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November 16, 2021

Abstract

This correspondence focuses on the asymptotic performance analysis of general direction of arrival

(DOA) finding algorithms under the stochastic model assumption in which source and noise signals

are possibly non-Gaussian and possibly temporally correlated. We prove, in particular, that all the

covariance-based DOA estimators are sensitive to the temporal correlation of the sources when the

noise is temporally correlated; otherwise, most of them are insensitive to the temporal correlation of

the sources except for the Toeplitzation and the augmentation techniques.

1 Introduction

Motivated by the popularity of the second-order algorithms in DOA estimation, many contributions

have appeared that aim at establishing the asymptotic statistical performance of DOA estimators in the

context of narrow-band array processing. These studies rest on different signal models. The deterministic

and the stochastic model are the main models that have appeared in the literature. The deterministic

model assumes the source signals fixed in all realizations and the noise to be a temporally uncorrelated

Gaussian random process. In the stochastic model, the source and noise signals are generally assumed

to be temporally uncorrelated Gaussian random processes. Many authors (see [1], [2], [3], [4] and the

reference therein) compared the asymptotic performance of DOA algorithms with these two models and
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connected their performance to the Cramer-Rao bound. In fact, most DOA estimators have the same

asymptotic statistical performance under these two models [3], [4] and with any distribution of the source

signals in the stochastic model [5]. But all these contributions rely on the independence assumption of the

successive snapshots. Consequently, performance analyses of these algorithms under mild assumptions

remain of current interest.

It is the aim of this paper to investigate the performance of DOA estimators under the general

stochastic model assumption in which both the source and noise signals are possibly temporally correlated

and possibly non-Gaussian random processes. Ordinarily, the performance analysis of these second-order

algorithms relies on the distribution of the empirical spatial covariance matrix Rx(n)
def
= 1

n

∑n
t=1 xtx

H
t .

These studies use two approaches. The first one is based on perturbation calculus induced by its complex

Wishart distribution when the snapshots xt are Gaussian. The second is based on a continuity theorem

(e.g. [6, theorem, p. 122]) which transfers the asymptotic normality issued from its complex asymptotic

Gaussian distribution derived from the classical central limit theorem to any regular function of this

covariance. When the snapshots xt are not independent, the distribution of Rx(n) is not complex

Wishart in the Gaussian case for the first approach and the classical central limit theorem cannot be

applied for the second approach. We adopt in this paper the general functional method of [7], in which the

Gaussian asymptotic distribution of the covariance-based DOA estimates is derived from the Gaussian

asymptotic distribution of the empirical covariance matrix. This allows us to give closed-form expressions

for the asymptotic covariance matrices of DOA estimates and to specify the conditions for which these

expressions are sensitive to the distribution and the temporal correlation of the sources.

This correspondence is organized as follows. The model of dependent snapshots xt is defined in Section

2. Then in Section 3, the asymptotic normality of Rx(n) is established for these models of dependence

where a central limit theorem is given. A general functional approach providing a common unifying

framework for asymptotic DOA estimation performance analysis is presented in Section 4. The case of

uniform linear or rectangular arrays with the Toeplitzation and augmentation techniques are addressed.

Finally, in Section 5 some simulations are presented.
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2 Signal model

Let an arbitrary array composed of M sensors receive K narrow-band waves. These narrow-band signals

are assumed to have a common center frequency and are in the same bandwidth B. Let ut,k, Θk and

e(Θk) denote, respectively for the source k, the complex envelope of the emitted signal by this source

at time t, the unknown spatial parameters which are referred to as the DOA and the so-called steering

vector of this source. The M -vector of the observed complex envelopes of the sensor outputs is typically

modeled by

xt =
K∑
k=1

ut,ke(Θk) + vt.

Here, vt represents the M -vector of observed complex envelope of sensor output additive noise at time t.

