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Asymptotic Eigenvalue Distribution of Block
Toeplitz Matrices and Application to Blind SIMO

Channel Identification
Houcem Gazzah, Phillip A. Regalia and Jean-Pierre Delmas

Abstract— Szegö’s theorem states that the asymptotic be-
havior of the eigenvalues of a Hermitian Toeplitz matrix
is linked to the Fourier transform of its entries. This re-
sult was later extended to block Toeplitz matrices, i.e., co-
variance matrices of multi-variate stationary processes. The
present work gives a new proof of Szegö’s theorem applied
to block Toeplitz matrices. We focus on a particular class of
Toeplitz matrices, those corresponding to covariance matri-
ces of Single Input Multiple Output channels. They satisfy
some factorization properties that lead to a simpler form
of Szegö’s theorem and allow one to deduce results on the
asymptotic behavior of the lowest nonzero eigenvalue for
which an upper bound is developed and expressed in terms
of the subchannels frequency responces. This bound is in-
terpreted in the context of blind channel identification using
second order algorithms, and more particularly the case of
bandlimited channels.

Keywords— Asymptotic eigenvalue distribution, bandlim-
ited channels, blind identification, block Toeplitz matrices,
multivariate processes, second order statistics algorithms.

I. Introduction

IN a celebrated result appearing in [1], Szegö states that
the eigenvalues of a sequence of Hermitian Toeplitz ma-

trices are asymptotically distributed like the samples of
the Fourier transform of its entries. The lowest/highest
eigenvalue are decreasing/increasing and converge to the
minimum/maximum of this Fourier transform. The appli-
cation of this result to covariance matrices of scalar sta-
tionary1 processes is straightforward. Several extensions
have since been made (see [2]). The most important ex-
tends Szegö’s theorem to block Toeplitz matrices with non-
Toeplitz blocks where the number of blocks tends to infinity
[3], [4]. However, the proof made therein relies on sophis-
ticated mathematics. In this paper, we suggest a simpler
proof than that in [3], [4] of the extension of the Szegö
theorem to block Toeplitz structured matrices. We use the
asymptotic equivalence of matrix sequences and more par-
ticularly the result established by Gray in [5] on asymp-
totic equivalence of Toeplitz matrix sequences and circu-
lant matrix sequences. We focus then on a special class of
block Toeplitz matrices, frequently encountered in signal
processing, to give a simpler form of the Szegö theorem
and deduce results about the lowest nonzero eigenvalue,
which expresses the conditioning with respect to inversion
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1Stationary processes denote throughout the paper second-order
stationary processes.

of such matrices.
We target in particular second-order statistics based

blind identification algorithms of single input multiple out-
put channels (SIMO) where channel output covariance ma-
trices are manipulated in such a way that the performance
of the algorithms depends heavily on how well-conditioned
the matrix is [6], [7]. Therefore, the interest in eigenvalues
(and more particularly the lowest nonzero eigenvalue) of
block Toeplitz matrices is highly justified and constitutes
the subject of this paper.

This paper is organized as follows. In Section II, results
on asymptotic equivalence of Toeplitz matrix sequences as
well as Szegö’s theorem are reviewed for convenience of the
reader and in order to fix notations. In Section III, we
propose a new proof of Szegö’s theorem extended to block
Toeplitz matrices with non-Toeplitz blocks where the num-
ber of blocks tends to infinity. We address then a specific
class of block Toeplitz matrices, that of SIMO channel co-
variance matrices. In Section IV, implications for blind
channel identification are discussed and the case of ban-
dlimited channels is particularly addressed.

II. Notations and Previous Results

Let {tk}k=···,−1,0,1,··· be an absolutely summable infinite
complex sequence (i.e.,

∑
k |tk| < ∞) so that the associated

2π-periodic Fourier transform t(w)=̂
∑

k tke−ikw is well de-
fined. We define the infinite matrix sequence {Tn(t)}n≥1

where Tn(t) is the n× n Toeplitz matrix given by

Tn(t)=̂


t0 t−1 · · · t−(n−1)

t1
. . . . . . t−(n−2)

...
. . .

