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Let (Zn) n≥0 be a critical branching process in a random environment defined by a Markov chain (Xn) n≥0 with values in a finite state space X. Let Sn = n k=1 ln f X k (1) be the Markov walk associated to (Xn) n≥0 , where fi is the offspring generating function when the environment is i ∈ X. Conditioned on the event {Zn > 0}, we show the non degeneracy of the limit law of the normalized number of particles Zn/e Sn and determine the limit of the law of Sn √ n jointly with Xn. Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of log Zn and Xn given Zn > 0.

Introduction and main results

One of the most used models in the dynamic of populations is the Galton-Watson branching process which has numerous applications in different areas such as physics, biology, medicine, economics etc. We refer the reader to the books of Harris [START_REF] Harris | The theory of branching processes[END_REF] and Athreya and Ney [START_REF] Athreya | Branching Processes[END_REF] for an introduction. Branching processes in random environment have been first considered by Smith and Wilkinson [START_REF] Smith | On Branching Processes in Random Environments[END_REF], and Athreya and Karlin [START_REF] Athreya | On branching processes with random environments I: Extinction probabilities[END_REF][START_REF] Athreya | Branching processes with random environments II: Limit theorems[END_REF]. This subject has been further studied by Kozlov [START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF][START_REF] Kozlov | A conditional function limit theorem for critical branching processes in a random medium[END_REF], Dekking [START_REF] Dekking | On the survival probability of a branching process in a finite state i.i.d. environment[END_REF], Liu [START_REF] Liu | On the survival probability of a branching process in a random environment[END_REF], D'Souza and Hambly [START_REF] Hambly | On the survival probability of a branching process in a random environment[END_REF], Geiger and Kersting [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF], Guivarc'h and Liu [START_REF] Guivarc | Propriétés asymptotiques des processus de branchement en environnement aléatoire[END_REF], Geiger, Kersting and Vatutin [START_REF] Geiger | Limit theorems for subcritical branching processes in random environment[END_REF], Afanasyev [START_REF] Afanasyev | Limit theorems for a moderately subcritical branching process in a random environment[END_REF], Kersting and Vatutin [START_REF] Kersting | Discrete Time Branching Processes in Random Environment[END_REF], to name only a few. Recently, based on new conditioned limit theorems for sums of functions defined on Markov chains in [START_REF] Grama | Limit theorems for affine Markov walks conditioned to stay positive[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF][START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF][START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF], the exact asymptotic results for the survival probability when the environment is a Markov chain have been obtained for branching processes in Markovian environment (BPME) in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]. In this paper we shall complement them by new results, such as a limit theorem for the normalized number of particles and an Yaglom-type theorem for BPME.

We start by introducing the Markovian environment which is given on the probability space (Ω, F , P) by a homogeneous Markov chain (X n ) n≥0 with values in the finite state space X and with the matrix of transition probabilities P = (P(i, j)) i,j∈X . We suppose the following: Condition 1. The Markov chain (X n ) n≥0 is irreducible and aperiodic.

Condition 1 implies a spectral gap property for the transition operator P of (X n ) n≥0 , defined by the relation Pg(i) = j∈X g(j)P(i, j) for any g in the space C (X) of complex functions g on X endowed with the norm g ∞ = sup x∈X |g(x)|. Indeed, Condition 1 is necessary and sufficient for the matrix (P(i, j)) i,j∈X to be primitive (all entries of P k0 are positive for some k 0 ≥ 1). By Perron-Frobenius theorem, there exist positive constants c 1 , c 2 , a unique positive P-invariant probability ν on X (ν(P) = ν) and an operator Q on C (X) such that, for any g ∈ C (X) and n ≥ 1, i ∈ X,

Pg(i) = ν(g) + Q(g)(i) and Q n (g) ∞ ≤ c 1 e -c2n g ∞ , (1.1) 
where Q (1) = 0 and ν (Q(g)) = 0 with ν(g) := i∈X g(i)ν(i). In particular, from

(1.1), it follows that, for any (i, j) ∈ X 2 ,

|P n (i, j) -ν(j)| ≤ c 1 e -c2n .

(1.2)

Set N := {0, 1, 2, . . .}. For any i ∈ X, let P i be the probability law on X N and E i the associated expectation generated by the finite dimensional distributions of the Markov chain (X n ) n≥0 starting at X 0 = i. Note that P n g(i) = E i (g(X n )), for any g ∈ C (X), i ∈ X and n ≥ 1.

Assume that on the same probability space (Ω, F , P), for any i ∈ X, we are given a random variable ξ i with the probability generating function

f i (s) := E s ξi , s ∈ [0, 1]. (1.3)
Consider a collection of independent and identically distributed random variables (ξ n,j i ) j,n≥1 having the same law as the generic variable ξ i . The variable ξ n,j i represents the number of children generated by the parent j ∈ {1, 2, . . . } at time n when the environment is i. Throughout the paper, the sequences (ξ n,j i ) j,n≥1 , i ∈ X and the Markov chain (X n ) n≥0 are supposed to be independent.

Denote by E the expectation associated to P. We assume that the variables ξ i have a positive means and finite second moments. Condition 2. For any i ∈ X, the random variable ξ i satisfies the following: E (ξ i ) > 0 and E(ξ 2 i ) < +∞.

From Condition 2 it follows that 0 < f i (1) < +∞ and f i (1) < +∞.

We are now prepared to introduce the branching process (Z n ) n≥0 in the Markovian environment (X n ) n≥0 . The initial population size is Z 0 = z ∈ N. For n ≥ 1, we let Z n-1 be the population size at time n -1 and assume that at time n the parent j ∈ {1, . . . Z n-1 } generates ξ n,j Xn children. Then the population size at time n is given by

Z n = Zn-1 j=1 ξ n,j Xn ,
where the empty sum is equal to 0. In particular, when Z 0 = 0, it follows that Z n = 0 for any n ≥ 1. We note that for any n ≥ 1 the variables ξ n,j i , j ≥ 1, i ∈ X are independent of Z 0 , . . . , Z n-1 .