Ordinarily several independent measurements xt are made by sampling the complex envelopes at times

t such that (ut,k,vt)t=1,...,n are independent. We suppose in this paper that the complex envelopes of

the sensor outputs are uniformly sampled at a frequency greater than or equal to B. As a consequence

the observations (xt)t=1,...,n are no longer independent. vt and (ut,k)t=1,...,n are modeled as zero-mean

with finite fourth order moments not necessarily Gaussian stationary random processes. vt is supposed

independent of (ut,k)t=1,...,n. The spatial covariance matrix Rx
def
= E(xtx

H
t ) reads:

Rx = E(Θ)RuE
H(Θ) + σ2

vC,

with E(Θ)
def
= [e(Θ1), . . . , e(ΘK)], Ru

def
= E(utu

H
t ) where ut

def
= (ut,1, . . . , ut,K)T and E(vtv

H
t ) = Rv =

σ2
vC where C is a known positive definite matrix. In order to consider the asymptotic distribution of the

estimated spatial covariance matrix Rx(n), we consider for simplicity that ut,k are either harmonic random

processes (ut,k =
∑Lk
l=1 ak,le

iαk,lei2πfk,lt, where (fk,l)k=1,...,K,l=1,...,Lk
are fixed distinct positive real numbers

in ]− 1/2,+1/2[, ak,l are fixed positive real numbers and αk,l are random variables uniformly distributed

in [0, 2π] and mutually independent), or complex ARMA processes with power σ2
k, power spectral density

Suk(f) and power cross-spectral density K ×K-matrix Su(f). If the fourth order polyspectrum of the

K sources ut,k for k1, k2, k3, k4 = 1, . . . ,K is defined as

ρk1,k2,k3,k4(f, f ′, f ′′)
def
=

∑
τ,τ ′,τ ′′

Cum(u0,k1 , u
∗
τ,k2

, uτ ′,k3 , u
∗
τ ′′,k4

)ei2π(fτ+f ′τ ′+f ′′τ ′′),

[Qu]K(j−1)+i,K(l−1)+k =

∫ +1/2

−1/2

∫ +1/2

−1/2
ρi,j,l,k(f, f

′,−f ′)dfdf ′
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denotes the K2 × K2 fourth order cumulant matrix. The same ARMA assumption and notations are

adopted to the M -variate vt.

Usually, in the context of narrow-band waves, the observations (xt)t=1,...,n are assumed zero-mean cir-

cular Gaussian and independent. So the ensemble average Rx(n) is a sufficient statistic and consequently

all direction-finding algorithms are based on Rx(n). In this context, all the asymptotic performance

analyses are based on the distribution of
∑n
t=1 xtx

H
t , i.e., a central complex Wishart distribution. In

this paper, we go on using second-order direction-finding algorithms. But, as in our signal model the

observations (xt)t=1,...,n are no longer independent, all the results based on this Wishart distribution are

not usable. We need to know the asymptotic distribution of Rx(n).

3 Spatial covariance matrix

Covariance-based DOA estimators will turn out to be asymptotically normal as the number n of obser-

vations goes to infinity. In this section, we focus on a central limit theorem to be used for establishing

DOA asymptotic normality in the next section. We show that the asymptotic distribution of the spatial

covariance matrix Rx(n) is very sensitive to the model of dependence between snapshots. We prove the

following theorem:

Theorem 1
√
n (Vec(Rx(n))−Vec(Rx)) converges in distribution to the zero-mean complex Gaussian

distribution of covariance CRx

√
n (Vec(Rx(n))−Vec(Rx))

L→ N (0,CRx ,CRxK). (3.1)

Furthermore E(Rx(n)) = Rx and

lim
n→∞

nCov (Vec(Rx(n))) 1 = CRx (3.2)

where CRx reads:

CRx = (E(Θ)⊗c E(Θ)) CRu

(
EH(Θ)⊗c EH(Θ)

)
+ CRv

+ (E(Θ)⊗c IM ) CRu,v

(
EH(Θ)⊗c IM

)
+ (IM ⊗c E(Θ)) CRv,u

(
IM ⊗c EH(Θ)

)
(3.3)

1Cov (Vec(Rx(n))) denotes E(Vec(Rx(n) −Rx)VecH(Rx(n) −Rx)). We note that VecT (Rx(n) −Rx) = VecH(Rx(n) −

Rx)K, so E(Vec(Rx(n) −Rx)VecT (Rx(n) −Rx)) = E(Vec(Rx(n) −Rx)VecH(Rx(n) −Rx))K. Therefore the noncircular

complex Gaussian asymptotic distribution of Rx(n) is characterized by CRx only.
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with CRu =
∫+1/2
−1/2 Su(f) ⊗c Su(f)df + Qu in the ARMA case and CRu = O in the harmonic case,

CRv =
∫+1/2
−1/2 Sv(f) ⊗c Sv(f)df + Qv, CRu,v =

∑+∞
n=−∞Rn

u ⊗c Rn
v , CRv,u =

∑+∞
n=−∞Rn

v ⊗c Rn
u, where

Rn
u

def
= E(utu

H
t−n) and Rn

v
def
= E(vtv

H
t−n). A ⊗c B denotes the block matrix, the (i, j) block element of

which is b∗i,jA and K is the vec-permutation matrix defined by Vec(AT ) = KVec(A) for any square matrix

A.