...
tn−1 tn−2 · · · t0

 .

Consider a sequence of n × n matrices An. To study
the asymptotic equivalence of sequences of such matrices,
two norms have been introduced [5]. The strong norm
‖An‖ and the weak norm |An| are defined, respectively, as
the spectral norm ‖An‖2 =̂max‖x‖=1xHAH

n Anx and as the
normalized Frobenuis norm |An|2=̂ 1

n

∑n
i=1

∑n
j=1 |ai,j |2.

σk(A) (resp., λk(A)) refers to the k-th largest singular
value (resp. eigenvalue) of the matrix (resp. the square
matrix) A. Kr,s represents the vec-permutation matrix [8]
such that Vec (A) = Kr,sVec

(
AT
)

for all r × s matrices
A. It satisfies Kr,s = K−1

s,r = KT
s,r.

The following definitions and results, necessary for Sec-
tion III, are recalled:
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Definition 1: Asymptotic equivalence [5]
Two matrix sequences {An} and {Bn}, n = 1, 2, · · · are
said to be asymptotically equivalent and noted {An} ∼
{Bn} if

∃M < ∞ such that ∀n, ‖An‖ ≤ M and ‖Bn‖ ≤ M (1)

limn→∞|An −Bn| = 0 (2)
Lemma 1: [5]

If {An} ∼ {Bn} and if limn→∞ 1
n

∑n
k=1 λs

k(An) ex-
ists and is finite for any positive integer s, then
limn→∞ 1

n

∑n
k=1 λs

k(An) = limn→∞ 1
n

∑n
k=1 λs

k(Bn).
Lemma 2: [5]

For all absolutely summable sequences {tk}k=···,−1,0,1,···,
there exists a sequence of circulant matrices {Cn(t)}
asymptotically equivalent to {Tn(t)} and given by Cn(t) =
UH

n Dn(t)Un where Dn(t) is a diagonal matrix with its k-
th entry given by (Dn(t))k,k = t

(
2π(k−1)

n

)
and Un is the

unitary DFT matrix (Un)k,l = 1√
n
e−i2π

(k−1)(l−1)
n .

We will make use of the fact that the eigenvectors of Cn(t)
are independent of the sequence {tk} and that its eigen-
values are equally spaced samples of the Fourier transform
t(w). We finally recall the Szegö result for a Toeplitz ma-
trix that we will extend in Section III to the block Toeplitz
matrices:

Theorem 1: Szegö’s theorem [1]
For all absolutely summable sequences {tk}k=···,−1,0,1,···, if
Tn(t) is Hermitian, then for all functions F continuous on
[minwt(w), maxwt(w)]

limn→∞
1
n

n∑
k=1

F (λk(Tn(t))) =
1
2π

π∫
−π

F (t(w)) dw.

Theorem 2: [1], [9]
For all absolutely summable sequences {tk}k=···,−1,0,1,···,
if Tn(t) is Hermitian, then, for any l, the lowest (resp.
largest) l eigenvalues of Tn(t) are decreasing (resp. increas-
ing) with n and converge to minwt(w) (resp. maxwt(w)).

III. Block Toeplitz Matrices

A. Definitions

To extend the preceding results to block Toeplitz matri-
ces, we define the block Toeplitz matrix

T ′n({tu,v}) =


T0 T−1 · · · T−(n−1)

T1
. . . . . . T−(n−2)

...
. . .

...
Tn−1 Tn−2 · · · T0

 (3)

where (Tk)k=−(n−1),···,n−1 are c×c matrices (not necessar-
ily Toeplitz) of entries tu,v

k =̂ (Tk)u,v , u, v = 1, · · · , c. We
consider the associated matrix

Tn({tu,v})=̂


Tn(t1,1) Tn(t1,2) · · · Tn(t1,c)
Tn(t2,1) Tn(t2,2) · · · Tn(t2,c)

...
...