Introduce the function

ρ : X → R satisfying ρ(i) = ln f i (1), i ∈ X.
Along with (Z n ) n≥0 consider the Markov walk (S n ) n≥0 such that S 0 = 0 and, for n ≥ 1,

S n = ln f X1 (1) • • • f Xn (1) = n k=1 ρ (X k ) .
(1.4)

The couple (X n , Z n ) n≥0 is a Markov chain with values in X × N, whose transition operator P is defined by the following relation: for any i ∈ X, z ∈ N, s ∈ [0, 1] and h : X → R bounded measurable,

P(h s )(i, z) = j∈X P(i, j)h(j)[f j (s)] z , (1.5) 
where h s (i, z) = h(i)s z . Let P i,z be the probability law on (X × N) N and E i,z the associated expectation generated by the finite dimensional distributions of the Markov chain (X n , Z n ) n≥0 starting at X 0 = i and Z 0 = z. By straightforward calculations, for

any i ∈ X, z ∈ N, E i,z (Z n ) = zE i (e Sn ). (1.6) 
The following non-lattice condition is used indirectly in the proofs of the present paper; it is needed to ensure that the local limit theorem for the Markov walk (1.4) holds true.

Condition 3. For any θ, a ∈ R, there exist m ≥ 0 and a path x 0 , . . . , x m in X such that P(x 0 , x 1 ) • • • P(x m-1 , x m )P(x m , x 0 ) > 0 and

ρ(x 0 ) + • • • + ρ(x m ) -(m + 1)θ / ∈ aZ.
Condition 3 is an extension of the corresponding non-lattice condition for independent and identically distributed random variables X 0 , X 1 , . . ., which can be stated as follows: there exists m ≥ 0 such that X 0 + • • • + X m does not takes values in the lattice (m + 1)θ + aZ with some positive probability, whatever θ, a ∈ R. Usually, the latter is formulated in an equivalent way with m = 0. For Markov chains, Condition 3 is equivalent to the condition that the Fourier transform operator

P it g(i) := P e itρ g (i) = E i e itS1 g(X 1 ) , g ∈ C (X), i ∈ X, (1.7) 
has a spectral radius strictly less than 1 for t = 0, see Lemma 4.1 of [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. Non-latticity for Markov chains with not necessarily finite state spaces is considered, for instance, in Shurenkov [START_REF] Shurenkov | On the theory of Markov renewal[END_REF] and Alsmeyer [START_REF] Alsmeyer | On the Markov renewal theorem[END_REF].

For the following facts and definitions we refer to [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]. Under Condition 1, from the spectral gap property of the operator P it follows that, for any λ ∈ R and any i ∈ X, the limit

k(λ) := lim n→+∞ E 1/n i e λSn
exists and does not depend on the initial state of the Markov chain X 0 = i. Moreover, the number k(λ) is the spectral radius of the transfer operator P λ :

P λ g(i) := P e λρ g (i) = E i e λS1 g(X 1 ) , g ∈ C (X), i ∈ X. (1.8)
In particular, under Conditions 1 and 3, k(λ) is a simple eigenvalue of the operator P λ and there is no other eigenvalue of modulus k(λ). In addition, the function k(λ) is analytic on R.

The branching process in Markovian environment is said to be

subcritical if k (0) < 0, critical if k (0) = 0 and supercritical if k (0) > 0.
The following identity, has been established in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]:

k (0) = ν(ρ) = E ν (ρ(X 1 )) = E ν ln f X1 (1) = φ (0), (1.9) 
where E ν is the expectation generated by the finite dimensional distributions of the Markov chain (X n ) n≥0 in the stationary regime and φ(λ) = E ν (exp{λ ln f X1 (1)}), λ ∈ R. Relation (1.9) proves that the classification made in the case of branching processes with Markovian environment and that for independent and identically distributed environment are coherent: when the random variables (X n ) n≥1 are i.i.d. with common law ν, from (1.9) it follows that the two classifications coincide.

In the present paper we will focus on the critical case: k (0) = 0. Our first result establishes the exact asymptotic of the survival probability of Z n jointly with the event {X n = j} when the branching process starts with z particles.

Theorem 1. Assume Conditions 1-3 and k (0) = 0. Then, there exists a positive function u(i, z) : X × N → R * + such that for any (i, j) ∈ X 2 and z ∈ N, z = 0,

P i,z (Z n > 0 , X n = j) ∼ n→+∞ u(i, z)ν(j) √ n .
An explicit formula for u(i, z) is given in Proposition 5. In the case z = 1, Theorem 1 has been proved in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]Theorem 1.1]. The proof for the case z > 1, which is not a direct consequence of the case z = 1, will be given in Proposition 5.

We shall complement the previous statement by studying the asymptotic behavior of Z n given Z n > 0 under the following condition:

Condition 4. The random variables ξ i , i ∈ X satisfy:

inf i∈X P(ξ i ≥ 2) > 0.
Condition 4 is quite natural -it tells that each parent can generate more than 1 child with positive probability. In the present paper is used to prove the non-degeneracy of the limit of the martingale ( Zn e Sn ) n≥0 in key Lemma 9. The next result concerns the non degeneracy of the limit law of the properly normalized number of particles Z n at time n jointly with the event {X n = j}. Theorem 2. Assume Conditions 1-4 and k (0) = 0. Then, for any i ∈ X, z ∈ N, z = 0, there exists a probability measure µ i,z on R + such that, for any continuity point t ≥ 0 of the distribution function µ i,z ([0, •]) and j ∈ X, it holds that

lim n→∞ √ nP i,z Z n e Sn ≤ t, X n = j, Z n > 0 = µ i,z ([0, t])ν(j)u(i, z)
and

lim n→∞ P i,z Z n e Sn ≤ t, X n = j Z n > 0 = µ i,z ([0, t])ν(j).
Moreover, it holds that µ i,z ({0}) = 0.

