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Abstract

Many second-order approaches have been proposed recently for blind FIR channel identification in
a single-input/multi-output context. In practical conditions, the measured impulse responses usually
possess “small” leading and trailing terms, the second-order statistics are estimated from finite sample
size and there is additive white noise. This paper, based on a functional methodology, develops a
statistical performance analysis of any second-order approach under these practical conditions. We
study two channel models. In the first model, the channel tails are considered as deterministic. We
derive expressions for the asymptotic bias and covariance matrix (when the sample size tends to∞) of
the m-th order estimated significant part of the impulse response. In the second model, the tails are
treated as zero mean Gaussian random variables. Expressions for the asymptotic covariance matrix
of the estimated significant part of the impulse response are then derived when the sample size tends
to ∞ and the variance of the tails tends to 0. Furthermore, some asymptotic statistics are given
for the estimated zero-forcing equalizer, the combined channel-equalizer impulse response and some
byproducts, such as the open eye measure. This allows one to assess the influence of the limited sample
size and the size of the tails, respectively, on the performance of identification and equalization of the
algorithms under study. Closed form expressions of these statistics are given for the least-squares, the
subspace, the linear prediction and the outer-product decomposition methods, as examples. Finally,
the accuracy of the asymptotic analysis is checked by numerical simulations; the results are found to
be valid in a very large domain of the sample size and the size of the tails.
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1 Introduction

The recent development of second-order statistics (SOS)-based blind identification/equalization methods

in a single-input/multi-output channel setting, derived either from fractional sampling in the receiver or

from the use of an array of sensors, has been considered a major breakthrough and has spawned intensive

research in the area. When the order of the channel is known and the second-order statistics are exact,

the SOS-based blind identification methods are able to identify the channel under the so-called length and

zero conditions. These same conditions ensure the existence of a finite length equalizer achieving perfect

channel equalization in the absence of noise. The behavior of these methods may change dramatically

however, under practically inevitable “less ideal” conditions that often occur together, such as

• second-order statistics estimated from finite sample observations;

• non-negligible additive channel noise;

• long tails of “small” leading and/or trailing impulse response terms.

Physical microwave radio channel impulse responses often possess weak leading and/or trailing terms [1]

[2]. This is because the global impulse response models the transmitter shaping filter, the propagation

through the channel, and the receiver filter, with each contributing to leading and/or trailing impulse

response terms. In this context, it often proves convenient to partition the true channel impulse response

into the significant part and the tails. By significant part is meant that part usually found near the

middle of the impulse response, containing all the “large terms” and possibly some “small” intermediate

terms as well; the “small” leading and trailing terms compose the tails.

The robustness of SOS-based blind identification methods with respect to the presence of tails has been

studied in [3], [4], but assuming exact signal statistics are available and that channel noise is negligible.

In this context, each second-order method attempts to fit a finite length (m, say) impulse response to the

true channel impulse response whose actual length (including the tails) is M > m. Worst-case bounds

are derived for the channel estimation error, and reveal that the successful application of second-order

methods hinges critically on matching the assumed channel length m to the effective impulse response

length, i.e., the length of the significant part. If the assumed length m exceeds the effective length,

then the second-order methods are tacitly attempting to identify parts of the tails; this give rise to an

ill-conditioned identification problem [3], [4], and should thus be avoided. Similarly, choosing m smaller

than the effective length imposes a lower bound on the identification error in terms of the norm of the

significant terms of the true impulse response which are excluded, irrespective of the method employed

[3], [4]. This underscores the relevance of efficient methods for effective length detection [5],[6].

Here we pursue robustness aspects for any second-order method with respect to finite sample size

statistics and additive white channel noise by developing a functional approach. We assume, however,

that the effective channel length is correctly detected using, e.g., the method of [5],[6]; otherwise, the

resulting length mismatch can result in such poor mean asymptotic performance as to render subsequent

variance analyses of little interest. Two channel models are considered. In the first model, these channel

tails are considered as deterministic. We derive the asymptotic bias and covariance of the estimated

significant part of the impulse response when the sample size tends to infinity. The results show a similar

flavor to the effect of source number underestimation on MUSIC location estimates studied in [7], in

which the presence of weaker sources exerts a bias on the estimated stronger sources. In the second

model, since the terms of the tails are much less stable than the significant terms, they are modeled as

zero mean Gaussian random variables. We derive the asymptotic covariance of the estimated significant

part of the impulse response in the limit as the sample size tends to infinity and the variance of the tails
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tends to zero. These asymptotes are motivated by the fact that the tails are often one or two orders

of magnitude smaller than the significant terms. General closed form expressions are given for these

statistics, then derived for the least-squares (LS) [8], the subspace [9], the linear prediction (LP) [10] and

the outer-product decomposition (OPD) [1] methods as examples. We note that our analysis does not fit

the method by Pozidis and Petropulu [11] which relies on a spectrum estimation based on periodograms

of the data, but that our performance analysis encompasses the previous statistical studies [12], [13], [14],

[15] if the channel impulse reponse has no tail.

The paper is organized as follows: In Section 2, for convenience of the reader and in order to fix

notations, we review the channel model and the main steps of the LS, SS, LP and OPD methods with exact

second-order statistics and exact order model. In Section 3, a functional statistical analysis methodology

is given for the two models of the tails. For notational simplicity, the analysis is given in the real case,

as it may be straightforwardly extended to the complex case. Using a functional approach, we give

the asymptotic bias and covariance matrix of the estimated m-th order significant part of the channel

impulse response, the zero-forcing equalizer and the combined channel-equalizer impulse response, for

any second-order method. In Section 4, we assess the performance of the LS, SS, LP and OPD methods

by deriving the explicit formulas of the previous asymptotic statistics, then analyzed and compared to

previous results. Finally, in Section 5 we present some simulations in which the significant part of the

channel impulse response has either good or poor diversity. We examine the accuracy of the expressions of

the bias and the mean square error of our estimators for the LS, SS, LP and OPD methods. In addition,

we investigate the sample size and the tails size domains for which our asymptotic results remain valid.

The following notations are used throughout the paper. Matrices and vectors are represented by bold

upper case and bold lower case characters, respectively. Vectors are by default in column orientation,

while T , H, ∗ and (·)\ stand for transpose, transconjugate, conjugate and Moore Penrose pseudoinverse,

respectively. ek,i is the ith unit vector in Rk. Jk and Zk are, respectively, the k-th order antidiagonal

matrix and the shift matrix with 1’s above the principal diagonal. E(·),Cov(·),Tr(·) and ‖ · ‖Fro denote

the expectation, the covariance, the trace and the Frobenius matrix norm, respectively. Vec(·) is the

“vectorization” operator that turns a matrix into a vector by stacking the columns of the matrix one

below another. It is used in conjunction with the Kronecker product A⊗B as the block matrix whose (i, j)

block element is ai,jB with the vec-permutation matrix [16] Kr,s which transforms Vec(A) to Vec(AT )

for any r × s matrix A and with the following properties (B is any p× q matrix in the third relation)

Vec(ABC) = (CT ⊗A)Vec(B) (1.1)

(A⊗B)(C⊗D) = AC⊗BD (1.2)

Kr,p(A⊗B)Kq,s = B⊗A (1.3)

2 Some second-order methods: Exact order case

For convenience of the reader and in order to fix notations, we recall the basic steps of the LS, SS, LP

and OPD methods, based on exact second-order statistics for the single-input/two-output channel setting

presented in Fig.1. This setting is obtained by channel oversampling by a factor of 2 or by using a 2-sensor

receiver. We have chosen to treat only this setting because it is both quite common in telecommunications

and it leads to very simple results; in particular, for the LS and SS methods there is simple relationship

between the minimal covariance matrix eigenvector and the estimated impulse response.
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Fig.1 Noisy two-channel equalization setting.