Tn(tc,1) Tn(tc,2) · · · Tn(tc,c)

 (4)

where Tn(tu,v), u, v = 1, · · · , c are the n × n the Toeplitz

matrices


tu,v
0 tu,v

−1 · · · tu,v
−(n−1)

tu,v
1

. . .
. . . tu,v

−(n−2)

...
. . .

...
tu,v
n−1 tu,v

n−2 · · · tu,v
0

. We suppose

{tu,v
k }, u, v = 1, · · · , c to be a finite set of absolutely

summable infinite sequences2. So, the Fourier transform
tu,v(w)=̂

∑
k tu,v

k e−ikw can be associated with each se-
quence. Using the vec-permutation matrix Kr,s [8], we
have T ′n({tu,v} = Kn,cTn({tu,v}Kc,n = Kn,cTn({tu,v}K−1

n,c,
so that the matrices T ′n({tu,v}) and Tn({tu,v}) are similar
and hence, equivalent from an eigenvalue point of view.
However, the formulation in (4) is preferred as it allows
one to handle Toeplitz blocks for which results recalled in
Section II can be used. Notice that Tn({tu,v}) is Hermi-
tian if and only if Tn(tv,u) = TH

n (tu,v), u, v = 1, · · · , c or
equivalently tv,u(w) = (tu,v(w))∗ , u, v = 1, · · · , c.
B. Asymptotic Distribution of Eigenvalues

Lemma 2 extends straightforwardly to the block Toeplitz
matrices in the following:

Lemma 3: For all absolutely summable sequences
{tu,v

k }k=···,−1,0,1,···, there exists a sequence of matrices
{Cn({tu,v})} asymptotically equivalent to {Tn({tu,v})} and
given by Cn({tu,v}} = UH

n Dn({tu,v})Un where Un is an
nc×nc unitary matrix independent of Tn({tu,v}) and where
Dn({tu,v}) is the following matrix

Dn({tu,v})=̂


Dn(t1,1) Dn(t1,2) · · · Dn(t1,c)
Dn(t2,1) Dn(t2,2) · · · Dn(t2,c)

...
...

Dn(tc,1) Dn(tc,2) · · · Dn(tc,c)

 (5)

where Dn(tu,v) is a diagonal matrix defined as in lemma 2.
Notice that Cn({tu,v}) is no longer a circulant matrix, nor
is Dn({tu,v}) diagonal.

We next prove a result on the asymptotic eigenvalue mo-
ments of block Toeplitz matrices.

Lemma 4:
For all integers s ≥ 1,

limn→∞ 1
n

∑cn
k=1 λs

k(Tn({tu,v}))

=
1
2π

π∫
−π

∑
1≤k1,···,ks≤c

tk1,k2(w)tk2,k3(w) · · · tks,k1(w) dw

(6)
Proof: Because Tn({tu,v}) and Cn({tu,v}) are asymp-

totically equivalent, thanks to lemma 1, we have
limn→∞ 1

cn

∑cn
k=1 λs

k(Tn({tu,v}))
= limn→∞ 1

cn

∑cn
k=1 λs

k(Cn({tu,v})).
Because λs

k(Cn({tu,v})) are all the eigenvalues of Cs
n({tu,v}),

2The Szegö theorem [1], as well as the extensions in [4], [3], [10],
were proved under weaker hypotheses on the entries of the Toeplitz
matrices. The associated sequences are there supposed to be only
square summable. In this case, the Fourier transform is defined differ-
ently and the Szegö theorem and its extension are more complicated
to prove.
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the preceding summation equals the trace of Cs
n({tu,v}),

i.e., that of Ds
n({tu,v}). This can be easily proven to be

equal to
∑

1≤k1,···,ks≤c

∑n−1
k=0 tk1,k2

(
2πk
n

)
tk2,k3

(
2πk
n

)
· · · tks,k1

(
2πk
n

)
, and so

limn→∞
1
n

cn∑
k=1

λs
k(Tn({tu,v}))

= limn→∞
1
n

∑
1≤k1,···,ks≤c

n−1∑
k=0

tk1,k2

(
2πk

n

)

tk2,k3

(
2πk

n

)
· · · tks,k1

(
2πk

n

)
=

∑
1≤k1,···,ks≤c

limn→∞
1
n

n−1∑
k=0

tk1,k2

(
2πk

n

)

tk2,k3

(
2πk

n

)
· · · tks,k1

(
2πk

n

)
.

