appendix). Thus, it is, in genera®-norm of each term of the right-hand side of (12). From (4) and (9),
loose. However, it is given by a reasonably simple expression, identie deduce
fying the cases in which the LP method performs well or may perform N T,
poorly. For example, it reveals the instability related to effective over- ASm =8Sm = Sm = Hm(/}}“ﬁm (ha)
modeling. — Mo (Bony ) Tt (B )

In our simulation, we consider the mean asymptotic performance =Hpm(hly, my +din, 1777’2)77;{(}1;1 o i o)
of the second-order LP method by varying the size of the tails. The T
sianif . = Hm By ,ms) Lo (Bimy my)

gnificant part of the channel is -

= Hon (B, 1) Ton (diny s

+ Hon (A ) T (B oy ) + OleR)

IV. SIMULATIONS

h, 4 = [—0.6804 0.4281; 0.1777 —0.2446; —0.0902 —0.5043].

and thus
We construchio = hj 4 + d3 4 by using random “tailsd; , with ASign = Hun (b, ) Tk (i 1y ) B
+ Hm(dfn] ,7772)en11 + 0(67277)
20 < 201og;, ([|h 4[l2/11d3 4]l2) < 60. wheree; is the canonical vector with 1 at thé + 1)st position and

zeros elsewhere. It is easy to see that the second term vanishes. Using

We scaleh; S0 thatl[hol. = 1. Then, we apply the second-orderthe matrix 2-norm/F-norm inequality, the structure’df, (h,, ,.,)

LP method, and we compule 4. In Fig. 1, we plot the first-order and7m(dy, ., ), and (5), we obtain the first-order bound

bound (10) (thick line) and the actual error. We observe that although HASmgr < HHm(hf" ’ )H ‘ TT(df‘ ) ( gl
the bound is loose, it provides an indication of the quality of the esti- "2 = AL | R V% ?
mator. <em(m+1)llgmlla- (13)

For the second term, we have, from (6)
V. CONCLUSION T 2 T, 4z
En AR = 8 {To (B ) Tl (D)

We considered the performance of theh-order LP method for . T 9 r
+ 7:77 (dml,rnz)?'?n (hrnl,mz) + O(Ern)} gTTL

blind channel identification, when the true channel is of orfdgwith

m < M. We showed that the:th-order LP method furnishes an ap- - ge;{” ’Ziv(dfnq 1,772)g;17'1 + O(e%)
proximation to thenth-order significant part of the true channel. The 0

closeness depends on the diversity ofithth-order significant part and h )

the size of the unmodeled tails. Furthermore, we showed that, contrary = 2g,, m_l* + ()(e?n)

to current beliefs, the LP method is not inherently robust with respect

to effective channel overmodeling. hi—m
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Interference Blanking Probabilities for SLB in Correlated

sl < |[Hm By mo)|| %l(d:n m - 18m]|2 g R
Il < I vl g | o) gl Gaussian Clutter Plus Noise

ho 1 Alfonso Farina and Fulvio Gini
—1
+ H’Z;nfl<hrnl,7n2)”2
hyy—m 1|y Abstract—This work presents closed-form expressions of the probability
'\/ms Pr 4 of false alarm, the probability Pr g of blanking a target received in the
< (m 4+ Demllgmll2 + : m (15) main lobe, and the probability P of blanking a coherent repeater inter-
bm ference (CRI) via an SLB device operating in correlated Gaussian clutter

L with known Doppler spectrum plus white Gaussian thermal noise.
In order to bound the teriifg,. ||: appearing in (13)—(15), we proceed

as follows. Since Ind_ex Terms—Coherent interference rejection, radar clutter, sidelobe
blanking.
Am {’Im—l(hmlvmz)’]—nlzfl(hml-mz)}
= —[Bm,41) -+ hm, O - 077, (hny my) I. INTRODUCTION AND WORKING PRINCIPLE
To counter impulsive-type sidelobe interference, a radar receiver
andZ, -1 (hm, m,) is nonsingular, we obtain usually employs a sidelobe blanking (SLB) system, which blanks the
- radar receiver output in those range cells where the unwanted signal
[ Amll2 < |“h(m1+1) h('"Z)]HF HTmfl(hmwnz)Hz appears in the radar antenna sidelobes. The purpose is reached via a
< i low gain auxiliary antenna that is located close to the main antenna,
~ om which receives the same interfering signals of the main antenna. By

comparing the signals captured by the radar and auxiliary antennas,
we may ascertain whether the impulsive signal is received through
the radar antenna side lobes. In such a situation, the radar signal is

1 1 : blanked in the range cell affected by the interference. The processing
Tz T An]ll, = Mmool 1+ 1A scheme connecting the radar and the SLB device is outlined in Fig. 1
(M1 m1

1 . [1], [2]. The SLB decides whether or not to blank the main channel
< — 1+ —. (16)
el V0 62,
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Using the expression for the equalizgr = (1/|/h(m ) [l2)v* [T Amm]
and the fact thafjv||. = 1, we obtain

llgmll2 <
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