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Abstract

Let (Zn)n≥0 be a critical branching process in a random environment defined

by a Markov chain (Xn)n≥0 with values in a finite state space X. Let Sn =∑n
k=1 ln f ′Xk

(1) be the Markov walk associated to (Xn)n≥0, where fi is the

offspring generating function when the environment is i ∈ X. Conditioned

on the event {Zn > 0}, we show the non degeneracy of the limit law of the

normalized number of particles Zn/e
Sn and determine the limit of the law of

Sn√
n

jointly with Xn. Based on these results we establish a Yaglom-type theorem

which specifies the limit of the joint law of logZn and Xn given Zn > 0.
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1. Introduction and main results

One of the most used models in the dynamic of populations is the Galton-Watson

branching process which has numerous applications in different areas such as physics,
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biology, medicine, economics etc. We refer the reader to the books of Harris [17] and

Athreya and Ney [6] for an introduction. Branching processes in random environment

have been first considered by Smith and Wilkinson [24], and Athreya and Karlin [4, 5].

This subject has been further studied by Kozlov [20, 21], Dekking [7], Liu [22], D’Souza

and Hambly [8], Geiger and Kersting [9], Guivarc’h and Liu [16], Geiger, Kersting and

Vatutin [10], Afanasyev [2], Kersting and Vatutin [19], to name only a few. Recently,

based on new conditioned limit theorems for sums of functions defined on Markov

chains in [11, 12, 14, 15], the exact asymptotic results for the survival probability

when the environment is a Markov chain have been obtained for branching processes

in Markovian environment (BPME) in [13]. In this paper we shall complement them

by new results, such as a limit theorem for the normalized number of particles and an

Yaglom-type theorem for BPME.

We start by introducing the Markovian environment which is given on the probabil-

ity space (Ω,F ,P) by a homogeneous Markov chain (Xn)n≥0 with values in the finite

state space X and with the matrix of transition probabilities P = (P(i, j))i,j∈X. We

suppose the following:

Condition 1. The Markov chain (Xn)n≥0 is irreducible and aperiodic.

Condition 1 implies a spectral gap property for the transition operator P of (Xn)n≥0,

defined by the relation Pg(i) =
∑
j∈X g(j)P(i, j) for any g in the space C (X) of complex

functions g on X endowed with the norm ‖g‖∞ = supx∈X |g(x)|. Indeed, Condition 1

is necessary and sufficient for the matrix (P(i, j))i,j∈X to be primitive (all entries of

Pk0 are positive for some k0 ≥ 1). By Perron-Frobenius theorem, there exist positive

constants c1, c2, a unique positive P-invariant probability ν on X (ν(P) = ν) and an

operator Q on C (X) such that, for any g ∈ C (X) and n ≥ 1, i ∈ X,

Pg(i) = ν(g) +Q(g)(i) and ‖Qn(g)‖∞ ≤ c1 e−c2n ‖g‖∞ , (1.1)

where Q (1) = 0 and ν (Q(g)) = 0 with ν(g) :=
∑
i∈X g(i)ν(i). In particular, from

(1.1), it follows that, for any (i, j) ∈ X2,

|Pn(i, j)− ν(j)| ≤ c1 e−c2n . (1.2)

Set N := {0, 1, 2, . . .}. For any i ∈ X, let Pi be the probability law on XN and Ei the

associated expectation generated by the finite dimensional distributions of the Markov
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chain (Xn)n≥0 starting at X0 = i. Note that Png(i) = Ei (g(Xn)), for any g ∈ C (X),

i ∈ X and n ≥ 1.

Assume that on the same probability space (Ω,F ,P), for any i ∈ X, we are given a

random variable ξi with the probability generating function

fi(s) := E
(
sξi
)
, s ∈ [0, 1]. (1.3)

Consider a collection of independent and identically distributed random variables

(ξn,ji )j,n≥1 having the same law as the generic variable ξi. The variable ξn,ji represents

the number of children generated by the parent j ∈ {1, 2, . . . } at time n when the

environment is i. Throughout the paper, the sequences (ξn,ji )j,n≥1, i ∈ X and the

Markov chain (Xn)n≥0 are supposed to be independent.

Denote by E the expectation associated to P. We assume that the variables ξi have

a positive means and finite second moments.

Condition 2. For any i ∈ X, the random variable ξi satisfies the following: E (ξi) > 0

and E(ξ2i ) < +∞.

From Condition 2 it follows that 0 < f ′i(1) < +∞ and f ′′i (1) < +∞.

We are now prepared to introduce the branching process (Zn)n≥0 in the Markovian

environment (Xn)n≥0. The initial population size is Z0 = z ∈ N. For n ≥ 1, we

let Zn−1 be the population size at time n − 1 and assume that at time n the parent

j ∈ {1, . . . Zn−1} generates ξn,jXn
children. Then the population size at time n is given

by

Zn =

Zn−1∑
j=1

ξn,jXn
,

where the empty sum is equal to 0. In particular, when Z0 = 0, it follows that Zn = 0

for any n ≥ 1. We note that for any n ≥ 1 the variables ξn,ji , j ≥ 1, i ∈ X are

independent of Z0, . . . , Zn−1.

Introduce the function ρ : X 7→ R satisfying

ρ(i) = ln f ′i(1), i ∈ X.

Along with (Zn)n≥0 consider the Markov walk (Sn)n≥0 such that S0 = 0 and, for

n ≥ 1,

Sn = ln
(
f ′X1

(1) · · · f ′Xn
(1)
)

=

n∑
k=1

ρ (Xk) . (1.4)
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The couple (Xn, Zn)n≥0 is a Markov chain with values in X × N, whose transition

operator P̃ is defined by the following relation: for any i ∈ X, z ∈ N, s ∈ [0, 1] and

h : X 7→ R bounded measurable,

P̃(hs)(i, z) =
∑
j∈X

P(i, j)h(j)[fj(s)]
z, (1.5)

where hs(i, z) = h(i)sz. Let Pi,z be the probability law on (X × N)N and Ei,z the

associated expectation generated by the finite dimensional distributions of the Markov

chain (Xn, Zn)n≥0 starting at X0 = i and Z0 = z. By straightforward calculations, for

any i ∈ X, z ∈ N,

Ei,z(Zn) = zEi(eSn). (1.6)

The following non-lattice condition is used indirectly in the proofs of the present

paper; it is needed to ensure that the local limit theorem for the Markov walk (1.4)

holds true.

Condition 3. For any θ, a ∈ R, there exist m ≥ 0 and a path x0, . . . , xm in X such

that P(x0, x1) · · ·P(xm−1, xm)P(xm, x0) > 0 and

ρ(x0) + · · ·+ ρ(xm)− (m+ 1)θ /∈ aZ.

Condition 3 is an extension of the corresponding non-lattice condition for indepen-

dent and identically distributed random variables X0, X1, . . ., which can be stated as

follows: there exists m ≥ 0 such that X0 + · · ·+Xm does not takes values in the lattice

(m + 1)θ + aZ with some positive probability, whatever θ, a ∈ R. Usually, the latter

is formulated in an equivalent way with m = 0. For Markov chains, Condition 3 is

equivalent to the condition that the Fourier transform operator

Pitg(i) := P
(
eitρ g

)
(i) = Ei

(
eitS1 g(X1)

)
, g ∈ C (X), i ∈ X, (1.7)

has a spectral radius strictly less than 1 for t 6= 0, see Lemma 4.1 of [14]. Non-latticity

for Markov chains with not necessarily finite state spaces is considered, for instance,

in Shurenkov [23] and Alsmeyer [1].

For the following facts and definitions we refer to [13]. Under Condition 1, from the

spectral gap property of the operator P it follows that, for any λ ∈ R and any i ∈ X,
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the limit

k(λ) := lim
n→+∞

E1/n
i

(
eλSn

)
exists and does not depend on the initial state of the Markov chain X0 = i. Moreover,

the number k(λ) is the spectral radius of the transfer operator Pλ:

Pλg(i) := P
(
eλρ g

)
(i) = Ei

(
eλS1 g(X1)

)
, g ∈ C (X), i ∈ X. (1.8)

In particular, under Conditions 1 and 3, k(λ) is a simple eigenvalue of the operator

Pλ and there is no other eigenvalue of modulus k(λ). In addition, the function k(λ) is

analytic on R.

The branching process in Markovian environment is said to be subcritical if k′(0) <

0, critical if k′(0) = 0 and supercritical if k′(0) > 0. The following identity, has been

established in [13]:

k′(0) = ν(ρ) = Eν (ρ(X1)) = Eν

(
ln f ′X1

(1)
)

= φ′(0), (1.9)

where Eν is the expectation generated by the finite dimensional distributions of the

Markov chain (Xn)n≥0 in the stationary regime and φ(λ) = Eν(exp{λ ln f ′X1
(1)}), λ ∈

R. Relation (1.9) proves that the classification made in the case of branching processes

with Markovian environment and that for independent and identically distributed

environment are coherent: when the random variables (Xn)n≥1 are i.i.d. with common

law ν, from (1.9) it follows that the two classifications coincide.