Thanks to the definition of the Riemann integral where the
continuity of the 2π-periodic Fourier transform guarantees
the existence, the proof is complete.

If we let T(w)=̂

 t1,1(w) · · · t1,c(w)
...

...
tc,1(w) · · · tc,c(w)

 (Hermitian

for all w if Tn({tu,v}) is Hermitian), the summation in the
right-hand side of (6) is nothing but the trace of (T(w))s

whose eigenvalues are those of T(w) to the power of s.
Consequently, (6) is equivalent to

limn→∞ 1
n

∑cn
k=1 λs

k(Tn({tu,v}))
= 1

2π

π∫
−π

∑c
u=1 λs

u (T(w)) dw.

Hence, for any polynomial P , we have
limn→∞ 1

n

∑cn
k=1 P (λk(Tn({tu,v})))

= 1
2π

π∫
−π

∑c
u=1 P [λu (T(w))] dw.

Invoking the Stone-Weierstrass approximation theorem
(recalled in [5]), when T(w) is Hermitian for all w, this
relation extends to all functions F continuous on
[minwλc (T(w)) , maxwλ1 (T(w))]. Thus, the following re-
sult extends Szegö’s theorem to block Toeplitz matrices:

Theorem 3: Assume that Tn({tu,v}) is Hermitian; then
for all continuous functions F :

limn→∞ 1
n

∑cn
k=1 F (λk(Tn({tu,v})))

= 1
2π

π∫
−π

∑c
u=1 F [λu (T(w))] dw

Added to the fact that, for all n, the eigenvalues of
Tn({tu,v}) lie in [minwλc (T(w)) , maxwλ1 (T(w))] [4, The-
orem 3.1], theorem 3 implies that (see [4], [11]), for any
integer l, the lowest (resp., largest) l eigenvalues are con-
vergent in n and

limn→∞λcn−l+1(Tn({tu,v})) = minwλc (T(w)) (7)
limn→∞λl(Tn({tu,v})) = maxwλ1 (T(w)) (8)

C. A Class of Block Toeplitz Matrices

We investigate the following special case of block
Toeplitz matrices.

Hypothesis H 1: T(w) has rank 1, for all w.
This is equivalent to have for all w

T(w) =
[
t1(w), · · · , tc(w)

]T |Tr (T(w))|[
t′1(w), · · · , t′c(w)

]
where

[
t1(w), · · · , tc(w)

]T and
[
t′1(w), · · · , t′c(w)

]T are
unit-norm left and right singular vectors respectively, as-
sociated with the unique non-zero singular value of T(w).
As this singular value is of multiplicity one, it is, as well
as the associated singular vectors, a continuous function
of T(w) [12, Th. 1.2.8, p.14]3 which, in turn, is a con-
tinuous function of w by construction. Hence, by redefin-
ing tu(w) and t′u(w) to be respectively

√|Tr (T(w))|tu(w)
and

√|Tr (T(w))|t′u(w), H1 is equivalent to the follow-
ing : there exist continuous functions tu(w) and t′u(w),
with

[
t1(w), · · · , tc(w)

]T 6= 0 and
[
t′1(w), · · · , t′c(w)

]T 6= 0
for all w, such that tu,v(w) = tu(w)t′v(w), for all u, v =
1, · · · , c.