2.1 Two-channel model

If the true channel order is M , the output of the i-th channel, x
(i)
k , for i = 1, 2, is given by

x
(i)
k =

M∑
l=0

h
(i)
l sk−l + n

(i)
k . (2.1)

The input sequence sk is assumed to be i.i.d., zero mean, and of unit variance, h
(i)
k is the impulse response

of the i-th channel, i = 1, 2, and n
(i)
k is additive zero mean Gaussian white channel noise with power

σ2n. We assume that the two channels do not share common zeros, guaranteeing their identifiability. By

stacking the L+ 1 most recent samples of each channel, we obtain the representation.

xL(k)
def
=
(
xTk , . . . ,x

T
k−L

)T
= TL(hM )sL+M (k) + nL(k)

with xk
def
=
(
x
(1)
k , x

(2)
k

)T
, hM

def
=
(
hT(0), . . . ,h

T
(M)

)T
, nk

def
=
(
n
(1)
k , n

(2)
k

)T
, sL+M (k)

def
= (sk, . . . , sk−L−M )T

and where TL(hM ) is the 2(L+ 1)× (L+M + 1) Sylvester resultant matrix with h(k)
def
=
(
h
(1)
k , h

(2)
k

)T
:

TL(hM ) =


h(0) · · · · · · h(M)

. . .
. . .

h(0) · · · · · · h(M)

 .
In the sequel, we recall briefly the second-order methods under study, in the exact second-order statistics

case, assuming that the true channel is the m-th order channel hm.

2.2 LS and SS methods

The LS and SS estimates of hm, which coincide in the two-channel case with L = m [17], de-

fined up to a constant scale factor, are given by the relation

[
h
(1)
k

h
(2)
k

]
=

[
v
(2)
k

−v(1)k

]
, with v2(m+1) =(

v
(1)
0 , v

(2)
0 , . . . , v

(1)
m , v

(2)
m

)T
being the eigenvector associated with the unique smallest eigenvalue of Rm

def
=

E
(
xm(k)xTm(k)

)
, i.e.,

hm = Tmv2(m+1) (2.2)

where Tm is the antisymmetric orthogonal matrix Im+1 ⊗
[

0 1
−1 0

]
.
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2.3 LP method

The basic steps of the LP method in the two-channel case are sketched in the sequel. First, the coefficients

[A1, . . . ,Am] of a 2× 2m predictor filter are given by

[A1, . . . ,Am] = −[r1, . . . , rm]
(
R′m−1

)−1
with

R′m−1
def
= E

(
xm−1(k)xTm−1(k)

)
− σ2nI2m and ri

def
= E(xkx

T
k−i), i = 1, . . . ,m.

Then the rank-one innovation covariance matrix D = h(0)h
T
(0) is given by D = r′0 +

∑m
k=1 Akrk

T , with

r′0 = E(xkx
T
k ) − σ2nI2. If λ and v are, respectively, the nonzero eigenvalue of the rank-one matrix

D, and its associated eigenvector, then an m-th order zero-forcing zero-delay equalizer1 is given by

gm = 1√
λ

[I2,A1, . . . ,Am]Tv and the impulse response hm is identified as

hm = Smgm with Sm
def
=


r′0 r1 · · · rm

r1 r2 . .
.

... . .
.

rm


2(m+1)×2(m+1)

.

2.4 OPD method

The outer-product decomposition method [1] is based on the rank-one outer-product matrix hmhTm, which

is shown to be equal to D3
def
= D1 −D2, where:

D1 = SmR′m
\
Sm

T =

[
× ×
× D′2

]
, D2 =

[
D′2 O2m,2

O2,2m O2,2

]
(2.3)

m+2

The OPD estimate of hm, defined up to scale factor, is the eigenvector v associated with the unique

nonzero eigenvalue of D3:

hm = v. (2.4)

3 Statistical analysis methodology

3.1 m-th order effective channel identification

We denote by effective order of the channel the order detected by a suitable rank detection procedure (see

e.g. [5] 2). Our principal concern in this section is deducing the asymptotic performance of any second-

order algorithm that assumes that the effective order of the impulse response is detected beforehand is

m. We call these methods m-th order SOS-based methods. To this end, we partition the true impulse

response hM into the zero-padded m-th order significant part hzm,M and tails dzm,M as follows:

hM = hzm,M + dzm,M , (3.1)

1We note that this equalizer has no reason to be minimum norm.
2The procedure introduced in [5] gives as byproduct (through the existence of a gap between two consecutive eigenvalues

of the estimated covariance matrix), an indication of the stability of the blind channel approximation problem. In the stable
case, existence of a significant part of order m which gathers most of energy is ensured.
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hzm,M
def
= [ 0T · · · 0T︸ ︷︷ ︸

m1

,hT(m1)
· · · hT(m1+m)︸ ︷︷ ︸
m+1

,0T · · · 0T︸ ︷︷ ︸
m2

]T ,

dzm,M
def
= [ hT(0) · · · hT(m1−1)︸ ︷︷ ︸

m1

,0T · · · 0T︸ ︷︷ ︸
m+1

,hT(m1+m+1) · · · hT(M)︸ ︷︷ ︸
m2

]T .

We denote the non zero-padded vectors hm and dm,M as follows:

hm
def
= [ hT(m1)

· · · hT(m1+m)]
T , dm,M

def
= [ hT(0) · · · hT(m1−1),h

T
(m1+m+1) · · · hT(M)]

T .

Here hm denotes the m-th order significant part of the channel. M = m1 + m + m2 where m1 and

m2 denote respectively the length of the leading and trailing parts of the channel impulse response hM .

We note that this partitioning of hM remains valid if the two significant parts of each subchannel are

not aligned because the size (“large” or “small”) is taken as the norm ‖h(k)‖. Also M,m1 and m2 are

considered to be known for analysis purposes, but of course, they are unknown from the algorithmic point

of view.
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Fig.2 Square magnitude of the real part of microwave radio channel, oversampled, by a factor of 2.

In Fig.2, we plot the real part of the chan1.mat oversampled, by a factor of 2, complex-valued microwave

radio channel, found at http://spib.rice.edu/spib/microwave.html. Here, the “small” terms are about two

orders of magnitude smaller than the significant terms but the partitioning of the impulse response into

the “large” and “small” terms is not perfectly clear.

To study the performance of such m-th order SOS-based algorithms, we introduce two 2(m + 1) ×
2(m + 1) spatio-temporal covariance matrices. The first is the estimated spatio-temporal covariance

matrix of the data

R̂M
m

def
=

1

N

N∑
k=1

xm(k)xTm(k) =
1

N

N∑
k=1

[(Tm(hM ) sm+M (k) + nm(k)] [·]T ,

whose expectation yields

RM
m

def
= E(R̂M

m ) = Tm(hM )T Tm (hM ) + σ2nI2(m+1).

The second is the spatio-temporal covariance associated with the m-th order significant part of the

channel impulse response:

Rm
m

def
= Tm(hm)T Tm (hm) + σ2nI2(m+1). (3.2)
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To consider the asymptotic performance of an m-th order SOS-based algorithm, we adopt a functional

approach which consists of recognizing that the whole process of constructing an estimate ĥm of hm is

equivalent to defining a functional relation linking the estimate ĥm to the sample statistics R̂M
m from

which it is inferred. This functional dependence is denoted ĥm = alg(R̂M
m ). Clearly, hm = alg(Rm

m),

so the different algorithms alg(·) constitute distinct extensions of the mapping Rm
m → hm generated by

(3.2) to any unstructured real symmetric R̂M
m . We consider two models of tails.

3.1.1 Deterministic model of tails

In the deterministic model of tails, the tails are considered as deterministic and we are interested in the

asymptotic bias and asymptotic covariance matrix of ĥm when the sample number N tends to ∞. R̂M
m

may be considered as a perturbation of RM
m :

R̂M
m = RM

m + δRM
m (3.3)

where δRM
m is the finite sample size error, verifying E(δRM

m ) = O and Cov(δRM
m ) = O

(
1
N

)
[18, §7.3].