In (3.1) a complex random p × 1 vector y has a zero-mean complex Gaussian distribution specified

by p × p positive definite matrix Σ1 and p × p symmetric matrix Σ2 and denoted N (0,Σ1,Σ2) if the

2p-joint distribution of the real and imaginary part of y is 2p-zero-mean Gaussian, i.e. for any complex

p × 1 vector w: the real scalar wHy + (wHy)H has a zero-mean Gaussian distribution with variance

2wHΣ1w + wHΣ2w
∗ + wTΣ∗2w where E(yyH) = Σ1 and E(yyT ) = Σ2.

(3.2) is proved after straightforward but tedious algebric manipulations. Then, to prove (3.1), we

adapt the steps of ([8, section 7.3]) to our problem.

4 Asymptotic distribution of DOA estimates

4.1 Functional approach

To consider the asymptotic performance of a covariance-based DOA algorithm, we adopt a functional

analysis 2 which consists in recognizing that the whole process of constructing an estimate Θ(n) of Θ

is equivalent to defining a functional relation linking this estimate Θ(n) to the statistics Rx(n) from

which it is inferred. This functional dependence is denoted Θ(n) = alg(Rx(n)). Clearly, Θ = alg(Rx),

so the different algorithms alg(.) constitute distinct extensions of the mapping Rx → Θ generated by

any unstructured Hermitian matrix Rx(n). In the following, we consider “regular” algorithms. More

specifically, we assume the conditions given in [5]:

1. The function alg(.) is differentiable in a neighborhood of Rx, i.e., if Dalg
Θ,Rx

denotes the K ×M2

matrix of this differential evaluated at point Rx

alg(Rx + δR) = Θ + Dalg
Θ,Rx

Vec(δR) + o(δR). (4.1)

2A similar approach based on the implicit function theorem was introduced by Xu and Kaveh [9].
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2. For any Θ and any positive definite source correlation matrix Ru (condition 2a) or for any Θ and

any positive definite diagonal source correlation matrix Ru (condition 2b)

alg(E(Θ)RuE
H(Θ) + σ2

vC) = Θ. (4.2)

Under appropriate hypotheses on the array manifold, the requirements 1 and 2a are met by most of the

second-order DOA estimators. The requirements 1 and 2b are met by the second-order DOA estimators

that suppose the sources spatially uncorrelated. The following lemma (proved under conditions 1 and 2a

in [5]) is used in next section, to prove the invariance of the asymptotic distribution of the DOA’s with

respect to the distribution and the temporal correlation of the sources.

Lemma 1 Under conditions 1 and 2a [resp. conditions 1 and 2b], one has the constraints upon Dalg
Θ,Rx

Dalg
Θ,Rx

(E(Θ)⊗c E(Θ)) = O [resp., Dalg
Θ,Rx

(e(Θk)⊗c e(Θk)) = 0, k = 1, . . . ,K]. (4.3)

4.2 Standard algorithms

By the regularity condition (4.1), the asymptotic behaviors of Θ(n) and Rx(n) are directly related. The

standard result on regular functions of asymptotically normal statistics (see. e.g. [6, theorem, p. 122])

applies:

√
n (Θ(n)−Θ)

L→ N (0,CΘ) (4.4)

with

CΘ = lim
n→∞

nE
(
(Θ(n)−Θ)(Θ(n)−Θ)T

)
= Dalg

Θ,Rx
CRx

(
Dalg

Θ,Rx

)H
. (4.5)

We can now state our main result:

Theorem 2 For Gaussian or non-Gaussian, ARMA or harmonic source signals, the asymptotic covari-

ance of any covariance-based DOA estimators that do not require the sources spatially uncorrelated, has

the common closed-form expression when the noise vt is temporally uncorrelated:

CΘ = Dalg
Θ,Rx

(
E(Θ)RuE

H(Θ)⊗c σ2
vC + σ2

vC⊗c E(Θ)RuE
H(Θ) + σ4

vC⊗c C + Qv

) (
Dalg

Θ,Rx

)H
(4.6)

Proof: In this situation Rn
v = δ0,nσ

2
vC. The closed-form expression follows by application of (3.3), (4.5)

and the first part of (4.3).
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This result extends the result in [5]. We note that if the noise is temporally correlated, the terms CRu,v

and CRv,u of (3.3) do not reduce to the spatial terms Ru ⊗c Rv and Rv ⊗c Ru and so the performance

of all the covariance-based DOA algorithms are sensitive to the temporal correlation of the sources when

the noise is temporally correlated. In the next subsections, we show that the asymptotic performance of

DOA algorithms that require the sources spatially uncorrelated are sensitive to the distribution and the

coloration of the spectrum of the sources, even when the noise is temporally uncorrelated.

4.3 Toeplitzation techniques

For M -uniform linear array (ULA) [resp., M1×M2-uniform rectangular array (URA)], spatially uncorre-

lated sources and spatially white noise, Rx exhibits a Toeplitz [resp., Toeplitz, block-Toeplitz] structure.

The estimated spatial covariance matrix Rx(n) accuracy is significantly improved by averaging along its

diagonals [resp., its subblock diagonals]. The resulting estimate Rto
x (n) is referred to as the “Toeplitzed”

estimated spatial covariance matrix. Because this “Toeplitzation”, also known as redundancy averag-

ing [10], operates a linear transform on Rx(n) thanks to the “Toeplitzation” projection matrix Ato

(Vec(Rto
x (n)) = AtoVec(Rx(n))), Theorem 1 is extending to Rto

x (n) with the asymptotic covariance ma-

trix Cto
Rx

= AtoCRxAto. By the regularity condition (4.1) of subsection 4.1, the estimated DOA’s are

asymptotically normal with asymptotic covariance:

Cto
Θ = Dalg

Θ,Rx
AtoCRxAto

(
Dalg

Θ,Rx

)H
. (4.7)

In contrast to the classical covariance-based DOA algorithms, we show in the following that the Toeplitzed

covariance-based DOA algorithms are sensitive to the spectral shape of the spectrum of the sources. More

precisely, the following properties are proved: 3

1. The Toeplitzation is not sensitive to the distribution of the ARMA sources if the sources are not

only spatially uncorrelated but are independent.

Proof: If the sources are independent, the only nonzero terms of the fourth-order cumulant matrix

Qu are the terms [Qu]K(k−1)+k,K(k−1)+k = ck
def
=

∫+1/2
−1/2

∫+1/2
−1/2 ρk,k,k,k(f, f

′,−f ′)dfdf ′. And the

fourth-order cumulant term of (3.3) boils down to
∑K
k=1 ck(eM (θk)⊗c eM (θk))(e

H
M (θk)⊗c eHM (θk))

3The following properties are proved for ULA, the proofs can be extended to URA along the same lines.

7



where eM (θk)
def
= (1, eiθk , e2iθk , . . . , e(M−1)iθk)T . The DOA algorithms alg(.) applied to Rto

x (n) define

the mapping algto(.). This mapping satisfies condition 2b of lemma 1. Thus the second constraint

upon Dalg
Θ,Rx

of lemma 1 establishes the result.

2. In the single source case, the Toeplitzation is not sensitive to the temporal correlation of the sources.

Proof: In this case, condition 2a of lemma 1 reduces to condition 2b. The ex-

pressions of Dalg
Θ,Rx

AtoCRxAtoD
alg
Θ,Rx

H
coincide for the ARMA and harmonic sources with

Dalg
Θ,Rx

Ato

(
σ2

1eM (θ1)eHM (θ1)⊗c σ2
vIM + σ2

vIM ⊗c σ2
1eM (θ1)eHM (θ1) + σ4

vIM2

)
Ato

(
Dalg

Θ,Rx

)H
.

3. In the case of several sources, the Toeplitzation is sensitive to the temporal correlation of the

sources.

