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V. CONCLUSIONS

In this correspondence, we analyze the approximation performance
of a special FIR prefilter. The results show that the convergent rate of
the prefiltered projection is the same as that of the orthogonal projec-
tion. In addition, for bandlimited signals, the quantitative estimates of
the upper bounds of the three types of errors are obtained. Particularly
for the Daubechies’ orthogonal wavelet base, the estimated constant is
optimal. Using these results, we can perform an initialization for the
DWT.
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On the Robustness of the Linear Prediction Method for
Blind Channel Identification with Respect to Effective

Channel Undermodeling/Overmodeling

Athanasios P. Liavas, P. A. Regalia, and Jean-Pierre Delmas

Abstract—We study the performance of the linear prediction (LP)
method for blind channel identification when the true channel is of order

, whereas the channel model is of order , with . By
partitioning the true channel into the th-order significant part and the
unmodeled tails, we show that the LP method furnishes an approximation
to the th-order significant part. The closeness depends on the diversity
of the th-order significant part and the size of the unmodeled tails.
Furthermore, we show that two frequently encountered claims concerning
the LP method, namely, that a) the method is robust with respect to
channel overmodeling and b) the performance of the method depends
critically on the size of the first impulse response term, are not correct in
realistic scenarios.

Index Terms—Communications, multichannel system identification.

I. INTRODUCTION

Many methods can claim exact SIMO channel identification, in the
noiseless case, under the so-called length and zero conditions [1]–[4].
However, their behavior may change dramatically under more realistic
conditions, including the presence of tails of “small” leading and/or
trailing impulse response terms [5]. Robustness issues of blind channel
identification methods in such scenarios are very important from a
practical point of view [6] but are less well understood. We study the
mean asymptotic performance offered by the linear prediction (LP)
method when the true channel is of orderM , whereas the channel
model is of orderm, withm < M . We term this case themth-order LP
method. For ease of presentation, we adopt a single-input/two-output
channel setting. Extension to the case ofp output channels withp > 2

is straighforward.
In Section II, we review the LP method for the exact order, exact

statistics, noiseless case. In Section III, we bound the distance between
the impulse response estimate furnished by themth-order LP method
and themth-order significant part of the true channel, which will be
defined in Section III. This distance depends on the diversity of the
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mth-order significant part, as measured by the smallest nonzero sin-
gular value of a certain filtering matrix, and the size of the unmodeled
tails. In the course of our analysis, we show that two frequent claims
concerning the LP method, namely, that a) the method is robust with
respect to channel overmodeling and b) the performance of the method
depends critically on the size of the first impulse response term, are not
correct in realistic scenarios. In Section IV, we present simulations, and
some concluding remarks are summarized in Section V.

II. LP METHOD: EXACT ORDER CASE

In this section and in order to fix notation, we review the basic
steps of the LP method for blind channel identification, under the
one-input/two-output noiseless channel setting. If the true order of
the subchannels isM , then the output of thejth subchannelx(j)i , for
j = 1; 2, is given by

x
(j)
i =

M

k=0

h
(j)
k si�k

whereh(j)k is the impulse response of thejth subchannel, andsi is
the input sequence, which is assumed to be zero-mean unit-variance
i.i.d. The data vectorxL(i)

�
= [xTi � � � xTi�L]

T , where superscript
T denotes transpose, withxi

�
= [x

(1)
i x

(2)
i ]T , can be expressed as

xL(i) = TL(hM )sL+M (i), wherehM
�
= [hT(0) � � � hT(M)]

T denotes

the impulse response vector, withh(k)
�
= [h

(1)
k h

(2)
k ]T , TL(hM ) is the

2(L+ 1)� (L+M + 1) generalized Sylvester matrix

TL(hM )
�
=

h(0) � � � h(M)

. . .
. . .

h(0) � � � h(M)

andsL+M (i)
�
= [si � � � si�L�M ]T . It is well known that if the sub-

channels ofhM do not share common zeros andL � M � 1, then
TL(HM) has full-column rank.