Because the mapping alg(·) is sufficiently regular in a neighborhood of RM
m for most algorithms (if

necessary, regularization techniques are employed), we have from (3.3),

ĥm = alg(RM
m ) + (Dalg, δR

M
m )
∣∣∣
RM

m

+O(‖δRM
m ‖2), (3.4)

where (Dalg, δR
M
m )
∣∣∣
RM

m

denotes the differential of the mapping alg(·) evaluated at point RM
m applied to

δRM
m . Taking expectations, we obtain:

E(ĥm) = alg(RM
m ) +O

(
1

N

)
. (3.5)

The matrix RM
m may be considered as a perturbation of Rm

m:

RM
m = Rm

m + δRd, (3.6)

where δRd is due to the tails, i.e.,

δRd
def
= Tm(hzm,M )T Tm (dzm,M ) + Tm(dzm,M )T Tm (hzm,M ) +O(‖dm,M‖2). (3.7)

The vectorization of δRd yields:

Vec(δRd) = C1dm,M +O(‖dm,M‖2),

with

C1
def
=
[
K2(m+1),2(m+1) + I4(m+1)2

] [
Km+1,2 ⊗ Tm(hzm,M )

] I2 ⊗

 1m ⊗
(

I†

Om+1,M−m

)
I†


K2,M−m

where

I†
def
=

 Im1,m1 Om1,m2

Om+1,m1 Om+1,m2

Om2,m1 Im2,m2

 (3.8)

is defined from the linear relation linking dzm,M and dm,M (dzm,M
def
= I‡dm,M = (I†⊗ I2)dm,M ) and where

the vec-permutation matrix Kr,s is defined in the Introduction section and the classical property (1.1)
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has been used. Let Aalg
h,Rm

m
denote the matrix associated with the differential Dalg at point Rm

m; precise

expressions for each algorithm will be given in Section 4. Using (3.6), the first-order perturbation analysis

of an m-th order SOS-based algorithm acting on RM
m evaluated at point Rm

m gives

alg(RM
m ) = alg(Rm

m) + (Dalg, δRd)|Rm
m

+O(‖dm,M‖2)

= hm + Aalg
h,Rm

m
Vec(δRd) +O(‖dm,M‖2)

= hm + Balg
h,Rm

m
dm,M +O(‖dm,M‖2), (3.9)

with Balg
h,Rm

m

def
= Aalg

h,Rm
m

C1. So, from (3.5) and (3.9), the following result holds:

Result 1 The asymptotic bias in the deterministic model of tails is given by

E(ĥm)− hm = Balg
h,Rm

m
dm,M +O(‖dm,M‖2) +O

(
1

N

)
, (3.10)

and when N →∞ and ‖dm,M‖ → 0.

‖E(ĥm)− hm‖
‖dm,M‖

≤ σ1(Balg
h,Rm

m
) (3.11)

where σ1(B
alg
h,Rm

m
) is the largest singular value of Balg

h,Rm
m

and equality prevails for tails dm,M colinear with

the right singular vector of Balg
h,Rm

m
.

Then, from (3.4) and (3.5), the mapping alg(·) gives the deviation from the asymptotic mean E(ĥm):

ĥm − E(ĥm) = (Dalg, δR
M
m )
∣∣∣
RM

m

+O(‖δRM
m ‖2) +O

(
1

N

)
= Aalg

h,RM
m

Vec(δRM
m ) +O(‖δRM

m ‖2) +O

(
1

N

)
. (3.12)

It thus follows that

lim
N→∞

NCov(ĥm) = Aalg
h,RM

m
CRM

m

(
Aalg
h,RM

m

)T
with CRM

m
= limN→∞NCov(Vec(R̂M

m )) = limN→∞NE(Vec(δRM
m )Vec(δRM

m )T ). And since Vec(δRM
m )

is asymptotically Gaussian (see Appendix A) i.e.,
√
N(Vec(R̂M

m ) − Vec(RM
m ))

L→ N (0,CRM
m

), we have,

thanks to a continuity theorem [19, Th. 6.2a, p. 387] applied to the differentiable mapping alg(·), the

following asymptotic distribution result:

Result 2 In the deterministic model of tails, ĥm is asymptotically Gaussian when N →∞:

√
N(ĥm − E(ĥm))

L→ N
(

0,Aalg
h,RM

m
CRM

m

(
Aalg
h,RM

m

)T)
, (3.13)

where

lim
N→∞

NCov(ĥm) = Aalg
h,RM

m
CRM

m

(
Aalg
h,RM

m

)T
. (3.14)
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3.1.2 Statistical model of tails

In the statistical model of tails, the components of dm,M are assumed to be independent, zero mean,

Gaussian with the same variance and E‖dm,M‖2
def
= σ2d. Here dm,M is assumed to be independent from

sk and n
(i)
k , i = 1, 2. The matrix R̂M

m may be considered here as a perturbation of Rm
m:

R̂M
m = Rm

m + δR with δR
def
= δRm

m + δRd +O(‖dm,M‖2) +O(‖δRm
m‖2) +O(‖δRm

mdm,M‖),

where δRm
m is the finite sample size error:

δRm
m

def
=

1

N

N∑
k=1

[(Tm(hm) s2m(k) + nm(k)] [·]T −Rm
m.

A first-order perturbation analysis of an m-th order SOS-based algorithm acting on R̂M
m evaluated at

point Rm
m gives the estimate:

ĥm = hm + δhm,

with

δhm = Aalg
h,Rm

m
Vec(δR) +O(‖δR‖2)

= Aalg
h,Rm

m
Vec(δRm

m) + Balg
h,Rm

m
dm,M +O(‖δR‖2). (3.15)

So, when N →∞ and σ2d → 0,

E(ĥm) = hm + E(O(‖δR‖2)) = hm +O(‖dm,M‖2) +O

(
1

N

)
, (3.16)

and since dm,M and δRm
m are independent random variables, the following result holds:

Result 3

Cov(ĥm) =
1

N
Aalg
h,Rm

m
CRm

m

(
Aalg
h,Rm

m

)T
+

σ2d
2(M −m)

Balg
h,Rm

m

(
Balg
h,Rm

m

)T
+O(‖dm,M‖4)+O

(
1

N2

)
+O

(
‖dm,M‖2

N

)
,

(3.17)

E‖ĥm − hm‖2 ∼
1

N
Tr

(
Aalg
h,Rm

m
CRm

m

(
Aalg
h,Rm

m

)T)
+

σ2d
2(M −m)

Tr

(
Balg
h,Rm

m

(
Balg
h,Rm

m

)T)
, (3.18)

when N →∞ and σ2d → 0, where the expression of CRm
m

= limN→∞NE(Vec(δRm
m)Vec(δRm

m)T ) is given

in Appendix A.

Two particular cases can be deduced, (1) exact channel order and finite sample size (no tails in the

impulse response 3) and (2) exact second-order statistics and tails in the impulse response, where we

have respectively:
√
N(ĥm − hm)

L→ N
(

0,Aalg
h,Rm

m
CRm

m

(
Aalg
h,Rm

m

)T)
when N →∞, (3.19)

1

σd
(ĥm − hm)

L→ N
(

0,
1

2(M −m)
Balg
h,Rm

m

(
Balg
h,Rm

m

)T)
when σ2d → 0. (3.20)

Thus, the influence of (1) the finite sample size and (2) the tails, can be analyzed in the same framework.

The identified channel by any m-th order SOS-based algorithm is close to the m-th order significant

part hm of the impulse response hM . This closeness depends on the diversity of hm, as will be seen in

Sections 4 and 5 and also, depending on the case considered, on the sample size N or on the size of the

tails measured by σ2d. Upper bounds with a similar flavor have previously been obtained in [3] and [4]

for the LS/SS and LP methods, with respect to the presence of tails.

3We note, that in the absence of tails, the deterministic tail model gives RM
m = Rm

m. So, the estimates ĥm are asymptot-
ically unbiased with asymptotic distribution (3.13) identical to (3.19).
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3.2 Zero-forcing equalization

Having “identified” the m-th order channel ĥm, we can equalize it perfectly in the noiseless case, by using

the zero-forcing equalizers of order m− 1, for delays i = 0, . . . , 2m− 1, given by

ĝZF
m−1,i = T −Tm−1(ĥm)e2m,i+1. (3.21)

In the presence of additive channel noise, the output of the equalizer ŝk−i is corrupted by additive noise

of power ‖ĝZF
m−1,i‖2σ2n. Of course, ĝZF

m−1,i is not a zero-forcing equalizer for the true channel hM . To

gauge the equalization error, we introduce the combined channel-equalizer impulse response, denoted

f̂m+M−1,i
def
= (f̂0,i, . . . , f̂m+M−1,i)

T , according to:

f̂m+M−1,i = T Tm−1(hM )ĝZF
m−1,i. (3.22)

Adopting the functional approach of Section 3.1 to ĝZF
m−1,i and f̂m+M−1,i, we have4:

R̂M
m

alg7−→ ĥm 7−→ ĝZF
m−1,i 7−→ f̂m+M−1,i.