In the present paper we will focus on the critical case: k′(0) = 0. Our first result

establishes the exact asymptotic of the survival probability of Zn jointly with the event

{Xn = j} when the branching process starts with z particles.

Theorem 1. Assume Conditions 1-3 and k′(0) = 0. Then, there exists a positive

function u(i, z) : X× N 7→ R∗+ such that for any (i, j) ∈ X2 and z ∈ N, z 6= 0,

Pi,z (Zn > 0 , Xn = j) ∼
n→+∞

u(i, z)ν(j)√
n

.

An explicit formula for u(i, z) is given in Proposition 5. In the case z = 1, Theorem

1 has been proved in [13, Theorem 1.1]. The proof for the case z > 1, which is not a

direct consequence of the case z = 1, will be given in Proposition 5.

We shall complement the previous statement by studying the asymptotic behavior

of Zn given Zn > 0 under the following condition:
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Condition 4. The random variables ξi, i ∈ X satisfy:

inf
i∈X

P(ξi ≥ 2) > 0.

Condition 4 is quite natural — it tells that each parent can generate more than 1

child with positive probability. In the present paper is used to prove the non-degeneracy

of the limit of the martingale ( Zn

eSn
)n≥0 in key Lemma 9.

The next result concerns the non degeneracy of the limit law of the properly nor-

malized number of particles Zn at time n jointly with the event {Xn = j}.

Theorem 2. Assume Conditions 1-4 and k′(0) = 0. Then, for any i ∈ X, z ∈ N,

z 6= 0, there exists a probability measure µi,z on R+ such that, for any continuity point

t ≥ 0 of the distribution function µi,z([0, ·]) and j ∈ X, it holds that

lim
n→∞

√
nPi,z

(
Zn
eSn
≤ t,Xn = j, Zn > 0

)
= µi,z([0, t])ν(j)u(i, z)

and

lim
n→∞

Pi,z
(
Zn
eSn
≤ t,Xn = j

∣∣Zn > 0

)
= µi,z([0, t])ν(j).

Moreover, it holds that µi,z({0}) = 0.

From [14, Lemma 10.3] it follows that, under Conditions 1 and 3, the quantity

σ2 := ν
(
ρ2
)
− ν (ρ)

2
+ 2

+∞∑
n=1

[
ν (ρPnρ)− ν (ρ)

2
]

(1.10)

is finite and positive, i.e. 0 < σ <∞. Let

Φ+(t) = (1− e− t2

2 )1(t ≥ 0), t ∈ R,

be the Rayleigh distribution function. The following assertion gives the asymptotic

behavior of the normalized Markov walk Sn jointly with Xn provided Zn > 0.

Theorem 3. Assume Conditions 1-4 and k′(0) = 0. Then, for any i, j ∈ X, z ∈ N,

z 6= 0 and t ∈ R ,

lim
n→∞

√
nPi,z

(
Sn
σ
√
n
≤ t,Xn = j, Zn > 0

)
= Φ+(t)ν(j)u(i, z)

and

lim
n→∞

Pi,z
(
Sn
σ
√
n
≤ t,Xn = j

∣∣Zn > 0

)
= Φ+(t)ν(j).
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The following assertion is the Yaglom-type limit theorem for logZn jointly with Xn.

Theorem 4. Assume Conditions 1-4 and k′(0) = 0. Then, for any i ∈ X, z ∈ N,

z 6= 0, j ∈ X and t ≥ 0 ,

lim
n→∞

√
nPi,z

(
logZn
σ
√
n
≤ t,Xn = j, Zn > 0

)
= Φ+(t)ν(j)u(i, z)

and

lim
n→∞

Pi,z
(

logZn
σ
√
n
≤ t,Xn = j

∣∣Zn > 0

)
= Φ+(t)ν(j).

As mentioned before, in the proofs of the stated results we make use of the previous

developments in papers [13, 14]. These studies are based heavily on the existence of the

harmonic function and the study of the asymptotic of the probability of the exit time

for Markov chains which have been performed recently in [15, 12] and which are recalled

in the next section. For recurrent Markov chains alternative approaches based on the

renewal arguments are possible. The advantage of the harmonic function approach

proposed here is that it could be extended for more general Markov environments

which are not recurrent. In particular with these methods one could treat multi-type

branching processes in random environments.

The outline of the paper is as follows. In Section 2 we give a series of assertions for

walks on Markov chains conditioned to stay positive and prove Theorem 1 for z > 1.

In Section 3 we state some preparatory results for branching processes. The proofs of

Theorems 2, 3 and 4 are given in Sections 4 and 5.

We end this section by fixing some notation. As usual the symbol c will denote

positive constants depending on all previously introduced constants. In the same way

the symbol c, enabled with subscripts, will denote positive constants depending only

on the indices and all previously introduced constants. All these constants will change

their values every occurrence. By f ◦g we mean the composition of two function f and

g: f ◦ g(·) = f(g(·)). The indicator of an event A is denoted by 1A. For any bounded

measurable function f on X, random variable X in some measurable space X and event

A, we set by definition∫
X
f(x)P(X ∈ dx,A) = E (f(X);A) := E (f(X)1A) .
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2. Facts on Markov walks conditioned to stay positive

2.1. Conditioned limit theorems

We start by formulating two propositions which are consequences of the results in

[12], [13] and [14].

Introduce the first time when the Markov walk (y + Sn)n≥0 becomes non-positive:

for any y ∈ R, set

τy := inf {k ≥ 1 : y + Sk ≤ 0} , (2.1)

where inf ∅ = 0. Conditions 1, 3 and ν(ρ) = 0 ensure that the stopping time τy is well

defined and finite Pi-almost surely, for any i ∈ X.

The following important proposition is a direct consequence of the results in [12]

adapted to the case of a finite Markov chain. It proves the existence of the harmonic

function related to Markov walk (y + Sn)n≥0 and states some of its properties to be

used in the proofs of the main results of the paper.

Proposition 1. Assume Conditions 1, 3 and k′(0) = 0. There exists a non-negative

function V on X× R such that

1. For any (i, y) ∈ X× R and n ≥ 1,

Ei (V (Xn, y + Sn) ; τy > n) = V (i, y).

2. For any i ∈ X, the function V (i, ·) is non-decreasing and for any (i, y) ∈ X× R,

V (i, y) ≤ c (1 + max(y, 0)) .

3. For any i ∈ X, y > 0 and δ ∈ (0, 1),

(1− δ) y − cδ ≤ V (i, y) ≤ (1 + δ) y + cδ.

We need the asymptotic of the probability of the event {τy > n} jointly with the

state of the Markov chain (Xn)n≥1.

Proposition 2. Assume Conditions 1, 3 and k′(0) = 0.
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1. For any (i, y) ∈ X× R and j ∈ X, we have

lim
n→+∞

√
nPi (Xn = j , τy > n) =

2V (i, y)ν(j)√
2πσ

.

2. For any (i, y) ∈ X× R and n ≥ 1,

Pi (Xn = j, τy > n) ≤ c1 + max(y, 0)√
n

.

For a proof of the first assertion of Proposition 2, see Lemma 2.11 in [13]. The second

is deduced from the point (b) of Theorem 2.3 of [12].

Denote by supp(V ) = {(i, y) ∈ X× R : V (i, y) > 0} the support of the function V .

By the point 3 of Theorem 1, the harmonic function V satisfies the following property:

for any i ∈ X there exist yi ≥ 0 such that (i, y) ∈ suppV , for any y > yi.

In addition to the previous two propositions we need the following result, which gives

the asymptotic behaviour of the conditioned limit law of the Markov walk (y + Sn)n≥0

jointly with the Markov chain (Xn)n≥0. It extends Theorem 2.5 of [12] where the

asymptotic of y+Sn

σ
√
n

given the event {τy > n} has been considered.

Proposition 3. Assume Conditions 1, 3 and k′(0) = 0.

1. For any (i, y) ∈ supp(V ) and t ≥ 0,

Pi
(
y + Sn
σ
√
n
≤ t,Xn = j

∣∣∣∣ τy > n

)
−→

n→+∞
Φ+(t)ν(j).

2. There exists ε0 > 0 such that, for any ε ∈ (0, ε0), n ≥ 1, t0 > 0, t ∈ [0, t0] and

(i, y) ∈ X× R,∣∣∣∣Pi(y + Sn√
nσ

≤ t,Xn = j, τy > n

)
− 2V (i, y)√

2πnσ
Φ+(t)ν(j)

∣∣∣∣
≤ cε,t0

(
1 + max(y, 0)2

)
n1/2+ε

.

