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A Blind Multichannel Identification Algorithm
Robust to Order Over Estimation

Houcem Gazzah∗,†, Phillip A. Regalia†, Jean-Pierre Delmas† and Karim Abed-Meraim‡

Abstract— Active research in blind SIMO (Single Input
Multiple Output) channel identification has led to a variety
of second order statistics based algorithms, particularily the
Subspace and the Linear Prediction approaches. The Sub-
space algorithm shows good performance when the chan-
nel output is corrupted by noise and available for a finite
time duration. However, its performance is subject to exact
knowledge of the channel order, which is not guaranteed by
current order detection techniques. On the other hand, the
Linear Prediction algorithm is sensitive to observation noise
while its robustness to channel order over estimation is not
always verified when the channel statistics are estimated.
We propose a new second order statistics based blind chan-
nel identification algorithm which is truly robust to chan-
nel order over estimation i.e., able to accurately estimate
the channel impulse response from a finite number of noisy
channel measurements when the assumed order is arbitrar-
ily greater than the exact channel order. Another inter-
esting feature is that the identification performance can be
enhanced by increasing a certain smoothing factor. More-
over, the proposed algorithm proves to clearly outperform
the Linear Prediction algorithm. These facts are justified
theoretically and verified through simulations.

Keywords— Blind channel identification and equalization,
Second-order statistics algorithms, Order over estimation.

I. Introduction

Blind identification of communication channels addresses
those signal processing techniques that estimate the chan-
nel impulse response using solely its output statistics. Such
an estimate may be fed to an equalization algorithm in
order to restore the transmitted data. This obviates the
need for training sequences, thereby achieving a much de-
sired bandwidth gain. As Second Order Statistics (SOS)
of the Baud sampled channel output do not contain infor-
mation about the channel phase, early techniques [1], [2]
exploited Higher Order Statistics (HOS) to achieve blind
equalization. However, the channel needs to be observed
for long durations before output HOS estimates are accu-
rate enough to allow for reliable equalization. The proof
that (the much easier to estimate) SOS of the cyclostation-
ary oversampled output (this result was later extended to
the multiple antenna case) does contain phase information
of the channel renewed the hope of developing blind algo-
rithms that can achieve equalization with relatively short
data lengths. Since the first algorithm by Tong et al [3], a
number of SOS based blind algorithms have been proposed.
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Among the more popular are the Subspace (SS) [4] and
the Linear Prediction (LP) [5], [6] algorithms. The former
achieves better performance but requires precise knowledge
of the channel order which is a rather delicate and improb-
able task. The latter can handle an over estimated value of
the channel order but its performance is very sensitive to
observation noise. It has been pointed that its (claimed)
robustness to channel order over estimation does not hold
when SOS contain estimation errors [7], [8]. It was shown
[6] that the LP algorithm can achieve acceptable perfor-
mance when the assumed order equals that provided by an
order detection criterion (the MDL and the AIC criteria
[9]) over estimated by few (one or two) taps only. This
behavior does not make the LP algorithm fully robust to
order over estimation and, more importantly, does not dis-
pense with the need to estimate the channel order prior
to its response estimation. Another algorithm, similar in
properties and performance to the LP algorithm, is the
Outer Product Decomposition (OPD) algorithm [10].

In this paper, we develop a novel algorithm that com-
bines advantages of both algorithms. It exhibits good per-
formance at low SNR, while being robust to channel or-
der over estimation. We emphasize that the proposed al-
gorithm is truly robust to order over estimation as accu-
rate identification is still achievable using estimated chan-
nel statistics. The proposed algorithm is based on a shifted
version of the correlation matrix and the properties of the
associated kernel. The algorithm does not require the com-
putation of the correlation matrix pseudo-inverse as with
LP and OPD algorithms, nor is the whole kernel neces-
sary to achieve identification as with the SS algorithm. It
is hence proved theoretically then verified through simula-
tions that identification is possible when the channel order
is arbitrarily over estimated and when the SOS are esti-
mated from a finite sample size. This has the major ad-
vantage of allowing blind identification without prior de-
tection of the channel order. The a priori knowledge of the
propagation conditions (in the case of a multipath chan-
nel for example), in terms of channel delay spread, will be
sufficient.

Shifted correlation matrices have previously [11], [12]
been used to estimate ZF equalizers of arbitrary delays. In
addition to an important computational complexity (espe-
cially, a singular value decomposition has to be performed
twice), these equalizers are limited by the noise enhance-
ment problem. Better equalization techniques (MMSE or
Viterbi) require the channel response to be identified. The
contribution of this work is not only to use shifted cor-
relation matrices to perform blind identification, but also
to show that this approach comes with performance and
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robustness advantages w.r.t. existing ones.
The paper is organized as follows. In Sec. II, we present

the channel model and recall the main steps of the Sub-
space and the Linear Prediction algorithms. We point out,
in particular, their (non) robustness to order over estima-
tion. In Sec. III, we introduce a novel SOS based blind
identification algorithm and prove its robustness to channel
order over estimation. In Sec. IV, we rewrite the proposed
algorithm using estimated statistics and prove that its ro-
bustness to channel order over estimation still holds under
such circumstances. Simulation results are presented in
Sec. V and commented on in Sec. VI. Concluding remarks
appear in Sec. VII.