Proof: Because eM (θk)e
H
M (θl), k 6= l has not a Toeplitz structure, the column space of Ato(E(Θ)⊗c

E(Θ)) does not belong to the column space of E(Θ)⊗cE(Θ). Condition 2a of lemma 1 is generally

not satisfied. So the associated terms in (4.7) do not vanish, contrary to the single source case.

Therefore the extra term

Ato

 ∑
1≤l 6=k≤K

(∫ +1/2

−1/2
Suk(f)Sul(f)df

)
eM (θk)e

H
M (θk)⊗c eM (θl)e

H
M (θl)

Ato (4.8)

that appears for ARMA sources, does not vanish in Cto
Θ . We note that the performance of the

ARMA sources case and the harmonic source case coincides when the spectrums of the ARMA

sources tend to be disjoint. At low SNR, CRx can be approximated by σ4
vI and the Toeplitzation

becomes insensitive to the temporal correlation of the sources. Furthermore the closed-form ex-

pressions given for two closely spaced sources at low SNR in ([11, rel. 9.118 and 9.119]) and in

[12] remains valid for colored sources. At high SNR, the term (4.8) becomes dominant in CRx and

the Toeplitzation becomes very sensitive to the temporal correlation of the sources, which will be

confirmed in Section 5.
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4.4 Augmention techniques

The linear or planar sparse arrays attract considerable attention as they lead to significantly improved

performance [13] for spatially uncorrelated and white sources 4. To show these techniques are sensitive to

the temporal correlation of the sources, we consider only the standard method utilizing the direct augmen-

tation approach [15]. To fix notations, consider a planar grid (a half wavelengh of the incident radiation

equispaced). Let Γ be the array characteristic function: Γ(x, y) =


1 if a sensor is in position (x, y)

0 elsewhere.

.

Let Λ(dx, dy) be the autocorrelation function of the array characteristic function Γ (Λ(dx, dy) represents

the number of times the lag (dx, dy) is present in the sparse array). Rx(n) and Rau
x (n) denote the spatial

covariance matrices associated with the fictitious M ′1 ×M ′2-URA and the M1 ×M2 augmented array re-

spectively5 . Then the direct augmentation approach [15] operates a linear transform on Rx(n) 6 thanks

to the augmentation operator M2
1M

2
2 ×M ′1

2M ′2
2 matrix Aau: (Vec(Rau

x (n)) = AauVec(Rx(n))). 7

[Aau](h−1)M2
1M2+(j−1)M1M2+(g−1)M1+i,(f−1)M ′21M

′
2+(l−1)M ′1M ′2+(e−1)M ′1+k

=


Γ(k−1,e−1) Γ(l−1,f−1)

Λ(l−k,f−e) if


l − k = j − i

f − e = h− g

0 elsewhere.

(4.9)

Theorem 1 extends to Rau
x (n) with the asymptotic covariance matrix Cau

Rx
= AauCRxAT

au. By the regu-

larity condition (4.1) of subsection 4.1, the estimated DOA’s are asymptotically normal with asymptotic

covariance:

Cau
Θ = Dalg

Θ,Rx
AauCRxAT

au

(
Dalg

Θ,Rx

)H
. (4.10)

We note that lemma 1 does not apply to this situation because the mapping algau(.) is not defined on

Rx(n), but on some terms of Rx(n) only. Consequently the insensitivity of the augmentation techniques

4An improvement of the performance of DOA algorithms when the sources are spatially correlated was proposed by using

the redundancy averaging techniques. In these conditions, these techniques lead to asymptotical inconsistent and biased

estimates [14].
5M1 = M ′1 and M2 = M ′2 for restricted redundancy and M1 < M ′1 and M2 < M ′2 for unrestricted redundancy [13].
6We note that this linear transform is defined only for analysis purpose as Rx(n) is not observed.
7In case of linear arrays, e = f = g = h = 1 and (4.9) reads: [Aau](j−1)M+i,(l−1)M′+k =
Γ(k−1) Γ(l−1)

Λ(l−k)
if l − k = j − i

0 elsewhere

.

9



to the distribution and the temporal correlation of the sources is not assured.

5 Simulations

We consider throughout this section, 2 sources of equal power (σ2
k)k=1,2, the SNR is defined as the ratio

σ2
1+σ2

2
σ2
v

. The DOA’s are estimated by the standard MUSIC algorithm and the number of Monte Carlo

runs is 500. These sources are issued from the DOA’s θk = π sin θ′k with θ′1 = 30◦, θ′2 = 20◦ for the

ULA and from the DOA’s θk = π sin θ′k sinφ′k, φk = π cos θ′k sinφ′k with θ′1 = 30◦ θ′2 = 20◦ and φ′1 = 10◦

φ′2 = 40◦ for the URA.