Proof. It is enough to prove the point 2 of the proposition. It will be derived from

the corresponding result in Theorem 2.5 of [12]. We establish first an upper bound.

Let k = [n1/4] and ‖ρ‖∞ = maxi∈X |ρ(i)|. Since

Sn = Sn−k +

n∑
i=n−k+1

ρ(Xi),
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we have

Pi
(
y + Sn√
nσ

≤ t,Xn = j, τy > n

)
≤ Pi

(
y + Sn−k√

nσ
≤ t+

k

σ
√
n
‖ρ‖, Xn = j, τy > n− k

)
:= I(k, n). (2.2)

By the Markov property

I(k, n) = Ei
(
P k(Xn−k, j);

y + Sn−k√
nσ

≤ t+
k

σ
√
n
‖ρ‖, τy > n− k

)
.

Now using (1.2) and setting tn,k =
√
n√

n−k (t+ k
σ
√
n

)‖ρ‖,

I(k, n) ≤ (ν(j) + c1 e−c2k)Pi
(
y + Sn−k√
n− kσ

≤ tn,k, τy > n− k
)
. (2.3)

By Theorem 2.5 and Remark 2.10 of [12], there exists ε0 > 0 such that for any ε ∈ (0, ε0)

and t0 > 0, n ≥ 1, we have, for tn,k ≤ t0,

Pi
(
y + Sn−k√
n− kσ

≤ tn,k, τy > n− k
)

≤ 2V (i, y)√
2π(n− k)σ

Φ+(tn,k) + cε,t0
(1 + max{0, y})2

(n− k)1/2+ε/16
. (2.4)

Since |tn,k − t| ≤ ct0 1
n1/4 and Φ+ is smooth, we obtain

2V (i, y)√
2π(n− k)σ

Φ+(tn,k) ≤ 2V (i, y)√
2πnσ

Φ+(t) + ct0
(1 + max{0, y})2

n1/2+1/4
. (2.5)

From (2.2), (2.3), (2.4) and (2.5) it follows that

Pi
(
y + Sn√
nσ

≤ t,Xn = j, τy > n

)
≤ ν(j)

2V (i, y)√
2πnσ

Φ+(t) + cε,t0
(1 + max{0, y})2

n1/2+ε/16
. (2.6)

Now we shall establish a lower bound. With the notation introduced above, we have

Pi
(
y + Sn√
nσ

≤ t,Xn = j, τy > n

)
≥ Pi

(
y + Sn−k√

nσ
≤ t− k

σ
√
n
‖ρ‖, Xn = j, τy > n− k

)
− Pi (n− k < τy ≤ n)

:= I1(k, n)− I2(k, n). (2.7)
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As in the proof of (2.6), we establish the lower bound

I1(k, n) ≥ ν(j)
2V (i, y)√

2πnσ
Φ+(t)− cε,t0

(1 + max{0, y})2

n1/2+ε/16
. (2.8)

Note that 0 ≥ minn−k<i≤n{y+Si} ≥ y+Sn−k − k‖ρ‖∞, on the set {n− k < τy ≤ n}.

Set tn,k = k‖ρ‖∞
σ
√
n−k . Then,

I2(k, n) = Pi (n− k < τy ≤ n)

≤ Pi
(
y + Sn−k

σ
√
n− k

≤ tn,k, n− k < τy ≤ n
)

≤ Pi
(
y + Sn−k

σ
√
n− k

≤ tn,k, τy ≥ n− k
)
. (2.9)

Again by Theorem 2.5 and Remark 2.10 of [12], there exists ε0 > 0 such that for any

ε ∈ (0, ε0) and t0 > 0, n ≥ 1, we have, for tn,k ≤ t0,

Pi
(
y + Sn−k√
n− kσ

≤ tn,k, τy > n− k
)

≤ 2V (i, y)√
2π(n− k)σ

Φ+(tn,k) + cε,t0
(1 + max{0, y})2

(n− k)1/2+ε/16
. (2.10)

Since |tn,k| ≤ ct0 1
n1/4 and Φ+(0) = 0, we obtain

2V (i, y)√
2π(n− k)σ

Φ+(tn,k) ≤ 2V (i, y)√
2πnσ

Φ+(0) + ct0
(1 + max{0, y})2

n1/2+1/4

= ct0
(1 + max{0, y})2

n1/2+1/4
. (2.11)

From (2.9), (2.10) and (2.11), we deduce that

I2(k, n) ≤ cε,t0
(1 + max{0, y})2

n1/2+ε/16
. (2.12)

Using (2.7), (2.8) and (2.12), one gets

Pi
(
y + Sn√
nσ

≤ t,Xn = j, τy > n

)
≥ ν(j)

2V (i, y)√
2πnσ

Φ+(t)− cε,t0
(1 + max{0, y})2

n1/2+ε/16
,

which together with (2.6) end the proof of the point 2 of the proposition. The point 1

follows from the point 2. �

We need the following estimation, whose proof can be found in [14].



12 I. GRAMA et al

Proposition 4. Assume Conditions 1, 3 and k′(0) = 0. Then there exists c > 0 such

that for any a > 0, non-negative function ψ ∈ C (X), y ∈ R, t ≥ 0 and n ≥ 1,

sup
i∈X

Ei (ψ (Xn) ; y + Sn ∈ [t, t+ a] , τy > n)

≤
c ‖ψ‖∞
n3/2

(
1 + a3

)
(1 + t) (1 + max(y, 0)) .

2.2. Change of probability measure

Fix any (i, y) ∈ supp(V ) and z ∈ N. The harmonic function V from Proposition 1,

allows us to introduce the probability measure P+
i,y,z on (X×N)N and the corresponding

expectation E+
i,y,z, by the following relation: for any n ≥ 1 and any bounded measurable

g: (X× N)n 7→ R,

E+
i,y,z (g (X1, Z1, . . . , Xn, Zn))

:=
1

V (i, y)
Ei,z

(
g (X1, Z1, . . . , Xn, Zn)

× V (Xn, y + Sn) ; τy > n
)
. (2.13)

The fact that the function V is harmonic (by point 1 of Proposition 1) ensures the

applicability of the Kolmogorov extension theorem and shows that P+
i,z,y is a probability

measure. In the same way we define the probability measure P+
i,y and the corresponding

expectation E+
i,y: for any (i, y) ∈ supp(V ), n ≥ 1 and any bounded measurable g:

Xn → R,

E+
i,y (g (X1, . . . , Xn))

:=
1

V (i, y)
Ei (g (X1, . . . , Xn)V (Xn, y + Sn) ; τy > n) . (2.14)

The relation between the expectations E+
i,y,z and E+

i,y is given by the following identity:

for any n ≥ 1 and any bounded measurable g: Xn → R,

E+
i,y,z (g (X1, . . . , Xn)) = E+

i,y (g (X1, . . . , Xn)) . (2.15)

With the help of Proposition 4, we have the following bounds.

Lemma 1. Assume Conditions 1, 3 and k′(0) = 0. For any (i, y) ∈ supp(V ), we have,

for any k ≥ 1,

E+
i,y

(
e−Sk

)
≤ c (1 + max(y, 0)) ey

k3/2V (i, y)
.
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In particular,

E+
i,y

(
+∞∑
k=0

e−Sk

)
≤ c (1 + max(y, 0)) ey

V (i, y)
.

The proof being similar to that in [13] is left to the reader.

We need the following statements. Let Fn = σ{X0, Z0, . . . , Xn, Zn} and (Yn)n≥0 a

bounded (Fn)n≥0-adapted sequence.

Lemma 2. Assume Conditions 1-3 and k′(0) = 0. For any k ≥ 1, (i, y) ∈ supp(V ),

z ∈ N and j ∈ X,

lim
n→+∞

Ei,z (Yk ; Xn = j | τy > n ) = E+
i,y,z (Yk)ν(j).

Proof. For the sake of brevity, for any (i, j) ∈ X2, y ∈ R and n ≥ 1, set

Pn(i, y, j) := Pi (Xn = j , τy > n) .

Fix k ≥ 1. By the point 1 of Proposition 2, it is clear that for any (i, y) ∈ supp(V ) and

n large enough, Pi (τy > n) > 0. By the Markov property, for any j ∈ X and n ≥ k+ 1

large enough,

I0 := Ei,z (Yk ; Xn = j | τy > n )

= Ei,z
(
Yk
Pn−k (Xk, y + Sk, j)

Pi (τy > n)
; τy > m

)
.

Using the point 1 of Proposition 2, by the Lebesgue dominated convergence theorem,

lim
n→+∞

I0 = Ei,z
(
Yk
V (Xk, y + Sm)

V (i, y)
; τy > k

)
ν(j)

= E+
i,y,z (Yk)ν(j).