From [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]Lemma 10.3] it follows that, under Conditions 1 and 3, the quantity

σ 2 := ν ρ 2 -ν (ρ) 2 + 2 +∞ n=1 ν (ρP n ρ) -ν (ρ) 2 (1.10) is finite and positive, i.e. 0 < σ < ∞. Let Φ + (t) = (1 -e -t 2 2 )1(t ≥ 0), t ∈ R,
be the Rayleigh distribution function. The following assertion gives the asymptotic behavior of the normalized Markov walk S n jointly with X n provided Z n > 0.

Theorem 3. Assume Conditions 1-4 and k (0) = 0. Then, for any i, j ∈ X, z ∈ N,

z = 0 and t ∈ R , lim n→∞ √ nP i,z S n σ √ n ≤ t, X n = j, Z n > 0 = Φ + (t)ν(j)u(i, z)
and

lim n→∞ P i,z S n σ √ n ≤ t, X n = j Z n > 0 = Φ + (t)ν(j).
The following assertion is the Yaglom-type limit theorem for log Z n jointly with X n .

Theorem 4. Assume Conditions 1-4 and k (0) = 0. Then, for any i ∈ X, z ∈ N, z = 0, j ∈ X and t ≥ 0 ,

lim n→∞ √ nP i,z log Z n σ √ n ≤ t, X n = j, Z n > 0 = Φ + (t)ν(j)u(i, z)
and

lim n→∞ P i,z log Z n σ √ n ≤ t, X n = j Z n > 0 = Φ + (t)ν(j).
As mentioned before, in the proofs of the stated results we make use of the previous developments in papers [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF][START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. These studies are based heavily on the existence of the harmonic function and the study of the asymptotic of the probability of the exit time for Markov chains which have been performed recently in [START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF][START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] and which are recalled in the next section. For recurrent Markov chains alternative approaches based on the renewal arguments are possible. The advantage of the harmonic function approach proposed here is that it could be extended for more general Markov environments which are not recurrent. In particular with these methods one could treat multi-type branching processes in random environments.

The outline of the paper is as follows. In Section 2 we give a series of assertions for walks on Markov chains conditioned to stay positive and prove Theorem 1 for z > 1.

In Section 3 we state some preparatory results for branching processes. The proofs of Theorems 2, 3 and 4 are given in Sections 4 and 5.

We end this section by fixing some notation. As usual the symbol c will denote positive constants depending on all previously introduced constants. In the same way the symbol c, enabled with subscripts, will denote positive constants depending only on the indices and all previously introduced constants. All these constants will change their values every occurrence. By f • g we mean the composition of two function f and

g: f • g(•) = f (g(•)
). The indicator of an event A is denoted by 1 A . For any bounded measurable function f on X, random variable X in some measurable space X and event A, we set by definition

X f (x)P(X ∈ dx, A) = E (f (X); A) := E (f (X)1 A ) .
2. Facts on Markov walks conditioned to stay positive 2.1. Conditioned limit theorems

We start by formulating two propositions which are consequences of the results in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF], [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF] and [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF].

Introduce the first time when the Markov walk (y + S n ) n≥0 becomes non-positive:

for any y ∈ R, set

τ y := inf {k ≥ 1 : y + S k ≤ 0} , (2.1) 
where inf ∅ = 0. Conditions 1, 3 and ν(ρ) = 0 ensure that the stopping time τ y is well defined and finite P i -almost surely, for any i ∈ X.

The following important proposition is a direct consequence of the results in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] adapted to the case of a finite Markov chain. It proves the existence of the harmonic function related to Markov walk (y + S n ) n≥0 and states some of its properties to be used in the proofs of the main results of the paper.

Proposition 1. Assume Conditions 1, 3 and k (0) = 0. There exists a non-negative

function V on X × R such that 1. For any (i, y) ∈ X × R and n ≥ 1, E i (V (X n , y + S n ) ; τ y > n) = V (i, y).
2. For any i ∈ X, the function V (i, •) is non-decreasing and for any (i, y) ∈ X × R,

V (i, y) ≤ c (1 + max(y, 0)) .
3. For any i ∈ X, y > 0 and δ ∈ (0, 1),

(1 -δ) y -c δ ≤ V (i, y) ≤ (1 + δ) y + c δ .
We need the asymptotic of the probability of the event {τ y > n} jointly with the state of the Markov chain (X n ) n≥1 .

Proposition 2. Assume Conditions 1, 3 and k (0) = 0.

1. For any (i, y) ∈ X × R and j ∈ X, we have

lim n→+∞ √ nP i (X n = j , τ y > n) = 2V (i, y)ν(j) √ 2πσ . 
2. For any (i, y) ∈ X × R and n ≥ 1,

P i (X n = j, τ y > n) ≤ c 1 + max(y, 0) √ n .
For a proof of the first assertion of Proposition 2, see Lemma 2.11 in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]. The second is deduced from the point (b) of Theorem 2.3 of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF].

Denote by supp(

V ) = {(i, y) ∈ X × R : V (i, y) > 0} the support of the function V .
By the point 3 of Theorem 1, the harmonic function V satisfies the following property:

for any i ∈ X there exist y i ≥ 0 such that (i, y) ∈ supp V , for any y > y i .

In addition to the previous two propositions we need the following result, which gives the asymptotic behaviour of the conditioned limit law of the Markov walk (y + S n ) n≥0

jointly with the Markov chain (X n ) n≥0 . It extends Theorem 2.5 of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] where the asymptotic of y+Sn σ √ n given the event {τ y > n} has been considered.

Proposition 3. Assume Conditions 1, 3 and k (0) = 0.

1. For any (i, y) ∈ supp(V ) and t ≥ 0,

P i y + S n σ √ n ≤ t, X n = j τ y > n -→ n→+∞ Φ + (t)ν(j).
2. There exists ε 0 > 0 such that, for any ε

∈ (0, ε 0 ), n ≥ 1, t 0 > 0, t ∈ [0, t 0 ] and (i, y) ∈ X × R, P i y + S n √ nσ ≤ t, X n = j, τ y > n - 2V (i, y) √ 2πnσ Φ + (t)ν(j) ≤ c ε,t0 1 + max(y, 0) 2 n 1/2+ε .
Proof. It is enough to prove the point 2 of the proposition. It will be derived from the corresponding result in Theorem 2.5 of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF]. We establish first an upper bound.