As tu(w) and t′u(w) are continuous, the infinite se-
quences {tuk}k=···,−1,0,1,··· and {t′uk}k=···,−1,0,1,···, obtained
as the inverse Fourier transforms of tu(w) and t′u(w) re-
spectively, u = 1, · · · , c, are square summable and not iden-
tically zero. H1 is equivalent to having
tu,v
i = tui ∗ t′vi =̂

∑
k tukt′vi−k, i = · · · ,−1, 0, 1, · · ·, i.e.,

tu,v
i =

[· · · , tu−1, t
u
0 , tu1 , · · ·] [· · · , t′vi+1, t

′v
i , t

′v
i−1, · · ·

]T . Con-
sequently, the hypothesis H1 is equivalent to

Tn({tu,v}) =

 T(n)(t1)
...

T(n)(tc)


 T(n)(t′

1)
...

T(n)(t′
c)


T

, (9)

where T(n)(tu) (resp., T(n)(t′
u)), u = 1, · · · , c, denotes

the n rows Toeplitz matrix of first row
[· · · , tu−1, t

u
0 , tu1 , · · ·]

(resp.,
[· · · , t′u−1, t

′u
0 , t′u1 , · · ·]). Furthermore, if Tn({tu,v}) is

Hermitian and positive semi-definite, H1 is fulfilled iff t′uk =
(tu−k)∗, u = 1. · · · , c or equivalently T(n)(t′

u) = T∗
(n)(t

u),
i.e.,

Tn({tu,v}) =

 T(n)(t1)
...

T(n)(tc)


 T(n)(t1)

...
T(n)(tc)


H

. (10)

This preceding condition is frequently encountered in signal
processing applications because (10) represents the covari-
ance matrix of a c-variate stationary process obtained by
filtering a white scalar stationary process. However, we

3The uniqueness of the left singular vector is guaranteed by limit-
ing the domain of the associated Givens parameterization. So, the
application of [12, Th. 1.2.8, p.14] implies the continuity of the

individual components of
[
t1(w), · · · , tc(w)

]T
. The same holds for[

t′1(w), · · · , t′c(w)
]T

.
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note that this factorization and thus H1 is not satisfied
for covariance matrices of more general c-variate station-
ary processes. In the same way, (9) represents the cross-
covariance matrix of two c-variate stationary processes ob-
tained by filtering a white complex valued scalar stationary
process. With the hypothesis H1, the following theorem is
straightforwardly proved.

Theorem 4: Assume that Tn({tu,v}) is Hermitian and
fulfills H1, then for all continuous functions F :

limn→∞ 1
n

∑cn
k=1 F (λk(Tn({tu,v})))

= (c− 1)F (0) + 1
2π

π∫
−π

F (
∑c

u=1 tu,u(w)) dw

IV. Application to SIMO Channel Identification

A. Results for the SIMO Channel Filtering Matrix

An m-order SIMO channel, as depicted in Fig. 1, is a
set of c filters hi=̂

[
hi

0, · · · , hi
m

]T , i = 1, · · · , c, driven by
a common scalar input s(k), related to the c-dimensional
vector output x(k) by x(k)=̂

[
x1(k), · · · , xc(k)

]T =
G(h)sm+1(k) with sm+1(k)=̂ [s(k), · · · , s(k −m)]T and
G(h)=̂ [h(0) · · ·h(m)] where h(k)=̂

[
h1

k · · ·hc
k

]T . This set-
ting corresponds to a multi-sensor reception or a poly-phase
representation of an over-sampled signal, or a possibly hy-
brid situation. The SIMO channel order m is defined as
the maximum order among those of the different filters
h1 · · ·hc. n successive output observations are stacked,
time by time, into x′n(k)=̂

[
xT (k) · · ·xT (k − (n− 1))

]T
and the covariance matrix is defined as
R

′
n=̂E

[
x′n(k)x′Hn (k)

]
. If input s(k) is zero mean and

white with variance σ2
s then R

′
n = σ2

sGn(h)GH
n (h), where

Gn(h)=̂


G(h) 0 · · · 0
0 G(h) · · · 0

...
0 · · · 0 G(h)

 is the cn × (n + m) filtering

matrix and 0 is the c-dimensional null vector. Alter-
natively, the data set can be arranged space/phase by
space/phase in the vector xn(k)=̂Kc,nx′n(k). It is straight-
forwardly proved that xn(k) = Hn(h)sm+1(k) where

Hn(h)=̂

 Hn(h1)
...