�

Lemma 3. Assume that (i, y) ∈ suppV and z ∈ N. For any bounded (Fn)n≥0-adapted

sequence (Yn)n≥0 such that Yn → Y∞ P+
i,y,z-a.s.,

lim sup
k→∞

lim sup
n→∞

√
nEi,z

(∣∣Yn − Yk∣∣; τy > n
)

= 0.

Proof. Let k ≥ 1 and θ > 1. Then

Ei,z
(∣∣Yn − Yk∣∣; τy > n

)
= Ei,z

(∣∣Yn − Yk∣∣; τy > θn
)

+ Ei,z
(∣∣Yn − Yk∣∣;n < τy ≤ θn

)
. (2.16)
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We bound the second therm in the right-hand side of (2.16):

Ei,z
(∣∣Yn − Yk∣∣;n < τy ≤ θn

)
≤ CPi,z

(
n < τy ≤ θn

)
(2.17)

By point 1 of Proposition 2, we have

lim
n→∞

√
nPi,z

(
n < τy ≤ θn

)
= lim
n→∞

√
nPi,z

(
τy > n

)
− lim
n→∞

√
nPi,z

(
τy > θn

)
=

2V (i, y)√
2πσ

(
1− 1√

θ

)
. (2.18)

Now we shall prove that

lim sup
k→∞

lim sup
n→∞

√
nEi,z

(∣∣Yn − Yk∣∣; τy > θn
)

= 0. (2.19)

Recall that θ > 1. By the Markov property (conditioning on Fn),∣∣Ei,z(∣∣Yn − Yk∣∣; τy > θn
)∣∣

= Ei,z
(
|Yn − Yk|P[(θ−1)n](Xn, y + Sn); τy > n

)
, (2.20)

where we use the notation Pn′(i
′, y′) := Pi′,y′

(
τ ′y > n′

)
. By point 2 of Proposition 2

and by point 3 of Proposition 1, there exists y0 > 0 such that for i′ ∈ X, y′ > y0 and

n′ ∈ N,

Pn′(i
′, y′) ≤ c√

n′
(1 + max{0, y′}) ≤ cV (i′, y′)√

n′
. (2.21)

Representing the right-hand side of (2.20) as a sum of two terms and using (2.21),

gives

√
n
∣∣Ei,z(∣∣Yn − Yk∣∣; τy > θn

)∣∣
=
√
nEi,z

(
|Yn − Yk|P[(θ−1)n](Xn, y + Sn); y + Sn ≤ y0, τy > n

)
+
√
nEi,z

(
|Yn − Yk|P[(θ−1)n](Xn, y + Sn); y + Sn > y0, τy > n

)
≤ c
√
nPi
(
y + Sn ≤ y0, τy > n

)
+

c√
θ − 1

Ei,z
(
|Yn − Yk|V (Xn, y + Sn); τy > n

)
. (2.22)

Using point 1 of Proposition 3 and point 1 of Proposition 2, we have

lim
n→∞

√
nPi
(
y + Sn ≤ y0, τy > n

)
= 0. (2.23)
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By the change of measure formula (2.13),

Ei,z
(
|Yn − Yk|V (Xn, y + Sn); τy > n

)
= V (i, y)E+

i,y,z

(
|Yn − Yk|

)
. (2.24)

Letting first n → ∞ and then k → ∞, by the Lebesgue dominated convergence

theorem,

lim sup
k→∞

lim sup
n→∞

E+
i,y,z

(
|Yn − Yk|

)
= 0. (2.25)

From (2.22)-(2.25) we deduce (2.19). Now (2.16)-(2.19) imply that, for any θ > 1,

lim sup
k→∞

lim sup
n→∞

√
nEi,z

(∣∣Yn − Yk∣∣; τy > n
)
≤ 2V (i, y)√

2πσ

(
1− 1√

θ

)
.

Since θ can be taken arbitrarily close to 1, we conclude the claim of the lemma. �

The next assertion is an easy consequence of Lemmata 2 and 3.

Lemma 4. Assume that (i, y) ∈ suppV and z ∈ N. For any bounded (Fn)n≥0-adapted

sequence (Yn)n≥0 such that Yn → Y∞ P+
i,y,z-a.s.,

lim
n→+∞

Ei,z
(
Yn;Xn = j

∣∣τy > n
)

= E+
i,y,z

(
Y∞
)
ν(j).

Proof. For any n > k ≥ 1, we have

lim
n→∞

√
nEi,z

(
Yn;Xn = j, τy > n

)
=
√
nEi,z

(
Yk;Xn = j, τy > n

)
+
√
nEi,z

(
Yn − Yk;Xn = j, τy > n

)
. (2.26)

By Lemma 2, the first term in the right-hand side of (2.26) converges to 2V (i,y)√
2πσ

ν(j)E+
i,y,zYk

as n → ∞, where limk→∞ E+
i,z,yYk = E+

i,y,zY∞. By Lemma 3, the second term in the

r.h.s. of (2.26) vanishes, which completes the proof. �

2.3. The dual Markov chain

Note that the invariant measure ν is positive on X. Therefore the dual Markov

kernel

P∗ (i, j) =
ν (j)

ν(i)
P (j, i) , i, j ∈ X (2.27)

is well defined. On an extension of the probability space (Ω,F ,P) we consider the dual

Markov chain (X∗n)n≥0 with values in X and with transition probability P∗. The dual
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chain (X∗n)n≥0 can be chosen to be independent of the chain (Xn)n≥0. Accordingly,

the dual Markov walk (S∗n)n≥0 is defined by setting

S∗0 = 0 and S∗n = −
n∑
k=1

ρ (X∗k) , n ≥ 1. (2.28)

For any y ∈ R define the first time when the Markov walk (y + S∗n)n≥0 becomes non-

positive:

τ∗y := inf {k ≥ 1 : y + S∗k ≤ 0} . (2.29)

For any i ∈ X, denote by P∗i and E∗i the probability and the associated expectation

generated by the finite dimensional distributions of the Markov chain (X∗n)n≥0 starting

at X∗0 = i.

It is easy to verify (see [13]), that ν is also P∗ invariant and that Conditions 1 and

3 are satisfied for P∗. This implies that Propositions 1-4 formulated in Subsection 2.1

hold also for the dual Markov chain (X∗n)n≥0 and the Markov walk (y + S∗n)n≥0, with

the harmonic function V ∗ such that, for any (i, y) ∈ X× R and n ≥ 1,

Ei
(
V ∗ (Xn, y + S∗n) ; τ∗y > n

)
= V ∗(i, y).

The following duality property is obvious (see [13]):

Lemma 5. (Duality.) For any n ≥ 1 and any function g: Xn → C,

Ei (g (X1, . . . , Xn) ; Xn+1 = j) = E∗j
(
g (X∗n, . . . , X

∗
1 ) ; X∗n+1 = i

) ν(j)

ν(i)
.

3. Preparatory results for branching processes

All over the remaining part of the paper we will use the following notation. For

s ∈ [0, 1), let

ϕXk
(s) =

1

1− fXk
(s)
− 1

f ′Xk
(1)(1− s)

,

and, by continuity,

ϕXk
(1) = lim

s→1
ϕXk

(s) =
f ′′Xk

(1)

2f ′Xk
(1)2

.

In addition, for s ∈ [0, 1), let gz(s) = sz and

ψz(s) =
1

1− gz(s)
− 1

g′z(1)(1− s)
=

1

1− sz
− 1

z(1− s)
,



Branching processes in Markovian environment 17

and, by continuity,

ψz(1) = lim
s→1

ψz(s) =
z(z − 1)

2z2
=

1

2

z − 1

z
.

For any n ≥ 1, z ≥ 1 and s ∈ [0, 1], the following quantity will play an important

role in our study:

qn,z(s) = 1−
(
fX1
◦ · · · ◦ fXn

(s)
)z
.