In the sequel, we review how theM th-order linear prediction
error filter associated withxi can be used for the identification of
the M th-order impulse responsehM [3]. At first, we compute the
coefficients of the2� 2M minimum mean-square error multichannel
linear predictor

[A1 � � � AM ]

A

= � [r1 � � � rM ]

r

R
�1
M�1

where

RM�1
�
= EfxM�1(i)xTM�1(i)g = TM�1(hM)T T

M�1(hM)

rk
�
= E xix

T
i�k :

If we define D
�
= r0 + AMr

T
M , then it can be shown that

D = h(0)h
T
(0). If � and v are, respectively, the nonzero eigen-

value of the rank-one matrixD, and its associated unit two-norm
eigenvector, i.e.,� = kh(0)k22 and v = h(0)=kh(0)k2, then an

M th-order zero-forcing zero-delay equalizer is given by the row
vectorgM = (1=

p
�)vT [I AM ]. The impulse responsehM can be

identified via

hM = SMg
T
M ; with SM

�
=

r0 � � � rM
... . .

.

rM

:

In [7, Eq. (3.10)], it is shown thatSM = HM(hM) T T
M (hM), with the

2 (L+ 1)� (L+M + 1) matrixHL(hM) defined, forL �M , as

HL(hM)
�
=

h(0) � � � h(L) � � � h(M)

... . .
.

. .
.

O

h(L) � � � h(M)

:

In [3], it was shown that the LP method is able to identify the un-
known channel in the overmodeled, with respect to identically zero im-
pulse response terms, exact statistics case. Furthermore, it was claimed
that the algorithm is expected to perform well in the estimated statistics,
noisy, overmodeled cases, although this was not supported by theoret-
ical results.

In [3] and [4], it was claimed that if the first impulse response term
h(0) is “small,” then the algorithm is expected to perform poorly. In
[6] and [7], it has been argued that microwave radio channel impulse
responses usually possess “small” leading and/or trailing terms. This
comes from the fact that the impulse responsehM models both the
shaping filters and the propagation through the channel. Does this mean
that the LP method generically performs poorly in realistic cases? More
generally, which are the factors that determine the robustness of the LP
method in undermodeled/overmodeled cases? These are the questions
we address in the sequel.

III. mTH-ORDER LP METHOD

In order to study themth-order LP method, we partition the true
channelhM into [5] [8]:

1) them-th order significant part, which is themth-order con-
tiguous part of the true channel that has the largest energy among
all itsmth-order contiguous parts; it usually lies near the middle
of the impulse response;

2) the unmodeled tails, which is the complementary part to the
mth-order significant part; the unmodeled tails usually contain
“small” leading and/or trailing terms.

Notationally, we express this partitioning for0 � m1 < m2
�
= m1 +

m � M , as

hM = h
z
m ;m + d

z
m ;m

where superscriptz denotes “appropriatelly zero-padded,” and
hzm ;m anddzm ;m are defined by the expression at the bottom of
the page. Withhm ;m , we denote the truncatedmth-order significant
part hm ;m

�
= [hT(m ) � � � hT(m )]

T . Our study proceeds in two
steps. We first consider themth-order LP method, assuming that the
true channel is themth-order significant parthm ;m , and then, we
study the behavior of themth-order LP method upon augmenting this
significant part with the tails.

h
z
m ;m

�
= 0

T � � � 0T
m

h
T
(m ) � � � h

T
(m )

m+1

0
T � � � 0T
M�m

T

;dzm ;m
�
= h

T
(0) � � � h

T
(m �1)

m

0
T � � � 0

T

m+1

h
T
(m +1) � � � h

T
(M)

M�m

T

:
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Thus, let us initially assume that the true impulse response is
hm ;m . Then, themth-order autocorrelation matrix is

Rm =
r0 rm
rTm Rm�1

= Tm(hm ;m )T Tm (hm ;m ): (1)

If the subchannels ofhm ;m do not share common zeros, the
mth-order LP method furnishes

Am = �rmR
�1
m�1; D = r0 +Am r

T
m = h(m )h

T
(m ) (2)

� = h(m )
2

2
; v =

h(m )

kh(m )k2
gm =

1p
�
v
T [I Am] (3)

hm ;m = Sm g
T
m

with Sm = Hm(hm ;m )T T
m (hm ;m ): (4)

Now, let us assume that the true impulse response ishzm ;m . Since

Tm(hzm ;m )T Tm (hzm ;m ) = Tm(hm ;m )T Tm (hm ;m )

it is simple to show that by following the same sequence of steps, we
can “identify” the nonzero part ofhzm ;m , namely,hm ;m .