Hn(hc)

 and Hn(hu)=̂


huT

0 · · · 0
0 huT · · · 0

...
0 · · · 0 huT

 is

the n × (n + m) filtering matrix associated with the u-th
filter, u = 1, · · · , c. Rn=̂E

[
xn(k)xH

n (k)
]

= Kc,nR
′
nKn,c =

σ2
sHn(h)HH

n (h) is hence a block Toeplitz structured ma-
trix that fulfills H1 and can be written, with respect to
notation of Section III, as Rn = σ2

sTn({huhv∗}). The ap-
plication of theorem 4 to Rn implies that for all continuous
functions F , we have

limn→∞
1
n

cn∑
k=1

F (λk(Rn)) = (c− 1)F (0)

+
1
2π

π∫
−π

F

(
σ2

s

c∑
u=1

|hu(w)|2
)

dw (11)

If n + m ≤ cn, we let σ
(n)
k , k = 1, · · · , n + m, be the k-th

largest singular value of Gn(h) (and of Hn(h)), so that

λk(Rn) =
(
σ

(n)
k

)2

for k = 1, · · · , n + m and λk(Rn) = 0
for k > n + m. Then (11) gives

(c− 1)F (0) + limn→∞ 1
n

∑n+m
k=1 F

(
σ

(n)2

k

)
= (c− 1)F (0) + 1

2π

π∫
−π

F
(
σ2

s

∑c
u=1 |hu(w)|2) dw.

So, the following theorem is proved.
Theorem 5: For all continuous functions F

limn→∞
1
n

n+m∑
k=1

F
(
σ

(n)
k

)

=
1
2π

π∫
−π

F

σs

√√√√ c∑
u=1

|hu(w)|2
 dw (12)

It is interesting to study the asymptotic behavior of the
smallest singular value σ

(n)
n+m. However, it can not be writ-

ten as λl(Rn) or λnc−l+1(Rn), for some fixed l and hence
we can apply neither (7) nor (8). Only the following is
proved:

Theorem 6: If minkσ
(n)
k converges in n, then

limn→∞
(
minkσ

(n)
k

)
≤ σsminw

√√√√ c∑
u=1

|hu(w)|2
 (13)

Proof: The proof is inspired by that of
[4, Corollary 3.9]. We consider the real function
t(w)=̂σs

√∑c
u=1 |hu(w)|2 and mt=̂minwt(w). We assume

minkσ
(n)
k to be convergent to the limit L when n → ∞.

Suppose that L > mt. There exist a and b such that
mt < a < b < L. We define the function F (x) = 1 if
x ≤ a, F (x) = 0 if x ≥ b. For x ∈ [a, b], F (x) is chosen so
that F is continuous and positive.

There exists an integer N such that for all n > N and all
k, σ

(n)
k ≥ minkσ

(n)
k > b and hence, F

(
σ

(n)
k

)
= 0. Conse-

quently, the left-hand side of (12) equals 0. The right-hand
side, however, equals

1
2π

π∫
−π

F (t(w)) dw

=
1
2π

∫
w∈[−π,+π] and t(w)≤b

F (t(w)) dw

>
1
2π

∫
w∈[−π,+π] and t(w)≤a

F (t(w)) dw

=
1
2π

∫
w∈[−π,+π] and t(w)≤a

dw > 0

Consequently, we must have L ≤ mt.
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B. Implications for Blind SIMO Channel Identification

The covariance matrix Rn contains channel phase in-
formation and is used to deduce the channel coefficients
h(k), the so called identification problem, for which a vari-
ety of second order algorithms (among them the Subspace
(SS) [13], the Linear Prediction (LP) [14] and the Outer
Product Decomposition (OPD) [15] algorithms ) has been
developed. They all implicitly or explicitly need inversion
of the channel output covariance matrix and hence their
performance depends largely on how well-conditioned the
matrix is [6], [7]. Hence, its smallest nonzero eigenvalue is
critical to the performance of the blind identification algo-
rithm.