Under Condition 2, for any i ∈ X and s ∈ [0, 1] we have fi(s) ∈ [0, 1] and fX1 ◦ · · · ◦

fXn(s) ∈ [0, 1]. This implies that, for any s ∈ [0, 1],

qn,z(s) ∈ [0, 1]. (3.1)

For any n ≥ 1 and z ≥ 1, the function s 7→ qn,z(s) is convex on [0, 1]. Since the

sequence (ξn,ji )j,n≥1 is independent of the Markov chain (Xn)n≥0 , with s = 0, we

have, P+
i,y,z-a.s.,

qn,z(0) = P+
i,y,z(Zn > 0

∣∣(Xk)k≥0). (3.2)

Note also that {Zn > 0} ⊃ {Zn+1 > 0} and therefore, for n ≥ 1,

qn,z(0) ≥ qn+1,z(0). (3.3)

Taking the limit as n→∞, P+
i,y,z-a.s.,

lim
n→∞

qn,z(0) = lim
n→∞

P+
i,y,z(Zn > 0

∣∣(Xk)k≥0)

= P+
i,y,z(∩n≥1{Zn > 0}

∣∣(Xk)k≥0). (3.4)

Moreover, by convexity of the function qn,z(s) we have

qn,z(0) ≤ zeSn . (3.5)

The following formula (whose proof is left to the reader) is similar to the well-known

statements from the papers by Agresti [3] and Geiger and Kersting [9]: for any s ∈ [0, 1)

and n ≥ 1,

1

qn,z(s)
=

1

zf ′X1
(1) · · · f ′Xn

(1)(1− s)

+
1

z

n∑
k=1

ϕXk
◦ fXk+1

◦ · · · ◦ fXn
(s)

f ′X1
(1) · · · f ′Xk−1

(1)

+ ψz ◦ fX1 ◦ · · · ◦ fXn(s). (3.6)
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We can rewrite (3.6) in the following more convenient form: for any s ∈ [0, 1) and

n ≥ 1,

qn,z(s)
−1 =

1

z

(
e−Sn

1− s
+

n−1∑
k=0

e−Sk ηk+1,n(s)

)
+ ψz ◦ fX1 ◦ · · · ◦ fXn(s), (3.7)

where

ηk,n(s) = ϕXk
◦ fXk+1

◦ · · · ◦ fXn
(s).

Since 1
2ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1), for any k ∈ {1, . . . ,m},

0 ≤ ηk,m(s) ≤
f ′′Xk

(1)

f ′Xk
(1)2

≤ η := max
i∈X

f ′′i (1)

f ′i(1)2
. (3.8)

By Theorem 5 of [4], for any (i, y) ∈ supp(V ), s ∈ [0, 1), m ≥ 1 and k ∈ {1, . . . ,m},

there exists a random variable ηk,∞(s), such that

lim
n→+∞

ηk,n(s) = ηk,∞(s) (3.9)

everywhere, and by (3.8), for any s ∈ [0, 1) and k ≥ 1,

ηk,∞(s) ∈ [0, η]. (3.10)

In the same way,

lim
n→+∞

ψz ◦ fX1
◦ · · · ◦ fXn

(s) = ψz,∞(s) ∈ [0,
z − 1

2
] (3.11)

everywhere. For any s ∈ [0, 1), define q∞,z(s) by setting

q∞,z(s)
−1 :=

1

z

[
+∞∑
k=0

e−Sk ηk+1,∞(s)

]
+ ψz,∞(s). (3.12)

By Lemma 1, we have that

E+
i,yq∞,z(s)

−1 < +∞. (3.13)

Lemma 6. Assume Conditions 1, 3 and k′(0) = 0. For any (i, y) ∈ suppV , z ≥ 1

and s ∈ [0, 1),

lim
n→+∞

E+
i,y

∣∣∣∣ 1

qn,z(s)
− 1

q∞,z(s)

∣∣∣∣ = 0

and

lim
n→+∞

E+
i,y |qn,z(s)− q∞,z(s)| = 0.
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Proof. We give a sketch only. Following the proof of Lemma 3.2 in [13] for any

(i, y) ∈ suppV , by (3.7), (3.8) and (3.10), we obtain

E+
i,y

(∣∣q−1n,z(s)− q−1∞,z(s)∣∣) ≤ 1

z(1− s)
E+
i,y

(
e−Sn

)
+

1

z
E+
i,y

(
l∑

k=0

e−Sk |ηk+1,n(s)− ηk+1,∞(s)|

)

+
2η

z
E+
i,y

(
+∞∑
k=l+1

e−Sk

)

+ E+
i,y

∣∣ψz ◦ fX1
◦ · · · ◦ fXn

(s)− ψz,∞(s)
∣∣. (3.14)

The last term in the right hand side of (3.14) converges to 0 as n→∞ by (3.11). By

Lemma 1 and the Lebesgue dominated convergence theorem, we have

lim sup
n→∞

E+
i,y

(∣∣q−1n,z(s)− q−1∞,z(s)∣∣) ≤ 2η

z
E+
i,y

(
+∞∑
k=l+1

e−Sk

)
.

Taking the limit as l → ∞, again by Lemma 1, we conclude the first assertion of

the lemma. The second assertion follows from the first one, since qn,z(s) ≤ 1 and

q∞,z(s) ≤ 1. �

Lemma 7. Assume Conditions 1, 3 and k′(0) = 0. For any (i, y) ∈ suppV and z ∈ N,

z 6= 0, we have, for any k ≥ 1, P+
i,y,z-a.s.,

P+
i,y,z(∪k≥1{Zk = 0}

∣∣(Xk)k≥1) < 1.

Proof. By (3.4) we have, P+
i,z,y-a.s.,

1− P+
i,z,y(∪k≥1{Zk = 0}

∣∣(Xk)k≥1) = lim
n→∞

qn,z(0).

Using (3.7) and (3.8)

E+
i,yqn,z(0)−1 ≤ 1

z
E+
i,y

(
e−Sn +η

n∑
k=0

e−Sk−1

)
+ 1. (3.15)

By Lemma 1 and a monotone convergence argument,

E+
i,y lim

n→∞
qn,z(0)−1 = lim

n→∞
E+
i,yqn,z(0)−1 <∞. (3.16)

Thus, P+
i,y-a.s.,

lim
n→∞

qn,z(0) > 0,

which ends the proof of the lemma. �
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We will make use of the following lemma:

Lemma 8. There exists a constant c such that, for any z ∈ N, z 6= 0, and y ≥ 0

sufficiently large,

sup
i∈X

Pi,z
(
Zn > 0, τy ≤ n

)
≤ cz e

−y(1 + max{y, 0})√
n

.

Proof. We follow the same line as the proof of Theorem 1.1 in [13]. First, we have

Pi,z(Zn > 0, τy ≤ n) = Pi(qn,z(0); τy ≤ n).

Using (3.5) and the fact that qn,z(0) is non-increasing in n, we have

qn,z(0) ≤ zemin1≤k≤n Sk .

Setting Bn,j = {−(j + 1) < min1≤k≤n(y + Sk) ≤ −j}, this implies

Pi,z(Zn > 0, τy ≤ n)

≤ zEi,0(emin1≤k≤n Sk ; τy ≤ n)

≤ ze−y
∞∑
j=1

Ei,0(emin1≤k≤n(y+Sk);Bn,j , τy ≤ n)

≤ ze−y
∞∑
j=1

e−jPi,0(τy+j+1 > n).

Using the point 2 of Proposition 2 we obtain the assertion of the lemma. �

It is known from the results in [12] that when y is sufficiently large, then (i, y) ∈

suppV . For (i, y) ∈ suppV , set

U(i, y, z) := E+
i,yq∞,z(0) = P+

i,z,y(∩n≥1{Zn > 0}). (3.17)

Theorem 1 is a direct consequence of the following proposition, which extends Theorem

1.1 in [13] to the case z > 1.

Proposition 5. Assume Conditions 1-4. Suppose that i ∈ X and z ∈ N. Then for

any i ∈ X the limit as y →∞ of V (i, y)U(i, y, z) exists and satisfies

u(i, z) := lim
y→∞

2√
2πσ

V (i, y)U(i, y, z) > 0.

Moreover,

lim
y→∞

√
nPi,z(Zn > 0, Xn = j) = u(i, z)ν(j).
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Proof. By Lemma 4 and (3.17), for (i, y) ∈ suppV ,

lim
n→∞

√
nPi,z (Zn > 0 , Xn = j , τy > n)

=
2V (i, y)√

2πσ
ν(j)P+

i,y,z(∩n≥1{Zn > 0})

=
2V (i, y)√

2πσ
U(i, y, z)ν(j). (3.18)

√
nPi,z(Zn > 0, Xn = j) =

√
nPi,z(Zn > 0, Xn = j, τy > n)

+
√
nPi,z(Zn > 0, Xn = j, τy ≤ n)

= J1(n, y) + J2(n, y). (3.19)

By Lemma 8,

J2(n, y) ≤ cze−y(1 + max{y, 0}). (3.20)

From (3.18), (3.19) and (3.20), when y is sufficiently large,

lim sup
n→∞

√
nPi,z(Zn > 0, Xn = j) ≤ 2V (i, y)√

2πσ
U(i, y, z)ν(j)

+ cze−y(1 + max{y, 0}) <∞. (3.21)

Similarly, when y is sufficiently large,

L0 = lim inf
n→∞

√
nPi,z(Zn > 0, Xn = j) ≥ 2V (i, y)√

2πσ
U(i, y, z)ν(j). (3.22)

Since Pi,z (Zn > 0 , Xn = j , τy > n) is non-decreasing in y, from (3.18) it follows that

the function

u(i, y, z) :=
2V (i, y)√

2πσ
U(i, y, z) (3.23)

is non-decreasing in y. Moreover, by (3.21) and (3.22), we deduce that u(i, y, z) as

a function of y is bounded by L0. Therefore its limit as y → ∞ exists: u(i, z) =

limy→∞ u(i, y, z). To prove that U(i, y, z) = E+
i,yq∞,z(0) > 0, it is enough to remark

that, by (3.13), it holds E+
i,yq
−1
∞,z(0) < ∞. On the other hand V (i, y) > 0 for large

enough y. Therefore u(i, z) > 0, which proves the first assertion. The second assertion

follows immediately from (3.21) and (3.22) by letting y →∞. �
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4. Proof of Theorem 2

All over this section we denote, for n ≥ 1,

Tn = sup{0 ≤ k ≤ n : Sk = inf{S0, . . . , Sn}},

and, for 0 ≤ k ≤ n,

Lk,n = inf
k≤j≤n

(
Sj − Sk

)
.