The following notations are used throughout the paper.
Matrices (resp. vectors) are represented by bold or cal-
ligraphic upper case (resp. bold lower case) characters.
Vectors are by default in column orientation, while T , H
and ∗ stand for transpose, transconjugate and conjugate,
respectively. ek,i is the ith unit vector in Rk. 0a,b is the
a × b zero matrix. It is noted 0 when its dimension can
be inferred from the context. Ia is the a × a identity ma-

trix and Ja
def=




0

1
. . .
. . . . . .

1 0


 is the a× a (down) shift

matrix. ‖·‖ denotes the Euclidean norm. A ⊗ B is the
Kronecker product of matrices A and B defined such that
its (i, j) block element is ai,jB. Vec (.) is the vectorization
operator that turns a matrix into a vector by stacking the
columns of the matrix one below another.

II. Blind Identification of SIMO channels

A. The SIMO channel

It is common to model a fractionally spaced and/or
multi-sensor receiver by a Single Input Multiple Output
(SIMO) scheme as depicted in Fig. 1. A set of c filters are
driven by a common scalar input s(n). The SIMO chan-
nel order m is defined as the maximum among those of
the different filters h1 · · ·hc. We define the c-dimensional
taps h(k) def=

[
h1(k) · · ·hc(k)

]T
, k ∈ {0, · · · ,m}, where

hi(k) is the k-th tap of the i-th filter. The SIMO impulse
response is defined as hm

def=
[
hT (0) · · ·hT (m)

]T . The

noise corrupted output is the c-dimensional vector y(n) def=[
y1(n) · · · yc(n)

]T . The input-output relation is expressed
as a multi-dimensional convolution y(n) = x(n) + b(n) =
T (hm) sm+1(n) + b(n) where T (hm) def= [h(0) · · ·h(m)]
and sk(n) def= [s(n) · · · s(n− (k − 1))]T for any k.

To exploit the time invariant property of the SIMO chan-
nel, the channel output is observed over durations larger
than a symbol period. We stack l successive samples into
yT

l (n) def=
[
yT (n) · · ·yT (n− (l − 1))

]T , where l is called the
smoothing factor. We have

yl(n) = Tl (hm) sl+m(n) + bl(n)

where

Tl (hm) def=




T (hm) 0 · · · 0
0 T (hm) · · · 0

. . .
0 · · · 0 T (hm)




is the cl×(l+m) Filtering Matrix, bl(n) is defined similarly
as yl(n) and 0 is the c-dimensional null vector.

The channel output SOS are completely described by the
correlation matrix functions Γ(k) def= E

[
y(n + k)yH(n)

]
, k ≥

0. These SOS terms can be arranged in different ways as
correlation matrices. We define the standard correlation
matrix

Rl
def= E

[
yl(n)yH

l (n)
]

=




Γ(0) Γ(1) . . . Γ(l − 1)

ΓH(1) Γ(0)
. . . Γ(l − 2)

...
. . . . . .

...
ΓH(l − 1) ΓH(l − 2) . . . Γ(0)




and the (down) shifted correlation matrix

Rl
def= E

[
yl(n)yH

l (n− 1)
]

=




Γ(1) Γ(2) . . . Γ(l)

Γ(0) Γ(1)
. . . Γ(l − 1)

...
. . . . . .

...
Γ(−l + 2)) Γ(−l + 3) . . . Γ(1)




For any other process p(n), we denote by Γp(k), Rp
l and

Rp
l the corresponding correlation matrices.
When the symbols are uncorrelated with the noise, the

correlation matrices are given by Rl = Tl (hm)Rs
l+mT H

l (hm)+
Rb

l and Rl = Tl (hm)Rs
l+mT H

l (hm) + Rb
l . If the sym-

bols s(n) are uncorrelated then the correlation matrices
are given by Rl = σ2

sTl (hm) T H
l (hm) + Rb

l and Rl =
σ2

sTl (hm)Jl+mT H
l (hm) + Rb

l . If, in addition, the noise
components are uncorrelated, then Rb

l = σ2
b Icl and Rb

l =
σ2

b (Jl ⊗ Ic). The above assumptions on the transmitted
symbols and on noise will be maintained throughout the
paper.

As the process x(n) is an m-th order moving average
(MA) multivariate process then only Γ(k), |k| ≤ m are pos-
sibly non zero and the set {Γ(0), · · · ,Γ(m)} contains all the
SOS information of the channel output.

It is worth recalling here an important result [3] on the
rank of the Sylvester matrix Tl (hm) : Tl (hm) has full col-
umn rank if the channel is co-prime (the transfer functions
of the channels hc′ , c′ = 1, . . . , c, do not have zeros in com-
mon) and l ≥ m.