Let k = [n 1/4 ] and ρ ∞ = max i∈X |ρ(i)|. Since S n = S n-k + n i=n-k+1 ρ(X i ),
we have

P i y + S n √ nσ ≤ t, X n = j, τ y > n ≤ P i y + S n-k √ nσ ≤ t + k σ √ n ρ , X n = j, τ y > n -k := I(k, n). (2.2)
By the Markov property

I(k, n) = E i P k (X n-k , j); y + S n-k √ nσ ≤ t + k σ √ n ρ , τ y > n -k . Now using (1.2) and setting t n,k = √ n √ n-k (t + k σ √ n ) ρ , I(k, n) ≤ (ν(j) + c 1 e -c2k )P i y + S n-k √ n -kσ ≤ t n,k , τ y > n -k . (2.3) 
By Theorem 2.5 and Remark 2.10 of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF], there exists ε 0 > 0 such that for any ε ∈ (0, ε 0 ) and t 0 > 0, n ≥ 1, we have, for t n,k ≤ t 0 ,

P i y + S n-k √ n -kσ ≤ t n,k , τ y > n -k ≤ 2V (i, y) 2π(n -k)σ Φ + (t n,k ) + c ε,t0 (1 + max{0, y}) 2 (n -k) 1/2+ε/16 . (2.4) Since |t n,k -t| ≤ c t0 1 n 1/4 and Φ + is smooth, we obtain 2V (i, y) 2π(n -k)σ Φ + (t n,k ) ≤ 2V (i, y) √ 2πnσ Φ + (t) + c t0 (1 + max{0, y}) 2 n 1/2+1/4 . (2.5) 
From (2.2), (2.3), (2.4) and (2.5) it follows that

P i y + S n √ nσ ≤ t, X n = j, τ y > n ≤ ν(j) 2V (i, y) √ 2πnσ Φ + (t) + c ε,t0 (1 + max{0, y}) 2 n 1/2+ε/16 . (2.6)
Now we shall establish a lower bound. With the notation introduced above, we have

P i y + S n √ nσ ≤ t, X n = j, τ y > n ≥ P i y + S n-k √ nσ ≤ t - k σ √ n ρ , X n = j, τ y > n -k -P i (n -k < τ y ≤ n) := I 1 (k, n) -I 2 (k, n). (2.7)
As in the proof of (2.6), we establish the lower bound

I 1 (k, n) ≥ ν(j) 2V (i, y) √ 2πnσ Φ + (t) -c ε,t0 (1 + max{0, y}) 2 n 1/2+ε/16 . (2.8) Note that 0 ≥ min n-k<i≤n {y + S i } ≥ y + S n-k -k ρ ∞ , on the set {n -k < τ y ≤ n}. Set t n,k = k ρ ∞ σ √ n-k . Then, I 2 (k, n) = P i (n -k < τ y ≤ n) ≤ P i y + S n-k σ √ n -k ≤ t n,k , n -k < τ y ≤ n ≤ P i y + S n-k σ √ n -k ≤ t n,k , τ y ≥ n -k . (2.9)
Again by Theorem 2.5 and Remark 2.10 of [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF], there exists ε 0 > 0 such that for any ε ∈ (0, ε 0 ) and t 0 > 0, n ≥ 1, we have, for t n,k ≤ t 0 , 

P i y + S n-k √ n -kσ ≤ t n,k , τ y > n -k ≤ 2V (i, y) 2π(n -k)σ Φ + (t n,k ) + c ε,t0 (1 + max{0, y}) 2 (n -k)
2π(n -k)σ Φ + (t n,k ) ≤ 2V (i, y) √ 2πnσ Φ + (0) + c t0 (1 + max{0, y}) 2 n 1/2+1/4 = c t0 (1 + max{0, y}) 2 n 1/2+1/4 . (2.11)
From (2.9), (2.10) and (2.11), we deduce that

I 2 (k, n) ≤ c ε,t0 (1 + max{0, y}) 2 n 1/2+ε/16 . (2.12)
Using (2.7), (2.8) and (2.12), one gets 16 , which together with (2.6) end the proof of the point 2 of the proposition. The point 1 follows from the point 2.

P i y + S n √ nσ ≤ t, X n = j, τ y > n ≥ ν(j) 2V (i, y) √ 2πnσ Φ + (t) -c ε,t0 (1 + max{0, y}) 2 n 1/2+ε/
We need the following estimation, whose proof can be found in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF].

Proposition 4. Assume Conditions 1, 3 and k (0) = 0. Then there exists c > 0 such that for any a > 0, non-negative function ψ ∈ C (X), y ∈ R, t ≥ 0 and n ≥ 1,

sup i∈X E i (ψ (X n ) ; y + S n ∈ [t, t + a] , τ y > n) ≤ c ψ ∞ n 3/2 1 + a 3 (1 + t) (1 + max(y, 0)) .

Change of probability measure

Fix any (i, y) ∈ supp(V ) and z ∈ N. The harmonic function V from Proposition 1, allows us to introduce the probability measure P + i,y,z on (X×N) N and the corresponding expectation E + i,y,z , by the following relation: for any n ≥ 1 and any bounded measurable g:

(X × N) n → R, E + i,y,z (g (X 1 , Z 1 , . . . , X n , Z n )) := 1 V (i, y) E i,z g (X 1 , Z 1 , . . . , X n , Z n ) × V (X n , y + S n ) ; τ y > n .
(2.13)

The fact that the function V is harmonic (by point 1 of Proposition 1) ensures the applicability of the Kolmogorov extension theorem and shows that P + i,z,y is a probability measure. In the same way we define the probability measure P + i,y and the corresponding expectation E + i,y : for any (i, y) ∈ supp(V ), n ≥ 1 and any bounded measurable g:

X n → R, E + i,y (g (X 1 , . . . , X n )) := 1 V (i, y) E i (g (X 1 , . . . , X n ) V (X n , y + S n ) ; τ y > n) . (2.14)
The relation between the expectations E + i,y,z and E + i,y is given by the following identity: for any n ≥ 1 and any bounded measurable g:

X n → R, E + i,y,z (g (X 1 , . . . , X n )) = E + i,y (g (X 1 , . . . , X n )) . (2.15)
With the help of Proposition 4, we have the following bounds.