Recall the following identities which will be useful in the proofs:

{Tk = k} = {S0 ≥ Sk, S1 ≥ Sk, . . . , Sk−1 ≥ Sk} (4.1)

{Lk,n > 0} = {Sk+1 ≥ Sk, Sk+2 ≥ Sk, . . . , Sn ≥ Sk} (4.2)

{Tn = k} = {Tk = k} ∩ {Lk,n > 0}. (4.3)

For any n ≥ 1, set

Pn(i, s, z) = Ei,z(e−e
−s Zn

eSn ;Zn > 0, L0,n > 0). (4.4)

It is easy to see that, by the definition (2.1) of τy, we have {τ0 > n} = {L0,n > 0}, so

that (4.4) is equivalent to

Pn(i, s, z) = Ei,z(e−e
−s Zn

eSn ;Zn > 0, τ0 > n). (4.5)

We prove first a series of auxiliary statements.

Lemma 9. Assume Conditions 1-4. Let s ≥ 0. For any (i, 0) ∈ suppV and z ∈ N,

z 6= 0, there exists a positive random variable Wi,z such that

lim
n→∞

√
nPn(i, s, z) = 2

V (i, 0)√
2πσ

P∞(i, s, z),

where

P∞(i, s, z) := E+
i,0,z

(
e−Wi,ze

−s

;∩p≥1{Zp > 0}
)
≤ 1.

Moreover, for any (i, 0) ∈ suppV and z ∈ N, z 6= 0, it holds P+
i,0,z-a.s.

∩p≥1{Zp > 0} = {Wi,z > 0}.

For any (i, 0) 6∈ suppV and z ∈ N, z 6= 0,

lim
n→∞

√
nPn(i, s, z) = 0.
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Proof. Denote Yn = e−e
−s Zn

eSn 1{Zn > 0}. Since
(
Zn

eSn

)
n≥0 is a positive ((Fn)n≥0,P+

i,0,z)-

martingale, its limit, say Wi,z = limn→∞
Zn

eSn
, exists P+

i,0,z-a.s. and is non-negative.

Therefore, P+
i,0,z-a.s.

lim
n→∞

Yn = e−e
−sWi,z1{∩p≥1{Zp > 0}}.

Now the first assertion follows from the Lemma 4.

For the second assertion we use a result from Kersting [18] stated in a more gen-

eral setting of branching processes with varying environment. To apply it we shall

condition with respect to the environment (Xn)n≥0, so that one can consider that the

environment is fixed. The condition (A) in Kersting [18] is obviously verified because of

the Condition 4. Moreover, according to Lemma 7, the extinction probability satisfies

P+
i,0,z-a.s.

P+
i,0,z(∪p≥1{Zp = 0}

∣∣(Xn)n≥1) < 1.

By Theorem 2 in [18], this implies that, P+
i,0,z-a.s.

P+
i,0,z(∪p≥1{Zp = 0}

∣∣(Xn)n≥1) = P+
i,0,z(Wi,z = 0

∣∣(Xn)n≥1).

Since P+
i,0,z-a.s. ∪p≥1{Zp = 0} ⊂ {Wi,z = 0}, we obtain the second assertion.

The third one follows from the point 1 of Proposition 2, since V (i, 0) = 0. This ends

the proof of the lemma. �

Remark that P∞(i, s, z) can be rewritten as

P∞(i, s, z) = E+
i,0,z

(
e−Wi,ze

−s

;Wi,z > 0
)
.

This shows that P∞(i, s, z) is the Laplace transformation at e−s of a measure on R+

which assigns the mass 0 to the set {0}.

We will need the following lemma.

Lemma 10. There exists a constant c such that

sup
i∈X

Pi,z
(
Tn = n,Zn > 0

)
≤ c z

n3/2
.

Proof. Since Tn is a function only on the environment (Xk)k≥0, conditioning with

respect to (Xk)k≥0, we have

Pi,z
(
Tn = n,Zn > 0

)
= Ei,z

(
qn,z(0);Tn = n

)
,
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with qn,z(0) defined by (3.2). Using the bound (3.5) we obtain

Pi,z
(
Tn = n,Zn > 0

)
≤ zEi

(
eSn ;Tn = n

)
. (4.6)

By (4.1) and the duality (Lemma 5),

Ei
(
eSn ;Tn = n

)
= E∗ν

(
e−S

∗
n ; τ∗0 > n

) 1

ν(i)

≤ cE∗ν
(
e−S

∗
n ; τ∗0 > n

)
. (4.7)

Using the local limit theorem for the dual Markov chain (see Proposition 4) and

following the proof of Lemma 1 we obtain

E∗ν
(
e−S

∗
n ; τ∗0 > n

)
≤ c

n3/2
. (4.8)

From (4.6), (4.7) and (4.8) the assertion follows. �

The key point of the proof of Theorem 2 is the following statement.

Proposition 6. Assume Conditions 1-4. For any i ∈ X, s ∈ R and z ∈ N, z 6= 0,

lim
n→∞

√
nEi,z(e−e

−s Zn
eSn ;Zn > 0)

=
2√
2πσ

∞∑
k=1

Ei,z
(
V (Xk, 0)1suppV (Xk, 0)P∞(Xk, s+ Sk, Zk);

Zk > 0, Tk = k
)

=: u(i, z, e−s).

With s = +∞,

lim
n→∞

√
nPi,z(Zn > 0) = u(i, z),

where

u(i, z) =
2√
2πσ

∞∑
k=1

Ei,z
(
V (Xk, 0)1suppV (Xk, 0)P+

Xk,0,Zk
(Wi,z > 0);

Zk > 0, Tk = k
)
> 0

is defined in Theorem 1.
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Proof. Using (4.3), one has

Ei,z(e−e
−s Zn

eSn ;Zn > 0) =

n−1∑
k=0

Ei,z
(
e−e

−s Zn
eSn ;Zn > 0, Tk = k, Lk,n > 0

)
+ Ei,z

(
e−e

−s Zn
eSn ;Zn > 0, Tn = n

)
= J1(n) + J2(n). (4.9)

By Lemma 10,

lim sup
n→∞

√
nJ2(n) ≤ lim

n→∞

√
nPi,z

(
Tn = n,Zn > 0

)
= 0. (4.10)

We now deal with the term J1(n). We shall make use of the notation Pn(i, y, z) defined

in (4.5). By the Markov property (conditioning with respect to Fk = σ{X0, Z0, . . . , Xk, Zk}),

and using (4.2), we obtain

Ei,z
(
e−e

−s Zn
eSn ;Zn > 0, Tk = k, Lk,n > 0

)
= Ei,z

(
Pn−k(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
.

Therefore

J1(n) =

n−1∑
k=0

1√
n− k

Ei,z
(√
n− kPn−k(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
.

Denote for brevity

Ek = Ei,z
(√
n− kPn−k(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
.

It is easy to see that, with some l ≤ n,

√
nJ1(n) =

l∑
k=0

√
n√

n− k
Ek +

n−1∑
k=l+1

√
n√

n− k
Ek

= J11(n, l) + J12(n, l). (4.11)

For J12(n, l), we have, using (4.5),

J12(n, l) =

n−1∑
k=l+1

√
n√

n− k
Ek

≤
n−1∑
k=l+1

√
n√

n− k
Ei,z

(√
n− kPXk

(τ0 > n− k);Tk = k, Zk > 0
)
.
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Using point 2 of Proposition 2 and Lemma 10,

J12(n, l) ≤ c
n−1∑
k=l+1

√
n√

n− k
Pi,z

(
Tk = k, Zk > 0

)
≤ cz

n−1∑
k=l+1

√
n√

n− k
1

k3/2

≤ cz
(

1√
n

+
2√
l

)
,

where to bound the second line we split the summation in two parts for k > k/2 and

k ≤ k/2. Let ε > 0 be arbitrary. Then there exists nε,z such that, for n ≥ l ≥ nε,z,

J12(n, l) ≤ ε. (4.12)

For J11(n, l), we have

J11(n, l) =

l∑
k=0

√
n√

n− k
Ei,z

(√
n− kPn−k(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
.