B. Existing Algorithms and Robustness to Order Over Es-
timation

We now briefly recall the principal steps and properties
of the most cited blind identification algorithms developed
so far, the Subspace (SS) and the Linear Prediction (LP)
algorithms. We particularly comment on their behavior
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when the channel order is over estimated. This feature is
of practical interest because order detection criteria, such
as the MDL and AIC criteria [9], are not reliable when
the channel output is observed under practical conditions
involving measurement noise and a limited time interval.
However, over estimated values of the channel order are
easy to obtain, especially with the AIC criterion, proved to
asymptotically provide an over estimated channel order [9].
Alternatively, an over estimated value of the channel order
can be obtained without resorting to order detection tests
but simply from the a priori knowledge about the channel
delay spread.

The SS algorithm exploits the fact that a (full column
rank) filtering matrix Tl (hm) is uniquely (up to a scalar
constant) determined by its left kernel. When the noise is
spatially and temporally white, the latter is given by the
noise subspace of the correlation matrix Rl. An important
feature of the SS algorithm is that the noise subspace of
the exact correlation matrix is also the noise subspace of
the empirical correlation matrix in the noiseless case. This
allows for exact estimation of the channel impulse response
when there is no observation noise [13] and is the reason
why the SS algorithm significantly outperforms the other
blind identification algorithms. However, the knowledge of
the exact channel order is required to fully characterize the
channel.

The LP approach is based on the proof by Slock [5] that
the m-th order Moving Average (MA) SIMO output is also
an m-th order autoregressive (AR) multivariate process
whose innovation is proportional to the SIMO scalar in-
put. Hence, the m-th order linear predictor, obtained by
solving the Yule-Walker (YW) equations, is used to derive
an m-th order Zero Forcing (ZF) zero delay equalizer. The
channel impulse response is then derived from the equalizer
expression and the SOS. As an m-th order AR process can
also be regarded as an m′-th order AR process, m′ ≥ m,
the LP algorithm was cited [5], [6] as robust w.r.t. channel
order over estimation. However, as pointed out in [7], [8],
this does not hold when the SOS are estimated and the
channel order is arbitrarily over estimated. In fact, solving
the YW equation requires the computation of the pseudo-
inverse of the noise-free correlation matrix. The latter ap-
proximates a rank deficient matrix and the theoretical rank
of the noise-free correlation matrix (that relative to the ex-
act statistics case) needs to be exactly known to properly
compute the pseudo-inverse matrix. When the order is over
estimated, the noise subspace dimension is under estimated
and some of its (small) eigenvalues are wrongly classified
in the signal subspace, and hence are inverted, leading to
the failure of the algorithm. Therefore, solving the blind
identification problem is subordinate to solving the order
detection problem.

Another algorithm, with performance similar to (or
slightly better than) the LP algorithm, is the Outer Prod-
uct Decomposition (OPD) [10]. Its robustness to order
over estimation is not maintained in the estimated statis-
tics case, for the same reason : the computation of the
pseudo-inverse of the noise-free correlation matrix is re-

quired.

III. Exact Statistics Case

A. Theoretical Development

The proposed algorithm assumes knowledge of the cor-
relation matrix Rl. The noise power is the smallest eigen-
value of the Hermitian positive definite matrix Rl with
multiplicity cl − (l + m) = (c − 1)l − m. We have
Rb

l = σ2
b (Jl ⊗ Ic) and Rl−Rb

l = σ2
sTl (hm)Jl+mT H

l (hm).
Hypothesis H1 : The smoothing factor is no smaller than

the channel order : l ≥ m.
Under H1, Tl (hm) is full column rank (throughout the

paper, the channel hm is assumed to be co-prime) so that
rank

(Rl −Rb
l

)
= rank (Jl+m) = l + m− 1. So there exist

an orthogonal set {n(i)
l,1}i=1,···,w (resp. {n(i)

l,2}i=1,···,w) of
vectors in the right (resp. left) null space of Rl−Rb

l , where

w
def= (c− 1)l −m + 1. For every i = 1, · · · , w, we have

Tl (hm)Jl+mT H
l (hm)n(i)

l,1 = 0

and (
n(i)

l,2

)H

Tl (hm)Jl+mT H
l (hm) = 0.

So,
Jl+mT H

l (hm)n(i)
l,1 = 0

and
JT

l+mT H
l (hm)n(i)

l,2 = 0.