Finally, let us consider our augmented problem, in which the true im-
pulse response ishM , which, without loss of generality, is considered
to be normalized to unit 2-norm, i.e.,khMk2 = 1, under the assump-
tion thatdzm ;m is small, i.e.,

d
z
m ;m 2

= �m � 1: (5)

In this case, themth-order autocorrelation matrix is the perturbed ver-
sion ofRm, as shown in (6) at the bottom of the page. The linear pre-
dictor and the associated prediction error power are given by

~Am = �~rm ~R�1m�1; ~D = ~r0 + ~Am~rTm: (7)

Terms~� and ~v are, respectively, the largest eigenvalue of~D and its
associated eigenvector, and

~gm =
1

~�
~vT [I ~Am]: (8)

Finally, themth-order impulse response estimate is given by

~hm ;m = ~Sm~gTm; with ~Sm = Hm(hM)T Tm (hM): (9)

In the sequel, we provide a first-order upper bound fork~hm ;m �
hm ;m k2.

A. First-Order Analysis

Result 1: If hm ;m is the truncatedmth-order significant part of
the true channelhM , with khMk2 = 1, and the size of the unmodeled
tails is kdzm ;m k2 = �m, then themth-order LP method furnishes
~hm ;m for which there holds to a first-order, with respect to�m

~hm ;m � hm ;m
2
� (2m+ 3)�m

kh(m )k2 1 +
1

�2m

+

p
m+ 1�m
�m

(10)

with �m
�
= �2m(Tm�1(hm ;m )), where�i(M) denotes theith sin-

gular value of matrixM.
The proof is given in the Appendix.
Using arguments similar to those used in [5, Th. 2], it can be shown

that

�m � min kh(m )k2; kh(m )k2 : (11)

From these two bounds, it becomes clear that ifh(m ) andh(m ) are
“large,” i.e.,O(1), then the performance limitations of themth-order
LP method are dominated by�m. This can happen whenm is chosen
small enough so that themth-order significant part of the true channel
does not contain any “small” leading and/or trailing terms. If�m is suf-
ficiently large, with respect to�m, then themth-order LP method pro-
vides good channel approximations; otherwise, its performance may be
poor. Since�m is the distance, in the matrix 2-norm, ofTm�1(hm ;m )
from the matrices with rank one less than the assumed rank, it may be
considered to be a measure ofdiversityof hm ;m .

If, on the other hand,h(m ) and/orh(m ) are “small,” i.e.,O(�m),
then�m = O(�m), that is,�m becomes of the order of the perturba-
tion, making the approximation problemill-conditionedand leading to
potentially poor performance of themth-order LP method. This hap-
pens whenm is greater than theeffective channel order[8] and means
that we try to model not only the significant part of the true channel but
also some “small” leading and/or trailing impulse response terms. This
case is termedeffective overmodeling.

The sensitivity of the LP method, with respect to effective overmod-
eling, runs counter to recent claims of robustness of the LP method,
with respect to overmodeling [3], [4]. The explanation is simple. In
these works, overmodeling has been defined with respect to identically
zero impulse response terms. As a result, the multichannel linear pre-
dictor is a solution to a rank-deficient system of linear equations. In
[3], a solution has been computed by using pseudoinversion, whereas,
in [4], by using order-recursions. However, a more natural definition of
(effective) overmodeling is with respect to “small” impulse response
terms [5], [8]. In this case, the linear predictor is the solution of a close
to rank-deficient linear system [recall that in this case,�m = O(�m)].
In order to avoid large enhancement of inaccuracies, which are due to

~Rm =
~r0 ~rm
~rTm

~Rm�1
= Tm(hM )T Tm (hM) = Tm(hzm ;m + d

z
m ;m )T Tm (hzm ;m + d

z
m ;m )

= Rm + Tm(hzm ;m )T Tm (dzm ;m ) + Tm(dzm ;m )T Tm (hzm ;m ) +O(�2m)