But since

Rm
m

alg7−→ hm 7−→ gZF
m−1,i 7−→ fm+M−1,i = T Tm−1(hM )gZF

m−1,i 6= em+M,p+i+1,

we can extend the results of Section 3.1 to estimates ĝZF
m−1,i and f̂m+M−1,i. Naturally, this approach could

be applied to any L-th order Wiener equalizer:

ĝW
L,i =

(
R̂M
L

)−1
TL(ĥm)e2(L+1),i+1.

3.2.1 Zero-forcing equalizer

The mapping ĥm 7−→ ĝZF
m−1,i given by (3.21) is differentiable at hm, with differential:

δgi = −T −Tm−1(hm)δT Tm−1(hm)T −Tm−1(hm)e2m,i+1 = −T −Tm−1(hm)T Tm−1(δhm)gZF
m−1,i

= −T −Tm−1(hm)T Tm (gZF
m−1,i)δhm, (3.23)

where the commutativity of the convolution product has been used in the third equality. So, since

ĝZF
m−1,i = gZF

m−1,i + δgi +O‖δhm‖2,

applying the chain differential rule to the deterministic model of tails gives the asymptotic bias:

E(ĝZF
m−1,i)− gZF

m−1,i = Balg
gi,Rm

m
dm,M +O(‖dm,M‖2) +O

(
1

N

)
,

with

Balg
gi,Rm

m

def
= −T −Tm−1(hm)T Tm (gZF

m−1,i)B
alg
h,Rm

m
.

Results 1, 2, and 3 hold for ĝZF
m−1,i upon using Aalg

gi,RM
m

in place of Aalg
h,RM

m
:

Aalg
gi,RM

m

def
= −T −Tm−1(hm)T Tm (gZF

m−1,i)A
alg
h,RM

m
. (3.24)

Furthermore, in the statistical model of tails, results (3.16), (3.17), (3.18), (3.19) and (3.20) hold provided

Aalg
h,Rm

m
and Balg

h,Rm
m

are replaced respectively by Aalg
gi,Rm

m
and Balg

gi,Rm
m

with:

Aalg
gi,Rm

m

def
= −T −Tm−1(hm)T Tm (gZF

m−1,i)A
alg
h,Rm

m
.

4We note that this last mapping is defined only for analysis purposes as hM is unknown to the receiver.
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3.2.2 Combined channel-equalizer

From (3.1), the combined channel-equalizer impulse response (3.22) reads:

f̂m+M−1,i = T Tm−1(hzm,M )ĝZF
m−1,i + T Tm−1(dzm,M )ĝZF

m−1,i,

=

 0m1

T Tm−1(hm)ĝZF
m−1,i

0m2

+ T Tm−1(dzm,M )ĝZF
m−1,i. (3.25)

The mapping ĥm 7−→ f̂m+M−1,i given by (3.25) is differentiable at hm with the differential function:

δfi = −

 0m1

T Tm (gZF
m−1,i)δhm
0m2

− T Tm−1(dzm,M )T −Tm−1(hm)T Tm (gZF
m−1,i)δhm, (3.26)

thanks to T Tm−1(hm)δgi = −T Tm−1(δhm)gZF
m−1,i = −T Tm (gZF

m−1,i)δhm, where the first and the second equal-

ities come respectively from the differentiation of T Tm−1(hm)gZF
m−1,i = e2m,i+1 and the commutativity of

the convolution product for the first term of (3.26) and thanks to (3.23) for its second part. Because

gZF
m−1,i equalizes perfectly hm, we may use the commutativity of the convolution product to obtain

fm+M−1,i = T Tm−1(hzm,M )gZF
m−1,i + T Tm−1(dzm,M )gZF

m−1,i,

= em+M,m1+i+1 + T TM (gZF
m−1,i)d

z
m,M = em+M,m1+i+1 + T TM (gZF

m−1,i)I
‡dm,M ,

So, using Result 1, we have for the deterministic model of tails the following asymptotic bias:

E(f̂m+M−1,i)−em+M,m1+i+1 =

T TM (gZF
m−1,i)I

‡ −

 0m1

T Tm (gZF
m−1,i)

0m2

Balg
h,Rm

m

dm,M +O‖dm,M‖2 +O

(
1

N

)
.

Results (3.12), (3.13) and (3.14) hold for f̂m+M−1,i provided Aalg
h,RM

m
is replaced by Aalg

fi,RM
m

Aalg
fi,RM

m
= −


 0m1

T Tm (gZF
m−1,i)

0m2

+ T Tm−1(dzm,M )T −Tm−1(hm)T Tm (gZF
m−1,i)

Aalg
h,RM

m
.

In the statistical model of tails, relations (3.16), (3.17), (3.18), (3.19) and (3.20) hold for fm,i thanks to

(3.26) and (3.15), provided Aalg
h,Rm

m
and Balg

h,Rm
m

are respectively replaced by Aalg
fi,Rm

m
and Balg

fi,Rm
m

:

Aalg
fi,Rm

m

def
= −

 0m1

T Tm (gZF
m−1,i)

0m2

Aalg
h,Rm

m
and Balg

fi,Rm
m

def
= −

 0m1

T Tm (gZF
m−1,i)

0m2

Balg
h,Rm

m

3.2.3 Open eye measure

Results concerning byproducts such as the open eye measure (OEM) can be deduced. Following our

functional approach, the chain of operations

R̂M
m 7−→ f̂m+M−1,i 7−→ OEM(f̂m+M−1,i)

def
=

∑
k 6=i f̂

2
k,i

f̂2i,i
, 5

5We suppose here that the term f̂i,i is the dominant term of the combined channel-equalizer response f̂m+M−1,i
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allows the asymptotic statistics of OEM(f̂m+M−1,i) to be deduced. The mapping f̂m+M−1,i 7−→
OEM(f̂m+M−1,i) is differentiable to the second-order at the point em+M,i+1, with a zero first-order deriva-

tive and a second-order derivative ∆ = 2(Im+M − em+M,m1+i+1e
T
m+M,m1+i+1), so that

OEM(f̂m+M−1,i) = 0 + 0 +
1

2
δfTi ∆δf i + o‖δf i‖2 =

1

2
Tr(δf iδf

T
i ∆) + o‖δf i‖2.

So, in the statistical model of tails, we have from

δf i = Aalg
fi,Rm

m
Vec(δRm

m) + Balg
fi,Rm

m
dm,M +O‖δR‖2,

the asymptotic mean open eye measure when N →∞ and σ2d → 0:

E

(∑
k 6=i f̂

2
k,i

f̂2i,i

)
∼ 1

N
Tr

(
1

2
Aalg
fi,Rm

m
CRm

m

(
Aalg
fi,Rm

m

)T
∆

)
+

σ2d
2(M −m)

Tr

(
1

2
Balg
fi,Rm

m

(
Balg
fi,Rm

m

)T
∆

)
.

4 Application to the LS, SS, LP and OPD methods

We proceed with the derivation of the matrices Aalg
h,Rm

m
associated with the differential of the mappings

alg(·) at point Rm
m, as all other quantities defined in the previous section are derived from it. In particular,

the matrices Aalg
h,RM

m
are deduced from Aalg

h,Rm
m

by replacing respectively Sm(hm), (Tm(hm)T Tm (hm))\ and

(Tm−1(hm)T Tm−1(hm))−1 by Sm(hM ), (Tm(hM )T Tm (hM ))\ 6 and (Tm−1(hM )T Tm−1(hM ))−1. As usual, the

mapping R̂M
m

alg7−→ ĥm is built by replacing respectively RM
m and σ2n by R̂M

m and σ̂2n = v̂T2(m+1)R̂
M
m v̂2(m+1)

(where v̂2(m+1) is the eigenvector of R̂M
m associated with its smallest eigenvalue), in the relations given

in Sections 2.2, 2.3 and 2.4 relating Rm to hm. In this Section, Rm
m is denoted as Rm for simplicity.