Consequently, there exist1 α
(i)
1 such that T H

l (hm)n(i)
l,1 =

α
(i)
1 el+m,l+m and similarly, there exist α

(i)
2 such that

T H
l (hm)n(i)

l,2 = α
(i)
2 el+m,1. The unknowns α

(i)
1 and α

(i)
2

can be determined (up to an unknown phase) from

n(i)H

l,j

(
Rl −Rb

l

)
n(i)

l,j = σ2
sn

(i)H

l,j Tl (hm) T H
l (hm)n(i)

l,j

= σ2
s

∥∥∥T H
l (hm)n(i)

l,j

∥∥∥
2

= σ2
s |α(i)

j |2 , j = 1, 2

Consequently

g(i)
l−1,l+m

def=
1

σs

√
n(i)H

l,1

(
Rl −Rb

l

)
n(i)

l,1

n(i)∗

l,1 (1)

and
g(i)

l−1,1
def=

1

σs

√
n(i)H

l,2

(
Rl −Rb

l

)
n(i)

l,2

n(i)∗

l,2 (2)

verify T T
l (hm)g(i)

l−1,l+m = α
(i)∗
1

|α(i)
1 |el+m,l+m and T T

l (hm)g(i)
l−1,1 =

α
(i)∗
2

|α(i)
2 |el+m,1 and hence are (l− 1) order ZF equalizers with

maximum and minimum delay respectively, in that, in

1In fact, there exist orthonormal bases of the left and right null

spaces of Rl−Rb
l such that α

(i)
1 = 0 and α

(i)
2 = 0 for i = 1, · · · , w−1.

Hopefully, these bases are computed with a zero probability in the
exact and estimated statistics cases.
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the absence of noise, they restore the transmitted sym-
bols with the exact amplitude and up to unknown phases.
We have as many equalizers as vectors n(i)

l,1 and n(i)
l,2.

The channel taps can be retrieved from the channel out-
put statistics and any of the ZF equalizers since h(k) =
1

σ2
s
E (y(n)s(n− k)∗) = 1

σ2
s
E

(
x(n)xH

l (n− k)
)
g(i)∗

l−1,1 =
1

σ2
s
E

(
x(n)xH

l (n− k + l + m− 1)
)
g(i)∗

l−1,l+m which can be
rewritten as follows:
Based on g(i)

l−1,1, the channel response is

hm =
1
σ2

s




Γx(0) · · · Γx(l − 1)
...

...
Γx(m) · · · Γx(l + m− 1)


g(i)∗

l−1,1 (3)

Based on g(i)
l−1,l+m, the channel response is

hm =
1
σ2

s




Γx(−l −m + 1) · · · Γx(−m)
...

...
Γx(−l + 1) · · · Γx(0)


g(i)∗

l−1,l+m(4)

This step is a generalization of a similar one proposed for
the LP algorithm [6]. As equalizers are determined with a
phase ambiguity, the channel response is determined up to
a phase ambiguity as well.

Using the fact that x(n) is an m-th order MA process
(Γ(k) = 0 if |k| > m), we rewrite (3) as follows

hm =
1
σ2

s




Γx(0) · · · Γx(m) 0 · · ·
...

...
Γx(m) 0 · · ·


g(i)∗

l−1,1, if l > m

=
1
σ2

s




Γx(0) · · · Γx(m− 1)
Γx(1) · · · Γx(m)

... 0
...

Γx(m) 0 · · ·




g(i)∗

m−1,1, if l = m

and we rewrite (4) as

hm =
1
σ2

s




· · · 0 Γx(−m)
...

· · · 0 Γx(−m + 1) · · · Γx(0)


g(i)∗

l−1,l+m, if l > m

=
1
σ2

s




· · · 0 Γx(−m)
...

...
0

Γx(−m) · · · Γx(−1)
Γx(−m + 1) · · · Γx(0)




g(i)∗

m−1,2m, if l = m

Here 0 is the c× c zero matrix.

B. Robustness to Order Over Estimation

We now prove an important feature of the proposed al-
gorithm which is its ability to estimate the exact chan-
nel impulse response hm when the channel order is
over estimated. In fact, if we detect an order m′ >

m, the rank of Rl − Rb
l is (over) estimated to be

l + m′ + 1. Any among the vectors n(i)
l,1 and n(i)

l,2

suffices to estimate the channel response following the
above steps. If g(i)

l−1,l+m′ and g(i)
l−1,1 are constructed

as indicated above, using (3), the algorithm attempts

to compute 1
σ2

s




Γx(0) · · · Γx(l − 1)
...

...
Γx(m) · · · Γx(l + m− 1)

...
...

Γx(m′) · · · Γx(l + m′ − 1)




g(i)∗

l−1,1 =




hm

1
σ2

s




Γx(m + 1) · · · Γx(l + m)
...

...
Γx(m′) · · · Γx(l + m′ − 1)


g(i)∗

l−1,1




=
[

hm

0c(m′−m),1

]

where we have used the fact that, because x(n) is an m-th
order MA process, Γx(k) = 0, if |k| > m. Similarly, us-

ing (4), the algorithm attempts to compute
[
0c(m′−m),1

hm

]
.

Consequently, the channel response so estimated is a zero-
padded version of the true channel response, and, hence,
can be used for equalization purposes.

IV. Estimated Statistics Case

Because of the finite sample size, the estimate of Rl−Rb
l

may not be rank deficient. The vector n(i)
l,1 (resp. n(i)

l,2) is
chosen to be the right (resp. left) singular vector associated
with the i-th smallest singular value of the estimate R̂l of
Rl. They are no longer equivalent as they may not achieve
perfect ZF equalization. The algorithm will be rewritten
w.r.t. the estimated SOS case, in two ways (Sec. IV-A and
Sec. IV-B). We prove in Sec. IV-C that, even though SOS
may be estimated, robustness to order over estimation is
still maintained.