Since l is fixed, taking the limit as n→∞, by Lemmata 9 and 10,

lim
n→∞

J11(n, l) =

l∑
k=0

Ei,z
(
P∞(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
≤

l∑
k=0

Pi,z
(
Tk = k, Zk > 0

)
≤
∞∑
k=0

cz

k3/2
≤ cz. (4.13)

Since ε is arbitrary, from (4.11), (4.12) and (4.13), taking the limit as l → ∞, we

deduce that

lim
n→∞

√
nJ1(n) =

∞∑
k=0

Ei,z
(
P∞(Xk, s+ Sk, Zk);Tk = k, Zk > 0

)
.

From this and (4.9), (4.10) we deduce the first assertion of the proposition. The second

one is proved in the same way. �

Now we proceed to prove Theorem 2. Denote by

µn,i,z,j(B) = Pi,z
(
Zne

−Sn ∈ B,Xn = j
∣∣Zn > 0

)
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the joint law law of Zn

eSn
and Xn = j given Zn > 0 under Pi, where B is any Borel set

of R+. Set for short

µn,i,z(B) = Pi,z
(
Zne

−Sn ∈ B
∣∣Zn > 0

)
.

We shall prove that the sequence (µn,i,z)n≥1 is convergent in law. For this we use the

convergence of the corresponding Laplace transformations:

Ei,z(e−t
Zn
eSn

∣∣Zn > 0) =

√
nEi,z(e−t

Zn
eSn ;Zn > 0)√

nPi,z(Zn > 0)
.

By Proposition 6, we see that, with t = e−s,

lim
n→∞

Ei,z(e−e
−s Zn

eSn

∣∣Zn > 0) =
u(i, z, e−s)

u(i, z)
.

It is obvious that u(i, z, e−s) is also a Laplace transformation at t = e−s of a measure

on R+ which assigns the mass 0 to the set {0} and that u(i, z) is the total mass of this

measure. Therefore the ratio u(i,z,e−s)
u(i,z) is the Laplace transformation of a probability

measure µi,z on R+ such that µi,z({0}) = 0.

5. Proof of Theorems 3 and 4

Recall that by the properties of the harmonic function, for any i ∈ X there exists

yi ≥ 0 such that (i, y) ∈ suppV for any y ≥ yi.

First we prove the following auxiliary statement.

Lemma 11. Assume Conditions 1-4. Let i ∈ X and z ∈ N, z 6= 0. For any θ ∈ (0, 1)

and y ≥ 0 large enough such that (i, y) ∈ suppV ,

lim
m→∞

lim
n→∞

√
nPi,z

(
Zm > 0, Z[θn] = 0, τy > n

)
= 0.

Proof. Let m,n ≥ 1 be such that [θn] > m. Then

Jm,n(θ, y) := Pi,z
(
Zm > 0, Z[θn] = 0, τy > n

)
= Pi,z (Zm > 0, τy > n)− Pi,z

(
Z[θn] > 0, τy > n

)
= Ei,z

(
Pi,z (Zm > 0|X1, . . . , Xm)

− Pi,z
(
Z[θn] > 0|X1, . . . , X[θn]

)
; τy > n

)
≤ Ei,z

( ∣∣qm,z(0)− q[θn],z(0)
∣∣ ; τy > n

)
.
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Denote Pn(i, y) = Pi(τy > n). By the Markov property

Ei,z
( ∣∣qm,z(0)− q[θn],z(0)

∣∣ ; τy > n
)

= Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣Pn−[θn](X[θn], y + S[θn]); τy > [θn]
)
.

Using point 2 of Proposition 2 and the point 3 of Proposition 1, on the set {τy > [θn]},

Pn−[θn](X[θn], y + S[θn], z) ≤ c
1 + y + S[θn]√

n− [θn]
≤ c

1 + V (X[θn], y + S[θn])√
(1− θ)n

.

Therefore

√
nJm,n(θ, y)

≤ Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣√nPn−[θn](X[θn], y + S[θn]); τy > [θn]
)

≤ c√
1− θ

Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣ ; τy > [θn]
)

+
c√

1− θ
Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣V (X[θn], y + S[θn]); τy > [θn]
)
.

Using the bound (3.1) and again the point 2 of Proposition 2,

lim sup
n→∞

Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣ ; τy > [θn]
)
≤ lim
n→∞

Pi
(
τy > [θn]

)
= 0.

If (i, y) 6∈ suppV ,

Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣V (X[θn], y + S[θn]); τy > [θn]
)

≤ Ei
(
V (X[θn], y + S[θn]); τy > [θn]

)
= V (i, y) = 0.

If (i, y) ∈ suppV , changing the measure by (2.14), we have

Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣V (X[θn], y + S[θn]); τy > [θn]
)

= V (i, y)E+
i,y

∣∣qm,z(0)− q[θn],z(0)
∣∣ .

Taking the limit as n→∞ and then as m→∞, by Lemma 6,

lim
m→∞

lim
n→∞

Ei
( ∣∣qm,z(0)− q[θn],z(0)

∣∣V (X[θn], y + S[θn]); τy > [θn]
)

= 0.

Taking into account the previous bounds we obtain the assertion of the lemma. �
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Proof of Theorem 3. Let i, j ∈ X, y ≥ 0, z ∈ N, z 6= 0, t ∈ R. Then, for any n ≥ 1

and y ≥ 0,

Pi,z
(
Sn√
nσ
≤ t,Xn = j, Zn > 0

)
= Pi,z

(
Sn√
nσ
≤ t,Xn = j, Zn > 0, τy > n

)
+ Pi,z

(
Sn√
nσ
≤ t,Xn = j, Zn > 0, τy ≤ n

)
= I1(n, y) + I2(n, y). (5.1)

By Lemma 8,

√
nI2(n, y) ≤

√
nPi,z(Zn > 0, τy ≤ n) ≤ cze−y(1 + y). (5.2)

In the sequel we study I1(n, y). Let θ ∈ (0, 1) be arbitrary. We decompose I1(n, y)

into two parts:

I1(n, y) = Pi,z
(
Sn√
nσ
≤ t,Xn = j, Z[θn] > 0, Zn > 0, τy > n

)
= Pi,z

(
Sn√
nσ
≤ t,Xn = j, Z[θn] > 0, τy > n

)
− Pi,z

(
Sn√
nσ
≤ t,Xn = j, Z[θn] > 0, Zn = 0, τy > n

)
= I11(n, θ, y)− I12(n, θ, y). (5.3)

In the following lemma we prove that the second term
√
nI12(n, θ, y) vanishes as

n→∞.

Lemma 12. Assume Conditions 1-4. For any i, j ∈ X, z ∈ N, z 6= 0, and y ≥ 0

sufficiently large,

lim
n→∞

√
nPi,z

(
Sn√
nσ
≤ t,Xn = j, Z[θn] > 0, Zn = 0, τy > n

)
= 0. (5.4)

Proof. Obviously,

|I12(n, θ, y)| =
∣∣∣∣Pi,z ( Sn√

nσ
≤ t,Xn = j, Z[θn] > 0, Zn = 0, τy > n

)∣∣∣∣
≤ Pi,z

(
Xn = j, Z[θn] > 0, Zn = 0, τy > n

)
= Pi,z

(
Xn = j, Z[θn] > 0, τy > n

)
− Pi,z (Xn = j, Zn > 0, τy > n) . (5.5)
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As in (3.18), choosing y ≥ 0 such that (i, y) ∈ suppV , we have

lim
n→∞

√
nPi,z (Xn = j, Zn > 0, τy > n) =

2V (i, y)√
2πσ

U(i, y, z)ν(j). (5.6)

We shall prove that for any θ ∈ (0, 1),

lim
n→∞

√
nPi,z

(
Xn = j, Z[θn] > 0, τy > n

)
=

2V (i, y)√
2πσ

U(i, y, z)ν(j). (5.7)

For any m ≥ 1 and n such that [θn] > m,

Pi,z
(
Xn = j, Z[θn] > 0, τy > n

)
= Pi,z

(
Xn = j, Zm > 0, Z[θn] > 0, τy > n

)
= Pi,z (Xn = j, Zm > 0, τy > n)

− Pi,z
(
Xn = j, Zm > 0, Z[θn] = 0, τy > n

)
. (5.8)

By Lemma 2,

lim
n→∞

√
nPi,z (Xn = j, Zm > 0, τy > n)

=
2V (i, y)√

2πσ
P+
i,z,y (Zm > 0)ν(j).