�R

: (6)
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the influence of the tails, both the pseudoinversion and the order-recur-
sions should be implemented with great care. Before the pseudoinver-
sion, we should compute the effective rank of the data covariance ma-
trix, whereas the order recursions should terminate at the right point by
using an appropriate stopping criterion. These regularizing actions de-
mand, explicitly or implicitly, the detection of the effective rank of the
data covariance matrix, which is synomynous with effective channel
order detection [8]. If we can estimate accurately the effective channel
order, then we can implement these regularization techniques success-
fully. However, in this case, overmodeling seems superfluous. Conse-
quently, the LP method, contrary to current beliefs, isnot inherently
robust with respect to effective channel overmodeling.

From Result 1, it becomes clear that ifm is chosen favorably, the
model quality depends on the size of the first “significant” termh(m ).
Thus, in our study, termhm plays the role that the first nonzero term
h(0) played in previous studies [3], [4], which assumed exact knowl-
edge of the channel length and no tails.

The important problem of effective channel order detection is studied
in [8].

One may ask how can we estimate the start and end points of the
mth-order significant partm1 andm2. The answer is that their values
are insignificant since during the equalization step, the fact thatm1 � 0
changes the solution by adding a delay ofm1 time units [5].

IV. SIMULATIONS

In the previous section, we derived bound (10), which provides sig-
nificant insight into the performance of the LP method in realistic cases.
This bound is derived by repeated application of the triangle and sub-
multiplicative inequalities (see the Appendix). Thus, it is, in general,
loose. However, it is given by a reasonably simple expression, identi-
fying the cases in which the LP method performs well or may perform
poorly. For example, it reveals the instability related to effective over-
modeling.

In our simulation, we consider the mean asymptotic performance
of the second-order LP method by varying the size of the tails. The
significant part of the channel is

h2;4 = [�0:6804 0:4281; 0:1777 �0:2446; �0:0902 �0:5043]:

We constructh10 = hz2;4 + dz2;4 by using random “tails”dz2;4 with

20 � 20 log10 khz2;4k2=kd
z
2;4k2 � 60:

We scaleh10 so thatkh10k2 = 1. Then, we apply the second-order
LP method, and we compute~h2;4. In Fig. 1, we plot the first-order
bound (10) (thick line) and the actual error. We observe that although
the bound is loose, it provides an indication of the quality of the esti-
mator.

V. CONCLUSION

We considered the performance of themth-order LP method for
blind channel identification, when the true channel is of orderM , with
m < M . We showed that themth-order LP method furnishes an ap-
proximation to themth-order significant part of the true channel. The
closeness depends on the diversity of themth-order significant part and
the size of the unmodeled tails. Furthermore, we showed that, contrary
to current beliefs, the LP method is not inherently robust with respect
to effective channel overmodeling.

Fig. 1. Estimation error bound (10) (thick line) and measured error.

APPENDIX

Before proceeding to the proof of Result 1, we state the following
Lemma.

Lemma: If hm ;m is the truncatedmth-order significant part of
the true channel, then themth-order LP method furnishes~hm ;m , for
which there holds, to a first-order approximation, with respect to the
size of the unmodeled tails�m

~hm ;m � hm ;m = �Smg
T
m �

1

2
gm�Rmg

T
mhm ;m

� Sm
0

R�1m�1 �rTm �Rm�1 gTm
: (12)

The proof can be derived by following steps analogous to those of
([3, App. A]). The error in quantityX is �X

�
= ~X � X, with ~X

defined in (6)–(9) andX defined in (1)–(4). Furthermore, instead of
pseudoinversion, we use inversion.