The first experiment presents the case of two sources which are both spatially uncorrelated, white

Gaussian, ARMA Gaussian (generated by a (10,10) Butterworth filter driven by a white Gaussian noise)

or harmonic. The centered frequencies of the ARMA and the frequencies of the harmonics are −0.25

and 0.25. Fig.1 plots the theoretical MSE of θk
1
n [CΘ]k,k and the estimated MSE E‖ θk(n)− θk ‖2Fro as a

function of the SNR for an 10−ULA (the bandwidth is fixed to 0.5 for ARMA signals) after Toeplitzation.

We observe that these estimated MSE’s are in good agreement with the theoretical MSE’s but are very

sensitive to the temporal correlation of the sources. Fig.2 plots the theoretical MSE of θk
1
n [CΘ]k,k

for the ARMA Gaussian spatially uncorrelated sources as a function of the sources bandwidth for an

10−ULA. We observe that these theoretical MSE’s increase with this bandwidth and begin increasing

from the bandwidth 0.45 which is associated with the overlapping of the spectrum of the two sources.

These MSE’s increase from the value associated with two harmonic sources to the value associated with

two white sources. The “saturation” phenomena observed in [10], desappears when the spectrum of

the two sources are not overlapping. Note that the common expression of the MSE’s obtained without

Toeplitzation is close to the MSE’s obtained after Toeplitzation for nonoverlapping spectra. Fig.3 plots

the theoretical MSE of θk
1
n [CΘ]k,k and the estimated MSE E‖ θk(n)−θk ‖2Fro as a function of the number

of sensors for an ULA for SNR = 20dB. We observe that these estimated MSE’s are in good agreement

with the theoretical MSE but these MSE’s are very sensitive to the temporal correlation of the sources

(the bandwidth is fixed to 0.5 for ARMA signals). These MSE’s are decreasing with the number of

sensors except for the case of overlapping spectrums where the “saturation” phenomena can lead to a

degradation of the MSE.
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The second experiment presents the case of two sources with the same temporal parameters (for white

source signals, the distribution is either Gaussian or discrete {−1,+1}) as in the first experiment but are

impinging on a 12−Greene and Wood array [16] utilizing the direct augmentation approach [15]. Fig.4

plots the theoretical MSE and the estimated MSE of the angles θk and φk as a function of the SNR. The

behavior of these MSE’s is similar to those of the MSE’s obtained for the ULA Toeplitzation situation.

6 Conclusion

In this paper, we have presented an asymptotic performance analysis of DOA finding algorithms using the

stochastic model assumption in which both source and noise signals are possibly non-Gaussian and possi-

bly temporally correlated. We have shown that the asymptotic statistical performance of the second-order

DOA finding algorithms generally depend on the temporal correlation of the source and noise signals.

But when the noise is supposed temporally uncorrelated, it is proved that the covariance-based DOA

estimators that do not require the sources spatially uncorrelated are insensitive to the distribution and

the temporal correlation of the source signals, unlike the Toeplitzation and the augmentation techniques

that are very sensitive.
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Fig.1 Theoretical and estimated MSE of θk(n) versus the SNR, for respectively white (o), colored (+) and
harmonic (∗) signals for a 10-ULA array, n = 100 after Toeplitzation (—) and without Toeplitzation (- - -).
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Fig.2 Theoretical MSE of θk(n) versus the sources bandwidth for a 10-ULA array, SNR = 20dB after Toeplitza-
tion.

13



0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

M
SE

Number of sensors

Fig.3 Theoretical and estimated MSE of θk(n) versus the number of sensors of an ULA array, SNR = 20dB,
n = 100 for white (o), colored (+) and harmonic (∗) signals after Toeplitzation.
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Fig.4 Theoretical and estimated MSE of θk(n) and φk(n) versus the SNR, for respectively white (either
Gaussian or discrete) (o), colored (+) and harmonic (∗) signals for a 12−Greene and Wood array, n = 100 after
standard augmentation technique (—) and without augmentation (- - -).
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