We point out that in this context (blind SIMO channel
identification), the herein proved result (theorem 3) can be
considered more appropriate than that of [16], [17], [18],
[19]. The asymptotic results proved therein are established
for block Toeplitz matrices with Toeplitz blocks (BTTB)
where both the size and number of blocks tend to infinity;
while, in this paper, only the size of the blocks n tends
to infinity. This is more relevant for stationary processes
where n refers to the observation time and c refers to the
size of the antenna array and/or the amount of oversam-
pling which naturally are not intended to take large values.
However, for other applications such as image processing,
covariance matrices of the involved two-dimensional sta-
tionary processes are BTTB. The number and size of blocks
refer to the spatial samples of the process, possibly large.
In this context, results in [16], [17], [18], [19] appear better
adapted.

Channel blind identifiability from its second order statis-
tics (i.e. Rn) requires the SIMO channel to be zero-coprime
(i.e. the Z-transforms of the sequences {hu

k , k = 1, · · · , m}
do not have any zero in common) and n ≥ m. Under such
conditions, Gn(h) has full column rank [20] and the left-
hand side of (13) expresses the square root of the asymp-
totic lowest nonzero eigenvalue of Rn. When observed over
finite time intervals and in the presence of noise, the above
is insufficient and the channel needs to exhibit enough di-
versity to allow for accurate response estimation. Channel
diversity has often been described as the closeness in the Z
plane of the zeros of the subchannels transfer functions [21].
This definition is rather subjective and counter-examples
can be found where a channel has closer zeros while its co-
variance matrix is better conditioned. We, therefore, sug-
gest the left-hand side of (13) as an algorithm-independent
measure of the channel diversity. Indeed, it approximates
well the square root of the lowest nonzero eigenvalue of Rn

for practical values of n.
The upper bound in (13) is better suited to assess chan-

nel blind (un)identifiability under practical observation
conditions. In fact, in cases where the right-hand side
in (13) is small, the channel output covariance matrix is
poorly conditioned and blind algorithms are expected to
fail to identify the channel if its output is observed over a
limited time duration. This bound has also the advantage
of giving a spectral interpretation of channel diversity.

This bound has a further interpretation in the practi-

cal case when the channel response includes small heading
and/or trailing terms (Fig. 2). The whole m-order chan-
nel response h can be written as the sum of an m′-order
effective response hm′ , m′ < m, and a perturbation vec-
tor due to the small trailing terms [22]. If we let hu

m′(w)
be the Fourier transform associated with the subchannel
u = 1, · · · , c of hm′ , then

∑c
u=1 |hu(w)|2 '∑c

u=1 |hu
m′(w)|2

i.e., the bound in (13) is approximately the same when eval-
uated for h or hm′ . When this bound is weak, it implies
poor diversity of the whole response as well as the effective
response. In such case, the channel will not be identifiable
whatever the assumed channel order. When assumed to
be > m′, it leads to a badly conditioned covariance ma-
trix because of the small trailing terms. When < m′, the
identification procedure will fail because some significant
terms were ignored. When equal to m′, blind identification
is still not possible because of the bound (and hence chan-
nel diversity) being weak. Hence, while generally not tight
as verified through computations, the upper bound in (13),
when low, indicates absolute non identifiability of the chan-
nel i.e., nor the channel or a part of it can be identified from
a finite observation set. Examples are given in the practical
case of fractionally received bandlimited channels.