Lemma 1. Assume Conditions 1, 3 and k (0) = 0. For any (i, y) ∈ supp(V ), we have, for any k ≥ 1,

E + i,y e -S k ≤ c (1 + max(y, 0)) e y k 3/2 V (i, y) .
In particular,

E + i,y +∞ k=0 e -S k ≤ c (1 + max(y, 0)) e y V (i, y) .
The proof being similar to that in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF] is left to the reader.

We need the following statements. Let

F n = σ{X 0 , Z 0 , . . . , X n , Z n } and (Y n ) n≥0 a bounded (F n ) n≥0 -adapted sequence. Lemma 2. Assume Conditions 1-3 and k (0) = 0. For any k ≥ 1, (i, y) ∈ supp(V ), z ∈ N and j ∈ X, lim n→+∞ E i,z ( Y k ; X n = j | τ y > n ) = E + i,y,z (Y k ) ν(j).
Proof. For the sake of brevity, for any (i, j) ∈ X 2 , y ∈ R and n ≥ 1, set

P n (i, y, j) := P i (X n = j , τ y > n) .
Fix k ≥ 1. By the point 1 of Proposition 2, it is clear that for any (i, y) ∈ supp(V ) and n large enough, P i (τ y > n) > 0. By the Markov property, for any j ∈ X and n ≥ k + 1 large enough,

I 0 := E i,z ( Y k ; X n = j | τ y > n ) = E i,z Y k P n-k (X k , y + S k , j) P i (τ y > n) ; τ y > m .
Using the point 1 of Proposition 2, by the Lebesgue dominated convergence theorem,

lim n→+∞ I 0 = E i,z Y k V (X k , y + S m ) V (i, y) ; τ y > k ν(j) = E + i,y,z (Y k ) ν(j). Lemma 3. Assume that (i, y) ∈ supp V and z ∈ N. For any bounded (F n ) n≥0 -adapted sequence (Y n ) n≥0 such that Y n → Y ∞ P + i,y,z -a.s., lim sup k→∞ lim sup n→∞ √ nE i,z Y n -Y k ; τ y > n = 0.
Proof. Let k ≥ 1 and θ > 1. Then

E i,z Y n -Y k ; τ y > n = E i,z Y n -Y k ; τ y > θn + E i,z Y n -Y k ; n < τ y ≤ θn . (2.16)
We bound the second therm in the right-hand side of (2.16):

E i,z Y n -Y k ; n < τ y ≤ θn ≤ CP i,z n < τ y ≤ θn (2.17)
By point 1 of Proposition 2, we have

lim n→∞ √ nP i,z n < τ y ≤ θn = lim n→∞ √ nP i,z τ y > n -lim n→∞ √ nP i,z τ y > θn = 2V (i, y) √ 2πσ 1 - 1 √ θ . (2.18) 
Now we shall prove that lim sup

k→∞ lim sup n→∞ √ nE i,z Y n -Y k ; τ y > θn = 0. (2.19) 
Recall that θ > 1. By the Markov property (conditioning on F n ),

E i,z Y n -Y k ; τ y > θn = E i,z |Y n -Y k | P [(θ-1)n] (X n , y + S n ); τ y > n , (2.20) 
where we use the notation P n (i , y ) := P i ,y τ y > n . By point 2 of Proposition 2

and by point 3 of Proposition 1, there exists y 0 > 0 such that for i ∈ X, y > y 0 and n ∈ N,

P n (i , y ) ≤ c √ n (1 + max{0, y }) ≤ c V (i , y ) √ n . (2.21) 
Representing the right-hand side of (2.20) as a sum of two terms and using (2.21),

gives By the change of measure formula (2.13), 

√ n E i,z Y n -Y k ; τ y > θn = √ nE i,z |Y n -Y k | P [(θ-1)n] (X n , y + S n ); y + S n ≤ y 0 , τ y > n + √ nE i,z |Y n -Y k | P [(θ-1)n] (X n , y + S n ); y + S n > y 0 , τ y > n ≤ c √ nP i y + S n ≤ y 0 , τ y > n + c √ θ -1 E i,z |Y n -Y k | V (X n , y + S n ); τ y > n . ( 2 
E i,z |Y n -Y k | V (X n , y + S n ); τ y > n = V (i, y)E + i,y,z |Y n -Y k | . ( 2 
√ nE i,z Y n -Y k ; τ y > n ≤ 2V (i, y) √ 2πσ 1 - 1 √ θ .
Since θ can be taken arbitrarily close to 1, we conclude the claim of the lemma.

The next assertion is an easy consequence of Lemmata 2 and 3.

Lemma 4. Assume that (i, y) ∈ supp V and z ∈ N. For any bounded

(F n ) n≥0 -adapted sequence (Y n ) n≥0 such that Y n → Y ∞ P + i,y,z -a.s., lim n→+∞ E i,z Y n ; X n = j τ y > n = E + i,y,z Y ∞ ν(j).
Proof. For any n > k ≥ 1, we have

lim n→∞ √ nE i,z Y n ; X n = j, τ y > n = √ nE i,z Y k ; X n = j, τ y > n + √ nE i,z Y n -Y k ; X n = j, τ y > n . (2.26)
By Lemma 2, the first term in the right-hand side of (2.26) converges to 2V (i,y)

√ 2πσ ν(j)E + i,y,z Y k as n → ∞, where lim k→∞ E + i,z,y Y k = E + i,y,z Y ∞ .
By Lemma 3, the second term in the r.h.s. of (2.26) vanishes, which completes the proof.