4.1 LS and SS methods

Thanks to a perturbation result [20], concerning the eigenvector associated with the unique smallest

eigenvalue of Rm, (2.2) gives the differential δhm:

δhm = −TmR′m
\
δRmv2(m+1) +O(‖δRm‖2),

= −Tm(vT2(m+1) ⊗R′m
\
)Vec(δRm) +O(‖δRm‖2),

= −Tm(hTmTm ⊗ [Tm(hm)T Tm (hm)]\)Vec(δRm) +O(‖δRm‖2),

Thus,

ASS
h,Rm

m
= −Tm(hTmTm ⊗ [Tm(hm)T Tm (hm)]\). (4.1)

4.2 LP method

After some modifications, [14, rel.(33)] reads:

δhm = δSmgm −
1

2λ
Tr(δDvvT )hm − Sm

[
O O
O R′−1m−1

]
δR′mgm +O(‖δRm‖2). (4.2)

From [4], it can be shown that:

Tr(δDvvT ) = λgTmδR
′
mgm. (4.3)

6where (.)\ denotes here the operation that consists in forcing to zero the smallest eigenvalue of (.) and then inverting
the truncated version of (.) in its range space.
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The matrix Sm is a linear function of the matrix R′m:

Vec(Sm) = C2Vec(R′m), (4.4)

with

C2
def
=

 O2(m+1)2,2(m+1)m

I2 ⊗ (Z0
m+1Jm+1)

I2 ⊗ (Z1
m+1Jm+1)
...

I2 ⊗ (Zmm+1Jm+1)

⊗ I2.

Since the differential δv2(m+1) is orthogonal to v2(m+1) (because ‖v2(m+1)‖ = 1), we have:

δσ2n = δ(vT2(m+1)Rmv2(m+1)) = vT2(m+1)δRmv2(m+1) +O(‖δRm‖2)

= (vT2(m+1) ⊗ vT2(m+1))Vec(δRm) +O(‖δRm‖2).

Thus

Vec(R′m) = C3Vec(Rm), (4.5)

with C3
def
= I4(m+1)2 − Vec(I2(m+1)(v

T
2(m+1) ⊗ vT2(m+1)). Finally, putting together (4.2), (4.3), (4.4) and

(4.5), we get δhm = ALP
h,Rm

m
Vec(δRm) +O‖δRm‖2 with:

ALP
h,Rm

m
=

(
(gTm ⊗ I2(m+1))C2 −

(
gTm ⊗

[
1

2
hmgTm + Sm

(
O O
O (Tm−1(hm)T Tm−1(hm))−1

)]))
C3. (4.6)

4.3 OPD method

We note that the mapping R̂M
m

OPD7−→ ĥm is a composition of differentiable mappings. Thus is differentiable

at point Rm despite the pseudo-inverse [R̂M
m −σ̂2nI]\ being included in relation (2.3) of the OPD algorithm,

because R̂M
m − σ̂2nI is singular with rank 2m+ 1, as with Rm − σ2nI2(m+1).

Thanks to a perturbation result [20], concerning the eigenvector associated with the unique biggest

eigenvalue λ of D3, (2.4) gives the perturbation δhm:

δhm = −(hmhTm − I2(m+1))
\δD3hm +O(‖δD3‖2)

= −(hTm ⊗ (hmhTm − I2(m+1))
\)Vec(δD3) +O(‖δD3‖2),

= −(hTm ⊗ (hmhTm − I2(m+1))
\)C4Vec(δD1) +O(‖δD3‖2), (4.7)

with Vec(δD3) = C4Vec(δD1), where, from (2.3), C4 is given by:

C4
def
= I4(m+1)2 − (Zm+1 ⊗ I2)⊗ (Zm+1 ⊗ I2). (4.8)

From (2.3), we get:

δD1 = δSmR′m
\
STm + SmR′m

\
δSTm + SmδR

′
m
\
STm +O(‖δRm‖2) (4.9)

with δR′m
\

= −R′m
\δR′mR′m

\. So, by vectorization, we get:

Vec(δD1) = (SmR′m
\ ⊗ I2(m+1))Vec(δSm) + (I2(m+1) ⊗ SmR′m

\
)K2(m+1),2(m+1)Vec(δSm)

−(SmR′m
\ ⊗ SmR′m

\
)Vec(δR′m) +O(‖δRm‖2). (4.10)

Finally, putting together (4.7), (4.10), (4.4) and (4.5), we get δhm = AOPD
h,Rm

m
Vec(δRm) +O‖δRm‖2 with:

AOPD
h,Rm

m
= −

(
hTm ⊗ (hmhTm − I2(m+1))

\
)

C4(((Sm[Tm(hm)T Tm (hm)]\ ⊗ I2(m+1))

+(I2(m+1) ⊗ Sm[Tm(hm)T Tm (hm)]\)K2(m+1),2(m+1))C2C3 − (SmR′m ⊗ SmR′m)C3). (4.11)
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4.4 Analysis of the results

As shown in Section 3, the performance in terms of asymptotic bias and variance in the deterministic

model of tails and mean square errors in the statistical model of tails are directly related to matrices

Aalg
h,Rm

m
and Aalg

h,RM
m

, but relations (4.1), (4.6) and (4.11) are lacking engineering insight and as such are

complicated to analyze. However, we see in the following that these performance depend on the signif-

icant part hm of the impulse response hM through its diversity and on the sensitivity of this diversity

adapted to each algorithm.

Influence of diversity. The significant part hm of the impulse response hM acts upon Aalg
h,Rm

m

through R′m
\ = [Tm(hm)T Tm (hm)]\ for the SS/LS and the OPD algorithms and through R′m−1

−1 =

[Tm−1(hm)T Tm−1(hm)]−1 for the LP algorithm if hm is normalized. In fact, the behaviors of the terms

[Tm(hm)T Tm (hm)]\ and [Tm−1(hm)T Tm−1(hm)]−1 are very close because they are respectively dominated

by the inverse of the square of the singular values

δm
def
= σ2m+1(Tm(hm)) and δ′m

def
= σ2m(Tm−1(hm))

which are not orderable but practically very close to each other. These singular values may be interpreted

as a measure of diversity of hm [3] as they measure respectively the distance in the matrix 2-norm of

Tm(hm) and Tm−1(hm) from the matrices of rank 2m and 2m− 1, violating thus the rank assumptions.

So, the performance (asymptotic bias in the deterministic model of tails and mean square error in the

statistical model of tails) of the algorithms degrade when this diversity decreases. This diversity of the

significant part hm of the impulse reponse hM acts upon Aalg
h,RM

m
as well, because σ2m+1(Tm(hM )) ≈

σ2m+1(Tm(hm)) and σ2m(Tm−1(hM )) ≈ σ2m(Tm−1(hm)). Thus the variances of the estimates given in

the deterministic model of tails degrade too, when this diversity decreases.

Influence of the sensitivity of this diversity adapted to each algorithm. Concerning the bias

performance, σ1(B
alg
h,Rm

m
) can be considered as a better measure of diversity sensitivity of hm adapted to

each algorithm than δm and δ′m which do not depend on the algorithm used. We note that the bias norm

upper bound σ1(B
alg
h,Rm

m
)‖dm,M‖ given in the Result 1 is attainable for the worst-case tail dm,M (i.e. the

tail which maximizes the bias norm ‖E(ĥm) − hm‖ for fixed ‖dm,M‖) which is colinear with the right

singular vector of Balg
h,Rm

m
associated with its largest singular value. This worst-case tail is of the form

(proved in Appendix B for the LS/SS algorithm but only observed by computer for the LP and OPD

algorithms): dm,M = (dTm1
,dTm2

)T with:

dm1 = [ 0T · · ·0T︸ ︷︷ ︸
m1−m

,dl
T
1 · · ·dl

T
m ]T if m1 ≥ m and dm2 = [ drT1 · · ·dr

T
m, 0T · · ·0T︸ ︷︷ ︸

m2−m

]T if m2 ≥ m (4.12)

and dl1, . . . ,d
l
m and dr1, . . . ,d

r
m do not depend on m1 and m2, but depend on the algorithm, given hm.