A. Correlation Matching Criterion

Each among the vectors n(i)
l,1 and n(i)

l,2 leads, throughout
the procedure described in Sec. III-A, to an estimate of
the channel response (or of a zero-padded version if the de-
tected channel order is over estimated). We need to intro-
duce a criterion to select the best among the 2w candidates
{ĥ(i)

m } using the sole available (second order) information
about the channel i.e., its output estimated covariance ma-
trix. Hence, we compare Tl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

)
to R̂l− σ̂2

b Icl.
We propose the following criterion, henceforth named the
Correlation Matching Criterion (CMC),

ĥm = argmini

(
minβ

∥∥∥R̂l − σ̂2
b Icl − βTl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

)∥∥∥
2

M

)

(5)
where ‖.‖M stands for a matrix norm. β can be chosen
to be σ2

s if the channel response needs to be approximated
with a phase ambiguity i.e., up to a unitary complex con-
stant.

In the case of phase and amplitude ambiguity, the algo-
rithm can be simplified by modifying (1) and (2) to com-
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pute g(i)
l−1,l+m

def= n(i)∗

l,1 and g(i)
l−1,1

def= n(i)∗

l,2 . The identi-
fication procedure continues as before. If we choose the
Frobenius matrix norm defined as ‖A‖F

def= ‖Vec (A)‖ for
any matrix A, (5) is simplified as follows:

ĥm = argmini




∥∥∥R̂l − σ̂2
b Icl

∥∥∥
2

F
−

∣∣∣∣Vec
(
R̂l − σ̂2

b Icl

)H

Vec
(
Tl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

))∣∣∣∣
2

∥∥∥Tl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

)∥∥∥
2

F




Finally,

ĥm = argmaxi

∣∣∣∣Vec
(
R̂l − σ̂2

b Icl

)H

Vec
(
Tl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

))∣∣∣∣
∥∥∥Tl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

)∥∥∥
F

(6)
Note that this criterion tolerates channel order

over estimation as Tl







0cm1,1

hm

0cm2,1





 T H

l







0cm1,1

hm

0cm2,1





 =

Tl (hm) T H
l (hm), for any m1 and m2.

B. Equalization Peak Criterion

We are interested here in introducing a new criterion on
the equalizers that allows for selecting an equalizer better
than those directly issued from the left and right singular
vectors n(i)

l,j , i = 1, · · · , w, j = 1, 2 while, at the same time,
reducing the computational complexity. For the reasons
mentioned above, the vectors n(i)∗

l,j , i = 1, · · · , w, j = 1, 2
may not achieve perfect ZF equalization, and hence, are
no longer equivalent, in the sense that their output SNRs
depend directly on the values of the scalars α

(i)
j . Moreover,

each linear combination of equalizers with the same delay is
another equalizer. The different ZF equalizers can be com-
pared on the basis of the amplitude of the restored sym-
bol. We thus refer to the following as Equalization Peak
Criterion (EPC). It was introduced in [14] to improve the
performance of the LP and the MRE (Mutually Referenced
Equalizers) algorithms.

The combined channel-equalizer response is given by
T T

l (hm)n(i)∗

l,j . Its norm approximates (the square of) the
amplitude of the restored symbol, when the intersymbol in-
terference is negligible. Let Nl,j

def=
[
n(1)

l,j · · ·n(w)
l,j

]∗
contain

all estimated equalizers with zero delay if j = 1 and with
(maximum) delay l + m if j = 2. For all w-dimensional
vectors fj , Nl,jfj is also an equalizer. The best choice of
fj , in the sense of maximizing the equalizer’s output SNR,
is achieved by [14] argmax‖f‖=1

∥∥T T
l (hm)Nl,jf

∥∥. Hence,
we select fj as an eigenvector associated with the largest

eigenvalue of NH
l,j

(
R̂l − σ̂2

b Icl

)T

Nl,j , i.e., with the largest

eigenvalue of NH
l,jR̂

T
l Nl,j . Let nl,j

def= Nl,jfj , j = 1, 2
the so-computed equalizers. We finally select the ZF
equalizer nl

def= argmaxj=1,2n
H
l,jR̂

T
l nl,j associated with the

largest equalizer output SNR. We compute the equalizer

gl−1
def= nl or gl−1

def= 1

σs

√
nH

l

(
R̂l−σ̂2

b
Icl

)T

nl

nl depending

on whether we want to achieve identification with phase
and amplitude ambiguity or with phase ambiguity only.