The dual Markov chain

Note that the invariant measure ν is positive on X. Therefore the dual Markov kernel

P * (i, j) = ν (j) ν(i) P (j, i) , i, j ∈ X (2.27)
is well defined. On an extension of the probability space (Ω, F , P) we consider the dual Markov chain (X * n ) n≥0 with values in X and with transition probability P * . The dual chain (X * n ) n≥0 can be chosen to be independent of the chain (X n ) n≥0 . Accordingly, the dual Markov walk (S * n ) n≥0 is defined by setting

S * 0 = 0 and S * n = - n k=1 ρ (X * k ) , n ≥ 1.
(2.28)

For any y ∈ R define the first time when the Markov walk (y + S * n ) n≥0 becomes nonpositive:

τ * y := inf {k ≥ 1 : y + S * k ≤ 0} . (2.29)
For any i ∈ X, denote by P * i and E * i the probability and the associated expectation generated by the finite dimensional distributions of the Markov chain (X * n ) n≥0 starting at X * 0 = i. It is easy to verify (see [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]), that ν is also P * invariant and that Conditions 1 and 3 are satisfied for P * . This implies that Propositions 1-4 formulated in Subsection 2.1 hold also for the dual Markov chain (X * n ) n≥0 and the Markov walk (y + S * n ) n≥0 , with the harmonic function V * such that, for any (i, y) ∈ X × R and n ≥ 1,

E i V * (X n , y + S * n ) ; τ * y > n = V * (i, y).
The following duality property is obvious (see [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]):

Lemma 5. (Duality.) For any n ≥ 1 and any function g:

X n → C, E i (g (X 1 , . . . , X n ) ; X n+1 = j) = E * j g (X * n , . . . , X * 1 ) ; X * n+1 = i ν(j) ν(i) .

Preparatory results for branching processes

All over the remaining part of the paper we will use the following notation. For

s ∈ [0, 1), let ϕ X k (s) = 1 1 -f X k (s) - 1 f X k (1)(1 -s) ,
and, by continuity,

ϕ X k (1) = lim s→1 ϕ X k (s) = f X k (1) 2f X k (1) 2 .
In addition, for s ∈ [0, 1), let g z (s) = s z and

ψ z (s) = 1 1 -g z (s) - 1 g z (1)(1 -s) = 1 1 -s z - 1 z(1 -s) ,
and, by continuity,

ψ z (1) = lim s→1 ψ z (s) = z(z -1) 2z 2 = 1 2 z -1 z .
For any n ≥ 1, z ≥ 1 and s ∈ [0, 1], the following quantity will play an important role in our study:

q n,z (s) = 1 -f X1 • • • • • f Xn (s) z .
Under Condition 2, for any i ∈ X and s ∈ [0, 1] we have

f i (s) ∈ [0, 1] and f X1 • • • • • f Xn (s) ∈ [0, 1]
. This implies that, for any s ∈ [0, 1],

q n,z (s) ∈ [0, 1]. (3.1)
For any n ≥ 1 and z ≥ 1, the function s → q n,z (s) is convex on [0, 1]. Since the sequence (ξ n,j i ) j,n≥1 is independent of the Markov chain (X n ) n≥0 , with s = 0, we have, P + i,y,z -a.s.,

q n,z (0) = P + i,y,z (Z n > 0 (X k ) k≥0 ). (3.2) 
Note also that {Z n > 0} ⊃ {Z n+1 > 0} and therefore, for n ≥ 1, q n,z (0) ≥ q n+1,z (0). (3.3)

Taking the limit as n → ∞, P + i,y,z -a.s.,

lim n→∞ q n,z (0) = lim n→∞ P + i,y,z (Z n > 0 (X k ) k≥0 ) = P + i,y,z (∩ n≥1 {Z n > 0} (X k ) k≥0 ). (3.4) 
Moreover, by convexity of the function q n,z (s) we have

q n,z (0) ≤ ze Sn . (3.5)
The following formula (whose proof is left to the reader) is similar to the well-known statements from the papers by Agresti [START_REF] Agresti | Bounds on the extinction time distribution of a branching process[END_REF] and Geiger and Kersting [START_REF] Geiger | The survival probability of a critical branching process in a random environment[END_REF]: for any s ∈ [0, 1)

and n ≥ 1,

1 q n,z (s) = 1 zf X1 (1) • • • f Xn (1)(1 -s) + 1 z n k=1 ϕ X k • f X k+1 • • • • • f Xn (s) f X1 (1) • • • f X k-1 (1) + ψ z • f X1 • • • • • f Xn (s). (3.6) 
We can rewrite (3.6) in the following more convenient form: for any s ∈ [0, 1) and

n ≥ 1, q n,z (s) -1 = 1 z e -Sn 1 -s + n-1 k=0 e -S k η k+1,n (s) + ψ z • f X1 • • • • • f Xn (s), (3.7) 
where

η k,n (s) = ϕ X k • f X k+1 • • • • • f Xn (s).
Since 1 2 ϕ(0) ≤ ϕ(s) ≤ 2ϕ(1), for any k ∈ {1, . . . , m},

0 ≤ η k,m (s) ≤ f X k (1) f X k (1) 2 ≤ η := max i∈X f i (1) f i (1) 2 . (3.8)
By Theorem 5 of [START_REF] Athreya | On branching processes with random environments I: Extinction probabilities[END_REF], for any (i, y) ∈ supp(V ), s ∈ [0, 1), m ≥ 1 and k ∈ {1, . . . , m}, there exists a random variable η k,∞ (s), such that

lim n→+∞ η k,n (s) = η k,∞ (s) (3.9) 
everywhere, and by (3.8), for any s ∈ [0, 1) and k ≥ 1,

η k,∞ (s) ∈ [0, η]. (3.10) 
In the same way,

lim n→+∞ ψ z • f X1 • • • • • f Xn (s) = ψ z,∞ (s) ∈ [0, z -1 2 ] (3.11)
everywhere. For any s ∈ [0, 1), define q ∞,z (s) by setting

q ∞,z (s) -1 := 1 z +∞ k=0 e -S k η k+1,∞ (s) + ψ z,∞ (s). (3.12)
By Lemma 1, we have that 