Thus, the “worst” tail gathers on both side of the significant part along a length equal to the order

of this significant part. Concerning the mean square error in the statistical model of tails, the part
σ2
d

2(M−m)Tr

(
Balg
h,Rm

m

(
Balg
h,Rm

m

)T)
, attributed to the tails in the Result 3, depends only on the tail energy

per term if m1,m2 ≥ m. More precisely, it is proved in Appendix B for the LS/SS algorithm, but observed

by computer only for the LP and OPD algorithms that:

Balg
h,Rm

m

(
Balg
h,Rm

m

)T
= Ψ(hm,m,m2), m1 ≥ m (4.13)

= Ψ(hm,m1,m), m2 ≥ m
= Ψ(hm,m,m), m1,m2 ≥ m.
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Furthermore, it is shown by simulation that σ21(Balg
h,Rm

m
) is the dominant term of Tr

(
Balg
h,Rm

m

(
Balg
h,Rm

m

)T)
=∑2(M−m)

i=1 σ2i (B
alg
h,Rm

m
). So σ1(B

alg
h,Rm

m
) can also be interpretated as a measure of diversity sensitivity of the

algorithm with respect to the tails, for the mean square error of ĥalg
m in the statistical model of tails.

Relation with previous works. The bias norm upper bound given in the Result 1 to the first order

can be compared to the upper bound of the errors of the estimates ĥm given in [3] and [4] for the SS/LS

and LP methods, respectively, in exact statistics situation:

‖ lim
N→∞

E(ĥSS
m )− hm‖ ≤ 2

√
2(m+ 1)

‖dm,M‖
δm

+ ‖dm,M‖2 (4.14)

‖ lim
N→∞

E(ĥLP
m )− hm‖ ≤

√
m+ 1

‖dm,M‖
δ′m

+ (2m+ 3)
‖dm,M‖
‖h(m1)‖

√
1 +

1

δ′m
2 , (4.15)

where h(m1) is the first term of the significant part of hM . These upper bounds are proportional to

‖dm,M‖ in the first-order of ‖dm,M‖ and are respectively inversely proportional to δm and δ′m (when

δ′m � 1), while the bounds (3.11) are dominated respectively by the inverse of the square of δm and δ′m
for respectively the SS/LS and the LP methods. The bounds (4.14) and (4.15) are shown to be rather

loose in the following Section, as compared to the bound given by the Result 1.

5 Simulations

In this Section, we examine through examples of the performance of the LS/SS, LP and OPD methods,

the accuracy of the expressions of the bias, the mean square error of our estimators, and we investigate

the sample size and the tails size domains for which our asymptotic approach is valid. We consider

throughout this section an impulse response hM with M = 12, where the order of the significant part is

m = 2. We present two types of significant part h2 with ‖h2‖2 = 1. One offers “great” diversity:

h2 =
[
−.6804 .4281; .1770 −.2446; −.0902 −.5043

]T
(5.1)

with σ5(T2(h2)) = 0.4157 and σ4(T1(h2)) = 0.4165, and the other “poor” diversity:

h2 =
[
−.6804 .5902; .1770 −.2656; −.0902 −.2803

]T
(5.2)

with σ5(T2(h2)) = 0.2369 and σ4(T1(h2)) = 0.2354. In all the simulations the order m is correctly

detected beforehand by the procedure described in [5],[6]. For each experiment, 1000 independent Monte

Carlo simulations are performed. The signal to noise ratio SNR = 10 log ‖hM‖2
2σ2

n
is fixed to 17dB except

in Fig.4 and Fig.6.

The first experiment presents the deterministic model of tails and examines the performance of the

different second-order algorithms. Table 1 compares the theoretical asymptotic bias of ĥ2 given by Result

1, with the estimated bias given by simulation for N = 300 and N = 1000 and for two proportional tails:

‖d2,12‖ = 0.05 (for which σ5(T2(h12)) = 0.4195 and σ4(T1(h12)) = 0.4220) and ‖d2,12‖ = 0.1 (for which

σ5(T2(h12)) = .4253 and σ4(T1(h12)) = .4300) for the channel with significant part h2 shown in (5.1).

This table shows a good agreement between theoretical and estimated values. The difference between

these values increases with increasing ‖d2,12‖ and decreases with increasing N , which is explained by the

second-order term in ‖d2,12‖ and the first-order term in 1/N . The numerical values of the attainable

bounds (3.11) for the LS/SS and LP algorithms (for ‖d2,12‖ = 0.1) are respectively 0.2282 and 0.1917.
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Compared with upper bounds (4.14) and (4.15), 1.1885 and 2.6809, these latter bounds are not very

tight. Figures 3 and 4 plot the theoretical mean square error (MSE) of ĥ2:

E‖ĥ2 − h2‖2 = ‖bias(ĥ2)‖2 + Tr(Covĥ2) ∼ ‖Balg
h,Rm

m
dm,M‖2 +

1

N
Tr

(
Aalg
h,RM

m
CRM

m
Aalg
h,RM

m

T
)

and the estimated MSE given by simulation versus the sample size and the signal to noise ratio, respec-

tively. (N ranges from 30 to 1000 and the signal to noise ratio from 8dB to 37db). We observe that the

SS/LS algorithm outperforms the LP and OPD algorithms. Furthermore the LP and the OPD mean

square errors are almost equivalent, with a slight superiority of the OPD algorithm.

The second experiment presents the statistical model of tails and examines the performance of the

different second-order algorithms. Fig. 5 exhibits the theoretical MSE (3.18) of ĥ2 and its estimated MSE

obtained by simulation for a signal to noise ratio of 17dB in two situations: in no channel tail situation

versus the sample size and in exact statistics situation versus the energy of the tails E(‖d2,12‖2). We

observe that if we separate the effects of the tails and of the finite sample size, the three algorithms under

study are almost equivalent with respect to the tail sensitivity, but the LS/SS algorithm outperforms the

other algorithms with respect to the finite sample size sensitivity. In Figures 6 and 7, the finite sample

size and the tail contributions are simultaneously present. The two figures compare the theoretical MSE

of ĥ2 and its estimated MSE obtained by simulation, for N = 300, versus the signal to noise ratio for

E‖d2,12‖2 = 0.01 fixed and versus the energy of the tails E‖d2,12‖2 for a signal to noise ratio fixed at 17dB.

The adequation between the theoretical and the estimated MSE is good except for the LP algorithm for

which 300 samples is too small (see Fig.8). Furthermore, in Fig. 7, the two channels given by (5.1) and

(5.2) are exhibited. Naturally these MSEs increase when the diversity decreases. But we note that unlike

the LS/SS algorithm, the LP and OPD algorithms are less sensitive to the diversity of the significant

part hm. Fig. 8 compares the theoretical MSE of the estimated significant part ĥ2, the estimated zero-

forcing equalizer ĝZF
2,2 and the combined channel-equalizer f̂2,2, and the theoretical mean of OEM(f̂2,2)

with the estimated MSE and estimated mean obtained by simulation. We note good agreement between

the theoretical and estimated MSE and mean open eye measure for N > 300. The performance of the

LP and OPD algorithms are equivalent but the LS/SS algorithm outperforms the other algorithms in

presence of finite sample sizes and channel tails. Naturally, the conclusions of these two simulations must

be mitigated because a thorough comparison between the studied algorithms would need a large quantity

of scenarios (various channels, m,M,N and SNR), but is beyond the scope of this paper.

To see that our analysis breaks down when a partition between significant part and tails is ambiguous,

we consider the popular multipath transfer function in raised-cosine. Unlike preceding papers (e.g. [1]),

we retain most of the terms of the infinite length impulse response (M = 40). The so computed impulse

reponse hM is inevitably ill-conditioned. However its effective part is better conditioned and consequently

it may be blindly identified. We choose the three ray multipath channel c(t) = δ(t) + 0.43δ(t− 0.41T ) +

0.41δ(t− 0.89T ) with a roll-off factor of 0.4. In this situation, the procedure given in [5] gives m = 2 and

by forcing the value of m to 1, 2 3, 4 the theoretical and estimated MSE of ĥm defined as

E( min
m1+m2=M−m

‖ĥm −
[
O2(m+1),2m1

, I2(m+1),O2(m+1),2m2

]
hM‖2)

with ‖hM‖ = 1 given for the SS algorithm are shown in Table 2. We see that our analysis based on a

deterministic model of tails is valid for m = 2. We observe that a correct detection of the significant

order m is critical. For m > 2, the diversity of hm is very small, so the estimated and theoretical variance

of ĥm degrades considerably. We note that the corresponding theoretical values are large. In fact from

(4.1), (4.6) and (4.11), the algorithms derivative involves the inversion of the channel covariance matrix,

16



which in this case is poorly conditionned. Our first order perturbation analysis is no longer valid. Only

the SS algorithm is able to identify the effective response of our three ray multipath channel for roll-off

factor 0.4 thanks to its better sensibility to the diversity of hm (see Section 4.4). Furthermore we note

that for weaker roll off factors, we are not in the context of an effective response clearly distinct from

small tails.