C. Robustness to Order Over Estimation

When the channel order is over estimated, the noise sub-
space dimension is (under)estimated to be ŵ < w, and the
vectors n(ŵ+1)

l,j , · · · ,n(w)
l,j , j = 1, 2 are wrongly classified in

the signal subspace. However, unlike the LP and OPD al-
gorithms, the associated (small) singular values will not be
inverted, and the algorithm will be able to provide esti-
mates that well approximate zero-padded versions of the
channel response. However, as the proposed algorithm has
fewer vectors n(i)

l,j , j = 1, 2 available than actually exist, the

set of the estimates ĥ(i)
m is restricted and the identification

error is higher than it would be if the exact order were
known. This loss in performance can be compensated for
by increasing the smoothing factor, and hence the number
of candidate estimates.

D. The Algorithm

The algorithm can be summarized as follows:
1. Choose an order m superior to the exact channel order.
2. Choose a smoothing factor l ≥ m.
3. Compute the estimate R̂l of Rl.
4. Estimate the noise power σ̂2

b as the average of2 the (c−
1)(l + 1)−m smallest eigenvalues of R̂l+1.
5. For i = 1, · · · , w, w

def= (c − 1)l − m + 1, compute the
cl-dimensional left singular vector n(i)

l,1 and right singular

vector n(i)
l,2 associated with the i-th smallest singular value

of R̂l − σ̂2
b (Jl ⊗ Ic).

6. EPC,
(a) Compute fj , j = 1, 2 as the eigenvector associated

with the largest eigenvalue of[
n(1)

l,j · · ·n(w)
l,j

]T

R̂T
l

[
n(1)

l,j · · ·n(w)
l,j

]∗
.

(b) Let nl
def=

[
n(1)

l,1 · · ·n(w)
l,1

]∗
f1 if

fH
1

[
n(1)

l,1 · · ·n(w)
l,1

]T

R̂T
l

[
n(1)

l,1 · · ·n(w)
l,1

]∗
f1 ≥ fH

2

[
n(1)

l,2 · · ·n(w)
l,2

]T

R̂T
l

[
n(1)

l,2 · · ·n(w)
l,2

]∗
f2,

nl
def=

[
n(1)

l,2 · · ·n(w)
l,2

]∗
f2 otherwise.

(c) Compute gl−1
def= nl (phase and amplitude ambiguity)

or gl−1
def= 1

σs

√
nH

l

(
R̂l−σ̂2

b
Icl

)T

nl

nl (phase ambiguity).

(d) Deduce the channel estimate ĥm using (3) or (4) de-
pending on nl being a left or right singular vector.
7. CMC,
(a) Construct the set {n(i)

l } = {n(i)
l,1} ∪ {n(i)

l,2}.
(b) For each n(i)

l , i = 1, · · · , 2w, estimate the ZF equalizer

2We don’t use R̂l as Rl−σ2
b I may be full rank (if l equals the exact

channel order and c = 2) and hence, does not allow us to estimate
the noise power.
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g(i)
l−1

def= 1

σs

√
n

(i)H

l

(
R̂l−σ̂2

b
Icl

)
n

(i)
l

n(i)∗

l (phase ambiguity) or

g(i)
l−1

def= n(i)∗

l (phase and amplitude ambiguity).

(c) For each g(i)
l−1, deduce the estimate ĥ(i)

m of the channel

response using (3) or (4), depending on n(i)
l being a left or

right singular vector.
(d) Choose ĥm such that ĥm = argmini

(∥∥∥R̂l − σ̂2
b Icl − σ2

sTl

(
ĥ(i)

m

)
T H

l

(
ĥ(i)

m

)∥∥∥
)

(phase ambiguity), ĥm = argmaxi

∣∣∣Vec

(
R̂l−σ̂2

b
Icl

)H

Vec(Tl(ĥ(i)
m )T H

l (ĥ(i)
m ))

∣∣∣∥∥Tl

(
ĥ

(i)
m

)
T H

l

(
ĥ

(i)
m

)∥∥
F

(phase and amplitude ambiguity).

V. Simulations

A set of simulations has been conducted to test the pro-
posed algorithm w.r.t. different observation parameters
(SNR, sample size, smoothing factor), and more particu-
larly its robustness to order over estimation and its perfor-
mance compared to existing SOS based blind algorithms,
namely, the SS, LP and OPD algorithms.

With respect to the targeted applications (equalization
of communication channels), the identification problem will
be considered as perfectly solved whenever the solution
matches the exact channel response up to an unknown
complex factor and an unknown number of zero trailing
terms. Hence, for an m′-th order channel estimate ĥm′ ,
with m′ ≥ m, we suggest the following identification error
measure, inspired by that proposed in [15], which we will
continue to call Mean Square Error (MSE)

MSE(ĥm′) def= min
β

m1+m2=m′−m




∥∥∥∥∥∥
ĥm′ − β




0cm1,1

hm

0cm2,1




∥∥∥∥∥∥
‖hm‖




2

where β stands for a complex constant.
For the proposed algorithm, such an m′-th order chan-

nel estimate is expected to match, up to a constant, ei-

ther
[
0c(m′−m),1

hm

]
or

[
hm

0c(m′−m),1

]
. The above proposed

error measure simplifies to the following : MSE(ĥm′) def=

1
‖hm‖2 min(minβ

∥∥∥∥ĥm′ − β

[
0c(m′−m),1

hm

]∥∥∥∥
2

,minβ

∥∥∥∥ĥm′ − β

[
hm

0c(m′−m),1

]∥∥∥∥
2

).