E + i,y q ∞,z (s) -1 < +∞. ( 3 
E + i,y 1 q n,z (s) - 1 q ∞,z (s) = 0 and lim n→+∞ E + i,y |q n,z (s) -q ∞,z (s)| = 0.
Proof. We give a sketch only. Following the proof of Lemma 3.2 in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF] for any (i, y) ∈ supp V , by (3.7), (3.8) and (3.10), we obtain

E + i,y q -1 n,z (s) -q -1 ∞,z (s) ≤ 1 z(1 -s) E + i,y e -Sn + 1 z E + i,y l k=0 e -S k |η k+1,n (s) -η k+1,∞ (s)| + 2η z E + i,y +∞ k=l+1 e -S k + E + i,y ψ z • f X1 • • • • • f Xn (s) -ψ z,∞ (s) . (3.14)
The last term in the right hand side of (3.14) converges to 0 as n → ∞ by (3.11). By Lemma 1 and the Lebesgue dominated convergence theorem, we have

lim sup n→∞ E + i,y q -1 n,z (s) -q -1 ∞,z (s) ≤ 2η z E + i,y +∞ k=l+1
e -S k .

Taking the limit as l → ∞, again by Lemma 1, we conclude the first assertion of the lemma. The second assertion follows from the first one, since q n,z (s) ≤ 1 and q ∞,z (s) ≤ 1.

Lemma 7. Assume Conditions 1, 3 and k (0) = 0. For any (i, y) ∈ supp V and z ∈ N, z = 0, we have, for any k ≥ 1, P + i,y,z -a.s.,

P + i,y,z (∪ k≥1 {Z k = 0} (X k ) k≥1 ) < 1.
Proof. By (3.4) we have, P + i,z,y -a.s.,

1 -P + i,z,y (∪ k≥1 {Z k = 0} (X k ) k≥1 ) = lim n→∞ q n,z (0).
Using (3.7) and (3.8)

E + i,y q n,z (0) -1 ≤ 1 z E + i,y e -Sn +η n k=0 e -S k-1 + 1. (3.15)
By Lemma 1 and a monotone convergence argument,

E + i,y lim n→∞ q n,z (0) -1 = lim n→∞ E + i,y q n,z (0) -1 < ∞. (3.16)
Thus, P + i,y -a.s., lim n→∞ q n,z (0) > 0, which ends the proof of the lemma.

We will make use of the following lemma:

Lemma 8. There exists a constant c such that, for any z ∈ N, z = 0, and y ≥ 0 sufficiently large,

sup i∈X P i,z Z n > 0, τ y ≤ n ≤ cz e -y (1 + max{y, 0}) √ n .
Proof. We follow the same line as the proof of Theorem 1.1 in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF]. First, we have

P i,z (Z n > 0, τ y ≤ n) = P i (q n,z (0); τ y ≤ n).
Using (3.5) and the fact that q n,z (0) is non-increasing in n, we have

q n,z (0) ≤ ze min 1≤k≤n S k .
Setting B n,j = {-(j + 1) < min 1≤k≤n (y + S k ) ≤ -j}, this implies

P i,z (Z n > 0, τ y ≤ n) ≤ zE i,0 (e min 1≤k≤n S k ; τ y ≤ n) ≤ ze -y ∞ j=1 E i,0 (e min 1≤k≤n (y+S k ) ; B n,j , τ y ≤ n) ≤ ze -y ∞ j=1 e -j P i,0 (τ y+j+1 > n).
Using the point 2 of Proposition 2 we obtain the assertion of the lemma.

It is known from the results in [START_REF] Grama | Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption[END_REF] that when y is sufficiently large, then (i, y) ∈ supp V . For (i, y) ∈ supp V , set

U (i, y, z) := E + i,y q ∞,z (0) = P + i,z,y (∩ n≥1 {Z n > 0}). (3.17)
Theorem 1 is a direct consequence of the following proposition, which extends Theorem 1.1 in [START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state Markovian environment[END_REF] to the case z > 1.

Proposition 5. Assume Conditions 1-4. Suppose that i ∈ X and z ∈ N. Then for any i ∈ X the limit as y → ∞ of V (i, y)U (i, y, z) exists and satisfies

u(i, z) := lim y→∞ 2 √ 2πσ V (i, y)U (i, y, z) > 0.
Moreover,

lim y→∞ √ nP i,z (Z n > 0, X n = j) = u(i, z)ν(j).
Proof. By Lemma 4 and (3.17), for (i, y) 

∈ supp V , lim n→∞ √ nP i,z (Z n > 0 , X n = j , τ y > n) = 2V (i, y) √ 2πσ ν(j)P + i,y,z (∩ n≥1 {Z n > 0}) = 2V (i, y) √ 2πσ U (i, y, z)ν(j). (3.18) √ nP i,z (Z n > 0, X n = j) = √ nP i,z (Z n > 0, X n = j, τ y > n) + √ nP i,z (Z n > 0, X n = j, τ y ≤ n) = J 1 (n, y) + J 2 (n, y). ( 3 
√ nP i,z (Z n > 0, X n = j) ≤ 2V (i, y) √ 2πσ U (i, y, z)ν(j) + cze -y (1 + max{y, 0}) < ∞. (3.21)
Similarly, when y is sufficiently large,

L 0 = lim inf n→∞ √ nP i,z (Z n > 0, X n = j) ≥ 2V (i, y) √ 2πσ U (i, y, z)ν(j). (3.22) Since P i,z (Z n > 0 , X n = j , τ y > n) is non-decreasing in y, from (3.18) it follows that the function u(i, y, z) := 2V (i, y) √ 2πσ U (i, y, z) (3.23)
is non-decreasing in y. Moreover, by (3.21) and (3.22), we deduce that u(i, y, z) as a function of y is bounded by L 0 . Therefore its limit as y → ∞ exists: u(i, z) = lim y→∞ u(i, y, z). To prove that U (i, y, z) = E + i,y q ∞,z (0) > 0, it is enough to remark that, by (3.13), it holds E + i,y q -1 ∞,z (0) < ∞. On the other hand V (i, y) > 0 for large enough y. Therefore u(i, z) > 0, which proves the first assertion. The second assertion follows immediately from (3.21) and (3.22) by letting y → ∞.