6 Conclusion

We built a general functional methodology for studying the statistical performance of second-order meth-

ods for blind channel identification/equalization in practical situations, i.e., in presence of estimated

second-order statistics from finite samples observation, non-negligible additive channel noise and long

tails of “small” leading and/or trailing impulse response terms, we built . We proposed two models for

the channel tails and we obtained general asymptotic statistics of the estimated significant part of the

channel, the zero-forcing equalizer, the combined channel-equalizer impulse response and the open eye

measure. These asymptotic statistics are valid in a large domain of tail size and sample size. It is shown

that these performance measures are related to the diversity of the significant part of the channel, but

also to a diversity sensitivity of this significant part adapted to each algorithm. Finally we applied our

functional approach to the LS/SS, LP and OPD algorithms as examples.

almost equivalent algorithms, are less reponse, if the beforehand.

A Asymptotic Normality of R̂M
m

In this appendix, R̂M
m and RM

m are denoted R̂N and R for simplicity and to specify the dependence on

N of R̂M
m . Since xik, i = 1, 2 associated with the impulse response hM are M -dependent processes, we

can apply the asymptotic normality results of [21, theorem 14, p.228] and [18, theorems 6.4.2 and 7.2.1].

Adapting these results to the multivariate process xk and using some properties of the vec-permutation

matrix, the vec-operator and Kronecker products given in [16], Vec(R̂N ) is asymptotically Gaussian

√
N(Vec(R̂N )−Vec(R))

L→ N (0,CR)

with asymptotic covariance matrix given by CR = limN→∞NCov(Vec(R̂N )) with

CR =

∫ +1/2

−1/2
Em(f)∗ ⊗Em(f)df +

∫ +1/2

−1/2
[Em(f)∗ ⊗Em(f)]K2(m+1),2(m+1)df + κQm (A.1)

where

Em(f)
def
= em(f)eHm(f)⊗ S(f), (A.2)

and

Qm
def
= Vec(Tm(hM )T Tm (hM ))VecT (Tm(hM )T Tm (hM )). (A.3)

em(f) denotes the vector (1, e−i2πf , . . . , e−i2πmf )T . S(f) is the spectral density matrix of the 2-

dimensional vector process xk. From (2.1) is easily seen that:

S(f) =

(
M∑
k=0

h(k)e
−i2πkf

)(
M∑
k=0

h(k)e
−i2πkf

)H
+ σ2nI2, (A.4)

κ is the cumulant cum(sk, sk, sk, sk). Naturally the asymptotic normality of R̂m
m is obtained in the same

way by replacing hM by hm in (A.2), (A.3) and (A.4).
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We note that the performance of the LS/SS method is insensitive to the distribution of the input sk
because the last term of (A.1) does not affect the asymptotic covariance of the estimates given by the

LS/SS method. This is immediately shown because

ASS
h,RM

m
QmASS

h,RM
m

T
=

(
Tm(hTmTm ⊗ [Tm(hM )T Tm (hM )]\)Vec(Tm(hM )T Tm (hM ))

)
(.)T

=
(
TmVec([Tm(hM )T Tm (hM )]\Tm(hM )T Tm (hM )Tmhm)

)
(.)T

=
(
TmVec([Tm(hM )T Tm (hM )]\Tm(hM )T Tm (hM )v2(m+1)

)
(.)T = O.

Second equality uses relation (1.1) and third equality is due to the orthogonality of v2(m+1) to the column

space of Tm(hM ). This extends a result given in [15].

B Proof of relations (4.12) and (4.13) for the LS/SS algorithm

For the SS algorithm, (4.12) and (4.13) are proved thanks to the following simplification of BSS
h,Rm

m
defined

in (3.9) by ASS
h,Rm

m
Vec(δRd) = BSS

h,Rm
m

dm,M +O(‖dm,M‖2). From (3.7),

ASS
h,Rm

m
Vec(δRd)

= −Tm

(
hTmTm ⊗ [Tm(hm)T Tm (hm)]\

)
Vec

(
Tm(hzm,M )T Tm (dzm,M ) + Tm(dzm,M )T Tm (hzm,M )

)
+O(‖dm,M‖2

= TmVec
(
[Tm(hm)T Tm (hm)]\

[
Tm(hzm,M )T Tm (dzm,M ) + Tm(dzm,M )T Tm (hzm,M )

]
Tmhm

)
+O(‖dm,M‖2)

Then thanks to (2.2), as −Tmhm is left orthogonal to the Sylvester resultant matrix Tm(hm) and hence

to Tm(hzm,M ), ASS
h,Rm

m
Vec(δRd) reduces to:

ASS
h,Rm

m
Vec(δRd) = −Tm[Tm(hm)T Tm (hm)]\Tm(hzm,M )T Tm (dzm,M )vm +O(‖dm,M‖2).

Using the commutativity of the convolution product and the selection matrix I‡ (3.8) that links dzm,M to

dm,M , it holds that

BSS
h,Rm

m
= −Tm[Tm(hm)T Tm (hm)]\Tm(hzm,M )T TM (vm)I‡.

Proof of relation (4.13) In BSS
h,Rm

m

(
BSS
h,Rm

m

)T
, a priori only Tm(hzm,M )T TM (vm)I‡I‡

T TM (vm)T Tm (hzm,M )

depends on m1 and m2. First, consider Tm(hzm,M )T TM (vm). Because any row of the Sylvester resultant

matrix Tl(au) can be permuted to give Tl(au) = Kl+1,2

[ Tl(a(1)
u )

Tl(a
(2)
u )

]
(where au and a

(i)
u are defined similarly

as hm and h
(i)
m , i = 1, 2), it holds

Tm(hzm,M )T TM (vm) = Km+1,2

[
Tm(hz

(1)

m,M )

Tm(hz
(2)

m,M )

] [
T TM (v(1)

m )T TM (v(2)
m )
]
K2,M+1

def
= Km+1,2

[
U11 U12

U21 U22

]
K2,M+1 (B.1)

where Uij
def
= Tm(hz

(i)

m,M )T TM (v
(j)
m ), i, j = 1, 2. Consequently, the product of Tm(hz

(i)

m,M ) by a column of

T TM (v
(j)
m ) can be interpreted, if entries of this column are regarded as input data, as the output of the

channel hz
(i)

m,M driven by this input. As columns of T TM (v
(j)
m ) are shifted versions of each other, the columns

of Tm(hz
(i)

m,M )T TM (v
(j)
m ) are also shifted versions of each other. Therefore, each matrix Uij has a Toeplitz

structure and an entry (Uij)a,b , a = 1, . . . ,m+ 1 and b = 1, . . . ,M + 1, is the scalar product between the
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m + M + 1-dimensional vectors

 0 . . 0︸ ︷︷ ︸
a−1+m1

h
(i)
0 · · ·h

(i)
m 0 . . 0︸ ︷︷ ︸

m+1−a+m2

T and

0 . . 0︸ ︷︷ ︸
b−1

v
(j)
0 · · · v

(j)
m 0 . . 0︸ ︷︷ ︸

M+1−b

T . If

m1 = m+m′1 ≥ m, it is straightforwardly to prove that

Uij =


0 . . 0 u1i,j u2i,j . . u2m+1

i,j 0 . 0

. . 0 u1i,j . . . .

. . . . .

0 . . 0 0 . 0 u1i,j . . .


︸ ︷︷ ︸
Om+1,m′

1

︸ ︷︷ ︸
U′ij

where U′ij does not depend on m1.

Then

Tm(hzm,M )T TM (vm)I‡I‡
T

TM (vm)T Tm (hzm,M ) =

Km+1,2

[
U11 U12

U21 U22

]
K2,M+1I

‡I‡
T

KM+1,2

[
UT

11 UT
21

UT
12 UT

22

]
K2,m+1Km+1,2

[
Ũ1 Ũ2

Ũ3 Ũ4

]
K2,m+1.