C. Fractionally Spaced Bandlimited Channels

We now focus on fractionally spaced bandlimited chan-
nels. If subchannels hk(w), k = 1, · · · , c are issued from the
oversampling of a waveform h(t), then hk(w) =

∑
l h(w −

2lπ)e−j(w−2lπ) k−1
c where h(w)=̂

∫
h(t)e−jwtdt. When h(t)

is bandlimited (to [− 1
T , 1

T ]), then
hk(w) = h(w)e−jw k−1

c + h(w − 2π)e−j(w−2π) k−1
c for w ∈

[0, 2π] and it can be proved that (13) simplifies to

limn→∞
(
minkσ

(n)
k

)
≤ σs

√
c minw

(√
(|h(w)|2 + |h(w − 2π)|2)

)
More commonly, h(w) is a bandlimited shaping filter re-

sponse (a raised cosine waveform most often) propagating
through a frequency selective multipath channel. Because
of severe selectivity, some frequency components can be
significantly attenuated leading to the upper bound above
to be weak. This justifies the poor performance of blind al-
gorithms in identifying communication channels using frac-
tional receivers, and concurs with remarks in [23]4.

A series of simulations was conducted with a raised co-
sine waveform5 with rolloff 0.3, propagating through ran-
domly selected multipath channels with a 4 symbol period
delay spread6. Channels for which the upper bound of (13)
was weak (≤ 0.1), such as in Fig. 3, were systematically
absolutely non identifiable7 in the sense given in Section

4The therein made analysis, however, is algorithm dependent (sub-
space algorithm) and uses sophisticated mathematics (spheroidal
wave sequences).

5The waveform response was truncated over 40 symbol periods.
6The direct path is not delayed and not attenuated while the num-

ber, delays and attenuations of the weaker and delayed paths are ran-
domly chosen. The channel response was normalized so that ‖h‖ = 1

7Identification was tried using the subspace algorithm. The channel
was observed over 300 symbol periods with an SNR of 20dB and was
T/2 sampled. The channel was declared non identified when the mean



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. Y, MONTH 2000 6

IV-B. On the contrary, however, when the upper bound of
(13) was not weak, no conclusion can be made. An order
with which reliable identification can be performed may
exist (Fig. 4) or not (Fig. 5).

V. Conclusion

We have given a new and simpler proof, inspired by that
in [5], of Szegö’s theorem extension to block Toeplitz ma-
trices [2]. Block Toeplitz matrices are encountered in signal
processing as covariance matrices that always verify some
factorization properties. We exploited these properties to
get a simpler form of Szegö’s theorem extension and de-
rive results about the asymptotic behavior of their lowest
nonzero eigenvalue. Application to single input multiple
output (SIMO) channels can help justifying cases where the
channel covariance matrix is poorly conditioned resulting
in poor performance of the blind identification algorithms;
as is shown to be practically the case of fractionally spaced
bandlimited channels.
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Fig. 1. Single input multiple output channel
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Fig. 3. Respectively, path delays 0, 1.0341 T , 1.1826 T , 1.3605 T ,
1.8780 T , 1.9039 T , 2.1689 T , 2.2460 T , 3.3337 T , 3.4301 T ,
3.7009 T and 4 T and attenuations 1, 0.9868, −0.3123, −0.3661,
−0.6635, 0.6918, −0.4045, 0.5188, −0.4929, −0.7333, −0.0459
and .6. The upper bound in (13) equals 0.0851.
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Fig. 4. Frequency response h(w). Respectively, path delays 0,
0.0470 T , 0.5461 T , 1.0093 T , 1.0858 T , 2.9492 T , 3.5756 and
4 T and attenuations 1, 0.8381, 0.4418, 0.3689, 0.8672, 0.6775,
−0.6518 and 0.4. The upper bound in (13) equals 1.0690.
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Fig. 5. Frequency response h(w). Respectively, path delays 0,
0.0611 T , 0.7949 T , 0.7953 T , 1.0888 T , 1.6746 T , 1.7804, 1.8640,
2.4152, 2.9871, 3.7273 and 4 T and attenuations 1, 0.4952, 0.6583,
−0.8267, −0.9669, 0.8591, 0.8911, −0.6676, 0.5272, −0.0201,
0.4824 and 0.4. The upper bound in (13) equals 0.3033.