This can be proved to be equal to MSE(ĥm′) = 1 −(
max(|[01,c(m′−m)h

H
m]ĥm′ |,|[hH

m01,c(m′−m)]ĥm′ |)
‖hm‖‖ĥm′‖

)2

.

This identification error was, each time, averaged over 100
Monte Carlo realizations.

We tested the proposed algorithm under the same con-
ditions as in [4]. The SIMO channel coefficients are
(c = 4 and m = 4) h(0) = [−0.049 + i 0.359 0.443 −
i 0.0364 − 0.211 − i 0.322 0.417 + i 0.030]T , h(1) =
[0.482 − i 0.569 1 − 0.199 + i 0.918 1]T , h(2) =
[−0.556 + i 0.587 0.921 − i 0.194 1 0.873 + i 0.145]T ,
h(3) = [1 0.189−i 0.208 −0.284−i 0.524 0.285+i 0.309]T

and h(4) = [−0.171 + i 0.061 − 0.087 − i 0.054 0.136 −
i 0.190 − 0.049 + i 0.161]T . The conditioning w.r.t. in-
version of the processed correlation matrices is well de-
scribed by the lowest non-zero singular value σmin, given by
σmin

(
R4 −Rb

4

)
= 0.0642 and σmin

(R4 −Rb
4

)
= 0.1985.

The SIMO channel is driven by a source of unit-variance
i.i.d. 4-QAM symbols and corrupted by unit-variance

AWG noise. The SNR is defined as SNR
def=

E(‖x(n)‖2)
E(‖b(n)‖2) =

σ2
s‖hm‖2
c σ2

b

.
Fig. 2.a and Fig. 2.b compare the proposed algorithm,

with both the CMC and EPC criteria, to the SS, LP and
OPD algorithms w.r.t. the number of channel observations
and w.r.t. the SNR, respectively. As the SS, LP and OPD
algorithms are not robust to order over estimation, this
comparison is done assuming the exact order to be known.
The proposed algorithm has better performance than the
LP and OPD algorithms. Even though outperformed by
the SS algorithm in this case, the proposed algorithm, in-
terestingly, shows good performance at low SNR.

The more important issue of channel order over estima-
tion is depicted in Fig. 3. As the SS, LP and OPD algo-
rithms fail to identify the channel under such conditions,
only results from the proposed algorithm are reported. For
different over estimation values, the simulations show low
estimation error, from 200 samples only. Fig. 3 shows also
that this estimation error can be further lowered by in-
creasing the smoothing factor. This is also illustrated in
Fig. 4 and Fig. 5. This is especially useful when the order
is over estimated as initial (l = m′) estimation errors can
be high. However, for the EPC criterion, the smoothing
factor should not be chosen excessively large. The best re-
sults are obtained with l = m′+2 where m′ is the assumed
channel order.

To match more practical situations, we test the exist-
ing and the proposed algorithms with the channel response
from [16, Table III] which corresponds to a three-ray, long
delay (delays at 0, 0.5 and 3 baud periods) multipath chan-
nel. The SIMO channel coefficients are (c = 4 and m = 5)
h(0) = [0.0222 − i 0.0031 − 0.1065 + i 0.0651 0.3757 −
i 1.2429 −0.7860−i 0.4996]T , h(1) = [0.5236−i 1.9480 −
0.9114− i 0.9867 0.2682− i 1.2279 − 0.2713− i 0.8143]T ,
h(2) = [−0.0683 + i 0.0095 0.3268− i 0.1998 − 0.1083 +
i 0.4256 0.2297 + i 0.1934]T , h(3) = [0.0222− i 0.0031 −
0.1065+ i 0.0651 0.0267− i 0.2953 − 0.0658− i 0.1874]T ,
h(4) = [−0.0812− i 0.0977 0.1887− i 0.1856 − 0.0902 +
i 0.0914 0.1788 − i 0.0320]T and h(5) = [0.0085 −
i 0.0012 −0.0406+ i 0.0249 0.0472− i 0.0887 −0.0955−
i 0.0133]T . The corresponding lowest non-zero singular
values σmin

(
R5 −Rb

5

)
= 0.0042 and σmin

(R5 −Rb
5

)
=

0.0171 indicate that the processed (shifted and standard)
correlation matrices are rather poorly conditioned com-
pared to those associated with the channel corresponding
to Fig. 2 to Fig. 5. Simulations results relative to this
channel are summarized in Fig. 6. It shows that only the
proposed algorithm (with the EPC criterion) and the SS
algorithm (but only in the exact order case) are able to
achieve low identification errors. This is still true when
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the channel order is over estimated (by one tap). The fact
that the CMC criterion behaves better in the over esti-
mated case than in the exact order case is not meaningful
as estimation errors are unpractical in both cases.