Taking the limit as m→∞, by (3.17), we have

lim
m→∞

lim
n→∞

√
nPi,z (Xn = j, Zm > 0, τy > n)

=
2V (i, y)√

2πσ
P+
i,z,y(∩m≥1{Zm > 0})ν(j)

=
2V (i, y)√

2πσ
U(i, y, z)ν(j). (5.9)

By Lemma 11,

lim sup
m→∞

lim sup
n→∞

√
nPi,z

(
Xn = j, Zm > 0, Z[θn] = 0, τy > n

)
≤ lim sup

m→∞
lim
n→∞

√
nPi,z

(
Zm > 0, Z[θn] = 0, τy > n

)
= 0,

which together with (5.8) and (5.9) proves (5.7). From (5.5), (5.6) and (5.7) we obtain

the assertion of the lemma. �

To handle the term I11(n, θ, y) we choose any m satisfying 1 ≤ m ≤ [θn] and split it
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into two parts:

I11(n, θ, y) = Pi,z
(
Sn√
nσ
≤ t,Xn = j, Zm > 0, τy > n

)
− Pi,z

(
Sn√
nσ
≤ t,Xn = j, Zm > 0, Z[θn] = 0, τy > n

)
= I111(n,m, y)− I112(n,m, θ, y). (5.10)

By Lemma 11, we have,

lim sup
m→∞

lim sup
n→∞

√
nI112(n,m, θ, y)

≤ lim
m→∞

lim
n→∞

√
nPi,z

(
Zm > 0, Z[θn] = 0, τy > n

)
= 0. (5.11)

The following lemma gives a limit for
√
nI111(n,m, y) as n→∞ and m→∞.

Lemma 13. Assume Conditions 1-4. Suppose that i, j ∈ X, z ∈ N, z 6= 0 and t ∈ R.

Then, for any y ≥ 0 sufficiently large,

lim
m→∞

lim
n→∞

√
nPi,z

(
Sn√
nσ
≤ t,Xn = j, Zm > 0, τy > n

)
=

2Φ+(t)√
2πσ

V (i, y)U(i, y, z)ν(j). (5.12)

Proof. Without loss of generality we can assume that n ≥ 2m. Let y ≥ 0 be so large

that (i, y) ∈ suppV. Set tn,y = t+ y√
nσ

. Then I111(n,m, y) can be rewritten as

I111(n,m, y) = Pi,z
(
y + Sn√
nσ

≤ tn,y, Xn = j, Zm > 0, τy > n

)
.

If t < 0, we have tn,y < 0, for n large enough, then the assertion of the lemma

becomes obvious since I111(n,m, y) = 0 = Φ+(t). Therefore, it is enough to assume

that t ≥ 0. To find the asymptotic of I111(n,m, y) we introduce the following notation:

for y′, t′ ∈ R and 1 ≤ k = n−m ≤ n,

Φk(i, y′, t′) = Pi
(y′ + Sk

σ
√
k
≤ t′; τy′ > k

)
.

Set tn,m,y = tn,y
√
n√

n−m = (t+ y√
nσ

)
√
n√

n−m . By the Markov property,

I111(n,m, y) = Ei,z
(
Φn−m(Xm, y + Sm, tn,m,y);Zm > 0, τy > m

)
.
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Since tn,m,y ≤
√

2(t + y/σ), by Proposition 3, there exists an ε > 0 such that for any

(i, y′) ∈ X× R,

√
n−m

∣∣∣∣∣Φn−m(i, y′, tn,m,y)− 2V (i, y′)√
2π(n−m)σ

Φ+
(
tn,m,y

)∣∣∣∣∣
≤ cε,t,y

1 + max{y′, 0}2

(n−m)ε
. (5.13)

Therefore, using (5.13),

An(m, y) :=∣∣∣∣∣I111(n,m, y)− Ei,z
(2V (Xm, y + Sm)√

2π(n−m)σ
Φ+
(
tn,m,y

)
;Zm > 0, τy > m

)∣∣∣∣∣
≤ cε,t,y

1 + Ei,z max{y + Sm, 0}2

(n−m)1/2+ε
.

This implies that

lim
n→∞

√
nAn(m, y) = 0. (5.14)

Note that with m and y ≥ 0 fixed, we have tn,m,y → t as n→∞. Therefore

lim
n→+∞

√
nEi,z

(2V (Xm, y + Sm)√
2πkσ

Φ+
(
tn,m

)
;Zm > 0, τy > m

)
=

2Φ+(t)√
2πσ

Ei,z
(
V (Xm, y + Sm);Zm > 0, τy > m

)
. (5.15)

When (i, y) ∈ suppV , the change of measure (2.13), gives

Ei,z
(
V (Xm, y + Sm);Zm > 0, τy > m

)
= V (i, y)P+

i,y,z(Zm > 0). (5.16)

Since P+
i,y,z(Zm > 0) = E+

i,yqm,z(0), using Lemma 6,

lim
m→+∞

P+
i,y,z(Zm > 0) = lim

m→+∞
E+
i,yqm,z(0) = E+

i,yq∞,z(0) = U(i, y, z),

which, together with (5.14), (5.15) and (5.16), gives

lim
m→∞

lim
n→∞

√
nI111(n,m, y) =

2Φ+(t)√
2πσ

V (i, y)U(i, y, z)ν(j),

which proves the assertion of the lemma for t ≥ 0. �
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We now perform the final assembling. From (5.1), (5.2), (5.3) and (5.4), we have,

for any i, j ∈ X, z ∈ N, z 6= 0, t ∈ R and y sufficiently large,

lim
n→∞

∣∣∣∣√nPi,z ( Sn√
nσ
≤ t,Xn = j, Zn > 0

)
−
√
nI11(n, θ, y)

∣∣∣∣
≤ cze−y(1 + y). (5.17)

From (5.10), (5.11), (5.12) we obtain

lim
m→∞

lim
n→∞

√
nI11(n, θ, y) =

2Φ+(t)√
2πσ

V (i, y)U(i, y, z)ν(j). (5.18)

From (5.17) and (5.18), taking consecutively the limits as n → ∞ and m → ∞, we

obtain, for any i, j ∈ X, z ∈ N, z 6= 0, t ∈ R and y ≥ 0 sufficiently large, such that

(i, y) ∈ suppV ,

lim
n→∞

∣∣∣∣√nPi,z ( Sn
σ
√
n
≤ t,Xn = j, Zn > 0

)
− 2Φ+(t)√

2πσ
V (i, y)U(i, y, z)ν(j)

∣∣∣∣
≤ cze−y(1 + y).

Taking the limit as y →∞, we obtain, for any i, j ∈ X, z ∈ N, z 6= 0 and t ∈ R,

lim
n→∞

√
nPi,z

(
Sn
σ
√
n
≤ t,Xn = j, Zn > 0

)
= Φ+(t)ν(j)u(i, z),

where u(i, z) > 0 is defined in Proposition 5. This proves the first assertion of the

theorem. The second assertion is obtained from the first one by using Theorem 1. �

Proof of Theorem 4. The assertion of Theorem 4 is easily obtained from Theorem

3. Let ε > 0 be arbitrary. By simple computations,

Pi,z
(∣∣∣∣ logZn

σ
√
n
− Sn√

nσ

∣∣∣∣ ≥ ε,Xn = j, Zn > 0

)
= Pi,z

(
Zn
eSn
≥ eε

√
nσ, Xn = j, Zn > 0

)
+ Pi,z

(
Zn
eSn
≤ e−ε

√
nσ, Xn = j, Zn > 0

)
.

Fix some A > 1. Then, for n sufficiently large, such that eε
√
n > A,

Pi,z
(∣∣∣∣ logZn

σ
√
n
− Sn√

nσ

∣∣∣∣ ≥ ε,Xn = j, Zn > 0

)
≤ Pi,z

(
Zn
eSn
≥ A,Xn = j, Zn > 0

)
+ Pi,z

(
Zn
eSn
≤ 1/A,Xn = j, Zn > 0

)
,
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where, by Theorem 2

lim sup
n→+∞

√
nPi,z

(
Zn
eSn
≥ A,Xn = j, Zn > 0

)
≤ µi,z([A,+∞])ν(j)u(i, z),

and

lim sup
n→+∞

√
nPi,z

(
Zn
eSn
≤ 1/A,Xn = j, Zn > 0

)
≤ µi,z([0, 1/A])ν(j)u(i, z).

Since µi,z is a probability mesure of mass 0 in 0, taking the limit as A→ +∞, we have

that

lim
n→+∞

√
nPi,z

(∣∣∣∣ logZn
σ
√
n
− Sn√

nσ

∣∣∣∣ ≥ ε,Xn = j, Zn > 0

)
= 0.

As ε is arbitrary, using Theorem 3 we conclude the proof. �
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[13] I. Grama, R. Lauvergnat, and É. Le Page. (2019). The survival probability of critical and

subcritical branching processes in finite state Markovian environment. Stoch. Proc. Appl., 129,

2485–2527.
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