Using the definition of I‡, (3.8) and property (1.3), it is straightforwardly proved that

K2,M+1I
‡I‡

T

KM+1,2 =

I2 ⊗


Im′1

Im
Om+1

Im2


 def

= I2 ⊗ I+,

so that any of the blocks Ũij is given by Ui1i2 I+ UT
j1j2

+Uk1k2 I+ UT
l1l2

for i1, i2, j1, j2, k1, k2, l1, l2 = 1, 2.

It remains to see that each term of this sum does not depend on m1. It is proved, as

Ui1i2 I+ UT
j1j2

def
= [Om+1,m′1

U′i1i2 ]I+
[

Om′1,m+1

U′Tj1j2

]
= U′i1i2

 Im
Om+1

Im2

U′Tj1j2 .

Proof of relation (4.12) Using (B.1) and (1.3) (which implies K2,M+1I
‡ = (I2 ⊗ I†)K2,M+1), we have

Tm(hzm,M )T TM (vm)I‡ = Km+1,2

[
U11I

† U12I
†

U21I
† U22I

†

]
K2,M+1.

If m1 = m+m′1 ≥ m and m2 = m+m′2 ≥ m, then UijI
† = [ Om+1,m′1

U′′ij ,Om+1,m′2
] I† = U′′ijI

++ where

U′′ij does not depend on m1 and m2 and

I++ def
=

 Om,m′1
Im Om Om,m′2

Om+1,m′1
Om+1,m Om+1,m Om+1,m′2

Om,m′1
Om Im Om,m′2

 .
Therefore, Tm(hzm,M )T TM (vm)I‡ = Km+1,2

[
U′11 U′12
U′21 U′22

]
(I2 ⊗ I++) K2,M+1. Consequently

BSS
h,Rm

m
= BSS†

h,Rm
m

(I2 ⊗ I++) K2,M+1 where BSS†
h,Rm

m
do not depend on m1 and m2. Let

d =
[
d
(1)
1 d

(2)
1 . . . d

(1)
m1+m2

d
(2)
m1+m2

]T
be a unit norm vector. It is uniquely expressed as the sum of

two orthogonal vectors d = da + db where

da
def
=

[
0T2m′1

d
(1)
m′1+1d

(2)
m′1+1 . . . d

(1)
m′1+2md

(2)
m′1+2m 0T2m′2

]T
db

def
=

[
d
(1)
1 d

(2)
2 . . . d

(1)
m′1
d
(2)
m′1

0T4m d
(1)
m1+m+1d

(2)
m1+m+1 . . . d

(1)
m1+m2

d
(2)
m1+m2

]T
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so that I++d
(i)
b = 0 and BSS

h,Rm
m

d = BSS†
h,Rm

m
(I2 ⊗ I++) K2,M+1da = BSS†

h,Rm
m

(I2 ⊗ I++)

[
d
(1)
a

d
(2)
a

]
where d

(i)
a =[

0Tm′1
d
(i)
m′1+1 . . . d

(i)
m′1+2m 0Tm′2

]T
, i = 1, 2. Consequently, a unit norm vector d that maximizes ‖BSS

h,Rm
m

d‖

satisfies d = da with d
(i)
a =

[
0Tm′1

d
(i)T

l d
(i)T
r 0Tm′2

]T
, i = 1, 2 where d

(i)
l and d

(i)
r are m-dimensional vectors.

Furthermore

BSS
h,Rm

m
d = BSS†

h,Rm
m



d
(1)
l

0m+1

d
(1)
r

d
(2)
l

0m+1

d
(2)
r


= BSS†

h,Rm
m

I2 ⊗

 Im Om

Om+1,m Om+1,m

Om Im





d
(1)
l

d
(1)
r

d
(2)
l

d
(2)
r

 def
= BSS‡

h,Rm
m


d
(1)
l

d
(1)
r

d
(2)
l

d
(2)
r



where BSS‡
h,Rm

m
does not depend on m1 and m2. Its right singular vectors and singular values also do not

depend on m1 and m2. d is a right singular vector associated with the largest singular value of BSS
h,Rm

m

iff
[
d
(1)T

l d
(1)T
r d

(2)T

l d
(2)T
r

]
is a right singular vector associated with the largest singular value of BSS‡

h,Rm
m

.

So, the right singular vector associated with the largest singular value of BSS
h,Rm

m
does not depend on m1

and m2.
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(a)

Theoretical bias components Estimated bias components
SS/LS LP OPD SS/LS LP OPD
0.0006 0.0045 0.0067 0.0007 0.0142 0.0093
-0.0086 -0.0103 -0.0099 -0.0083 -0.0165 -0.0126
0.0010 0.0106 0.0119 -0.0002 0.0074 0.0122
-0.0079 -0.0294 -0.0261 -0.0088 -0.0253 -0.0257
-0.0114 -0.0030 -0.0032 -0.0121 -0.0019 -0.0066
-0.0052 -0.0038 -0.0001 -0.0048 -0.0016 0.0019

Theoretical bias norm Estimated bias norm
0.0172 0.0336 0.0312 0.0178 0.0343 0.0332

(b)

Theoretical bias components Estimated bias components
SS/LS LP OPD SS/LS LP OPD
0.0013 0.0090 0.0134 0.0008 0.0195 0.0173
-0.0172 -0.0206 -0.0199 -0.0158 -0.0297 -0.0260
0.0020 0.0212 0.0237 -0.0018 0.0192 0.0245
-0.0157 -0.0588 -0.0522 -0.0195 -0.0549 -0.0507
-0.0229 -0.0059 -0.0065 -0.0259 -0.0039 -0.0070
-0.0104 -0.0076 -0.0002 -0.0083 -0.0080 0.0002

Theoretical bias norm Estimated bias norm
0.0343 0.0671 0.0625 0.0370 0.0688 0.0647

(c)

Theoretical bias components Estimated bias components
SS/LS LP OPD SS/LS LP OPD
0.0006 0.0045 0.0067 0.0004 0.0074 0.0074
-0.0086 -0.0103 -0.0099 -0.0080 -0.0128 -0.0113
0.0010 0.0106 0.0119 0.0000 0.0098 0.0119
-0.0079 -0.0294 -0.0261 -0.0087 -0.0281 -0.0254
-0.0114 -0.0030 -0.0032 -0.0122 -0.0030 -0.0035
-0.0052 -0.0038 -0.0001 -0.0046 -0.0032 0.0003

Theoretical bias norm Estimated bias norm
0.0172 0.0336 0.0312 0.0176 0.0335 0.0314

Table 1 Theoretical asymptotic bias of ĥ2, compared with estimated bias in the deterministic model of tails

for respectively (a) N = 300, ‖d2,12‖ = 0.05; (b) N = 300, ‖d2,12‖ = 0.1; (c) N = 1000, ‖d2,12‖ = 0.05.

m 1 2 3 4
Theoretical MSE 0.0634
Estimated MSE 0.3061 0.038 0.5189 0.8889

Table 2 Theoretical and estimated MSE of ĥm given by the SS algorithm, with N = 300 and a signal to noise

ratio of 17dB for different values of m.
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Fig.3 MSE of ĥ2 versus the sample size for h2 given by (5.1), a signal noise ratio of 17dB and for ‖d2,12‖ = 0.05.
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Fig.4 MSE of ĥ2 versus the signal to noise ratio, for N = 300 and h2 given by (5.1) and for ‖d2,12‖ = 0.05.
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Fig.5 MSE of ĥ2, for no tails, versus the sample size (a), and for exact statistics versus σ2
d = E(‖d2,12‖2) (b).
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Fig.6 MSE of ĥ2, for N = 300 and ‖d2,12‖2 = 0, 01, versus the signal to noise ratio.
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Fig.7 MSE of ĥ2, for N = 300 and SNR=17dB, versus σ2
d for respectively h2 given by (5.1) (o)(—) and (5.2)

(*- - -).
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Fig.8 MSE of ĥ2, ĝZF
2,2, f̂2,2 and OEM(f̂2,2) for SNR=17dB, versus the sample size for σ2

d = 0.0111 and h2 given

by (5.1).
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