VI. Discussion

As shown through simulations (Sec. V), the proposed al-
gorithm has performances intermediate between the SS and
the LP algorithms when the exact channel order is known.
Unlike the SS algorithm, it requires estimating the noise
power, which leads to a supplementary estimation error.
The SS algorithm is still the only one to exactly estimate
the channel response from noiseless finite observation sam-
ples, contrary to the proposed algorithm, which, hence, is
not deterministic. This explains the threshold observed in
Fig. 2.b. The improved performance of the proposed al-
gorithm w.r.t. the LP algorithm can be justified in differ-
ent ways. First, the proposed algorithm uses singular vec-
tors, while the LP algorithm explicitly (pseudo)-inverts the
correlation matrix to solve the YW system. Second, like
the LP algorithm, the proposed algorithm estimates a ZF
equalizer prior to channel response estimation. However,
unlike the LP algorithm, the proposed algorithm provides
a set of estimates and hence has a better chance to achieve
a lower estimation error. The number of candidates can be
increased by increasing the smoothing factor, improving,
as verified through simulations, the algorithm performance.
The decrease in the estimation error when the smoothing
factor increases, however, is only global (Fig. 3). This is
due to the fact that the selection criteria, CMC and EPC,
are both sub-optimal w.r.t. the MSE criterion. Hence, as
verified through tests, they happen to select an estimate
that does not achieve the lowest MSE on the channel re-
sponse.

The CMC criterion shows performance slightly better
than that obtained by EPC. We believe that this might
be explained by the local behavior of the proposed channel
estimation technique. Local behavior refers to the instan-
taneous performance of any estimation algorithm achieved
in a single trial without any statistical averaging [17]. In
fact, although the noise power is the same in all antenna
sensors, the instantaneous noise realization is particular to
each of them and thus weighting differently the sensor out-
puts leads to different local estimation results. In the CMC
criterion, we select the best estimate among a set of channel
estimates that have different local behaviors.

Notice that, as long as ZF equalization is concerned, the
proposed algorithm can provide a set of minimum or maxi-
mum delay equalizer of any desired order, contrarily to the
LP algorithm which provides only one (m-th order zero
delay) equalizer.

While the proposed algorithm has been proved to be
(truly) robust to order over estimation, its performance
is still dependent on the conditioning of the shifted cor-
relation matrix. This sensitivity to ill conditioning is a
common drawback with the existing algorithms [18].

In fact, the proposed algorithm corrects a major draw-
back of the existing algorithms, which are unable to (ac-

curately) estimate the channel response from a finite ob-
servation set when its order is over estimated. The pro-
posed method ensures that any channel with good diversity
(i.e., whose exact noise-free correlation matrix is well con-
ditioned) can be well estimated from a finite observation
set and with an assumed order arbitrarily greater than its
exact order. However, if the channel has poor diversity, the
performance of the proposed method, as well as the exist-
ing ones, will degrade. This happens, for example, when
the channel response contains small tails [19], [7]. Effective
order detection [20] was proposed and shown to be rele-
vant in many situations. The issue of robustness to poor
diversity remains a challenging one.

VII. Conclusion

We proposed a novel second order statistics based blind
identification algorithm that is truly robust to channel or-
der over estimation. By truly, we mean that the channel
response can be well estimated when an arbitrarily over
estimated value of the channel order is known and when
a finite number of noise corrupted observation samples is
available. This is qualified as true robustness in compar-
ison with the Linear Prediction algorithm which, in some
situations, is able to handle over estimated channel order
obtained by statistical criteria, such as MDL and AIC. In
addition, the proposed algorithm is shown to outperform
the LP and OPD algorithms. Its performance can be en-
hanced by increasing the size of the processed correlation
matrix (the smoothing factor) at a fixed observation size.
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Fig. 2. Algorithms comparison. l = m. Exact order known.
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Fig. 3. Channel order over estimation. The legend shows the assumed
channel order. Sample size = 200, SNR = 20 dB.
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Fig. 4. Smoothing factor effect (CMC). SNR = 20
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Fig. 5. Smoothing factor effect (EPC). SNR = 20
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Fig. 6. Algorithms comparison. Badly conditioned channel. Exact
and over estimated order.
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(ENST), Paris, france, in 1995 (in the field of Signal Pro-
cessing and communications).

From 1995 to 1998, he has been a research staff at the
Electrical Engeneering Department of the University of
Melbourne where he worked on several research project
related to ”Blind System Identification for Wireless Com-
munications”, ”Blind Source Separation”, and ”Array Pro-
cessing for Communications”, respectively.

He currently is Associate Professor (since 1998) at the
Signal and Image Processing Department of ENST. His
research interests are in signal processing for communica-
tions and include system identification, multiuser detec-
tion, space-time coding, adaptive filtering and tracking,
array processing and performance analysis.

Dr. Abed-Meraim is an IEEE member and an associate
editor for the IEEE Transactions on Signal Processing.