Proof of Result 1: In order to prove Result 1, we will bound the
2-norm of each term of the right-hand side of (12). From (4) and (9),
we deduce

�Sm
�
= ~Sm � Sm = Hm(hM)T T

m (hM)

�Hm(hm ;m )T T
m (hm ;m )

= Hm(hzm ;m + d
z
m ;m )T T

m (hzm ;m + d
z
m ;m )

�Hm(hm ;m )T T
m (hm ;m )

= Hm(hzm ;m )T T
m (dzm ;m )

+Hm(dzm ;m )T T
m (hzm ;m ) +O(�2m)

and thus

�Smg
T
m = Hm(hzm ;m )T T

m (dzm ;m )gTm

+Hm(dzm ;m )em +O(�2m)

whereei is the canonical vector with 1 at the(i + 1)st position and
zeros elsewhere. It is easy to see that the second term vanishes. Using
the matrix 2-norm/F-norm inequality, the structure ofHm(hzm ;m )
andTm(dzm ;m ), and (5), we obtain the first-order bound

�Smg
T
m

2
� Hm(hzm ;m )

F
T T
m (dzm ;m )

F
kgmk2

� �m(m+ 1)kgmk2: (13)

For the second term, we have, from (6)

gm�Rmg
T
m = gm Tm(hzm ;m )T T

m (dzm ;m )

+ Tm(dzm ;m )T T
m (hzm ;m ) +O(�2m) g

T
m

= 2eTm T T
m (dzm ;m )gTm +O(�2m)

= 2gm

0

hm �1

...
hm �m

+O(�2m)
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with hk = 0, for k < 0. Thus, to a first-order with respect to�m

1

2
gm�Rmg

T
mhm ;m

2

� 1

2
gm�Rmg

T
m

2

� �m kgmk2 : (14)

The third term of (12), which is denoted byT3, can be written as

T3 = Hm (hm ;m )T T
m (hm ;m )

� O O

O T �Tm�1 (hm ;m )T �1m�1 (hm ;m )

� Tm h
z
m ;m T T

m d
z
m ;m

+ Tm d
z
m ;m T T

m h
z
m ;m +O �2m g

T
m

= Hm(hm ;m )
0T 0T 0T

O I2m O
T T
m (dzm ;m )gTm

+

0

T �1m�1(hm ;m )

hm �1

...
hm �m

:

Finally

kT3k2 � kHm(hm ;m )k
F

Tm(dzm ;m )
F
kgmk2

+ T �1m�1(hm ;m )
2

hm �1

...
hm �m 2

� (m+ 1)�mkgmk2 +
p
m+ 1�m
�m

: (15)

In order to bound the termkgmk2 appearing in (13)–(15), we proceed
as follows. Since

Am Tm�1(hm ;m )T T
m�1(hm ;m )

= �[h(m +1) � � � h(m ) 0 � � � 0]T T
m�1(hm ;m )

andTm�1(hm ;m ) is nonsingular, we obtain

kAmk2 � [h(m +1) � � � h(m )] F
T �1m�1(hm ;m )

2

� 1

�m
:

Using the expression for the equalizergm = (1=kh(m )k2)vT [I Am]
and the fact thatkvk2 = 1, we obtain

kgmk2 � 1

kh(m )k2 k[I Am]k2 =
1

kh(m )k2 1 + kAmk22

� 1

kh(m )k2 1 +
1

�2m
: (16)

Putting (16) in (13)–(15) and adding the derived bounds, we prove Re-
sult 1.
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Interference Blanking Probabilities for SLB in Correlated
Gaussian Clutter Plus Noise

Alfonso Farina and Fulvio Gini

Abstract—This work presents closed-form expressions of the probability
of false alarm, the probability of blanking a target received in the

main lobe, and the probability of blanking a coherent repeater inter-
ference (CRI) via an SLB device operating in correlated Gaussian clutter
with known Doppler spectrum plus white Gaussian thermal noise.

Index Terms—Coherent interference rejection, radar clutter, sidelobe
blanking.

I. INTRODUCTION AND WORKING PRINCIPLE

To counter impulsive-type sidelobe interference, a radar receiver
usually employs a sidelobe blanking (SLB) system, which blanks the
radar receiver output in those range cells where the unwanted signal
appears in the radar antenna sidelobes. The purpose is reached via a
low gain auxiliary antenna that is located close to the main antenna,
which receives the same interfering signals of the main antenna. By
comparing the signals captured by the radar and auxiliary antennas,
we may ascertain whether the impulsive signal is received through
the radar antenna side lobes. In such a situation, the radar signal is
blanked in the range cell affected by the interference. The processing
scheme connecting the radar and the SLB device is outlined in Fig. 1
[1], [2]. The SLB decides whether or not to blank the main channel
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