Proof of Theorem 2

All over this section we denote, for n ≥ 1,

T n = sup{0 ≤ k ≤ n : S k = inf{S 0 , . . . , S n }},
and, for 0

≤ k ≤ n, L k,n = inf k≤j≤n S j -S k .
Recall the following identities which will be useful in the proofs:

{T k = k} = {S 0 ≥ S k , S 1 ≥ S k , . . . , S k-1 ≥ S k } (4.1) {L k,n > 0} = {S k+1 ≥ S k , S k+2 ≥ S k , . . . , S n ≥ S k } (4.2) 
{T n = k} = {T k = k} ∩ {L k,n > 0}. (4.3) 
For any n ≥ 1, set

P n (i, s, z) = E i,z (e -e -s Zn e Sn ; Z n > 0, L 0,n > 0). (4.4) 
It is easy to see that, by the definition (2.1) of τ y , we have {τ 0 > n} = {L 0,n > 0}, so that (4.4) is equivalent to

P n (i, s, z) = E i,z (e -e -s Zn e Sn ; Z n > 0, τ 0 > n). (4.5) 
We prove first a series of auxiliary statements.

Lemma 9. Assume Conditions 1-4. Let s ≥ 0. For any (i, 0) ∈ supp V and z ∈ N, z = 0, there exists a positive random variable W i,z such that

lim n→∞ √ nP n (i, s, z) = 2 V (i, 0) √ 2πσ P ∞ (i, s, z),
where

P ∞ (i, s, z) := E + i,0,z e -Wi,ze -s ; ∩ p≥1 {Z p > 0} ≤ 1.
Moreover, for any (i, 0) ∈ supp V and z ∈ N, z = 0, it holds P + i,0,z -a.s.

∩ p≥1 {Z p > 0} = {W i,z > 0}.
For any (i, 0) ∈ supp V and z ∈ N, z = 0,

lim n→∞ √ nP n (i, s, z) = 0.
Proof. Denote Y n = e -e -s Zn e Sn 1{Z n > 0}. Since Zn e Sn n≥0 is a positive ((F n ) n≥0 , P + i,0,z )martingale, its limit, say W i,z = lim n→∞ Zn e Sn , exists P + i,0,z -a.s. and is non-negative. Therefore, P + i,0,z -a.s.

lim n→∞ Y n = e -e -s Wi,z 1{∩ p≥1 {Z p > 0}}.
Now the first assertion follows from the Lemma 4.

For the second assertion we use a result from Kersting [START_REF] Kersting | A unifying approach to branching processes in varying environment[END_REF] stated in a more general setting of branching processes with varying environment. To apply it we shall condition with respect to the environment (X n ) n≥0 , so that one can consider that the environment is fixed. The condition (A) in Kersting [START_REF] Kersting | A unifying approach to branching processes in varying environment[END_REF] is obviously verified because of the Condition 4. Moreover, according to Lemma 7, the extinction probability satisfies

P + i, 0,z -a.s. 
P + i,0,z (∪ p≥1 {Z p = 0} (X n ) n≥1 ) < 1.
By Theorem 2 in [START_REF] Kersting | A unifying approach to branching processes in varying environment[END_REF], this implies that, P + i,0,z -a.s.

P + i,0,z (∪ p≥1 {Z p = 0} (X n ) n≥1 ) = P + i,0,z (W i,z = 0 (X n ) n≥1 ).
Since P + i,0,z -a.s. ∪ p≥1 {Z p = 0} ⊂ {W i,z = 0}, we obtain the second assertion. The third one follows from the point 1 of Proposition 2, since V (i, 0) = 0. This ends the proof of the lemma. Remark that P ∞ (i, s, z) can be rewritten as

P ∞ (i, s, z) = E + i,0,z e -Wi,ze -s ; W i,z > 0 .
This shows that P ∞ (i, s, z) is the Laplace transformation at e -s of a measure on R + which assigns the mass 0 to the set {0}.

We will need the following lemma.

Lemma 10. There exists a constant c such that

sup i∈X P i,z T n = n, Z n > 0 ≤ c z n 3/2 .
Proof. Since T n is a function only on the environment (X k ) k≥0 , conditioning with respect to (X k ) k≥0 , we have

P i,z T n = n, Z n > 0 = E i,z q n,z (0); T n = n ,
with q n,z (0) defined by (3.2). Using the bound (3.5) we obtain

P i,z T n = n, Z n > 0 ≤ zE i e Sn ; T n = n . (4.6) 
By (4.1) and the duality (Lemma 5),

E i e Sn ; T n = n = E * ν e -S * n ; τ * 0 > n 1 ν(i) ≤ cE * ν e -S * n ; τ * 0 > n . (4.7) 
Using the local limit theorem for the dual Markov chain (see Proposition 4) and following the proof of Lemma 1 we obtain

E * ν e -S * n ; τ * 0 > n ≤ c n 3/2 . (4.8) From (4.6), (4.7) and (4.8 
) the assertion follows.

The key point of the proof of Theorem 2 is the following statement. Proposition 6. Assume Conditions 1-4. For any i ∈ X, s ∈ R and z ∈ N, z = 0,

lim n→∞ √ nE i,z (e -e -s Zn e Sn ; Z n > 0) = 2 √ 2πσ ∞ k=1 E i,z V (X k , 0)1 supp V (X k , 0)P ∞ (X k , s + S k , Z k ); Z k > 0, T k = k =: u(i, z, e -s ). With s = +∞, lim n→∞ √ nP i,z (Z n > 0) = u(i, z),
where

u(i, z) = 2 √ 2πσ ∞ k=1 E i,z V (X k , 0)1 supp V (X k , 0)P + X k ,0,Z k (W i,z > 0); Z k > 0, T k = k > 0 is defined in Theorem 1.
Proof. Using (4.3), one has

E i,z (e -e -s Zn e Sn ; Z n > 0) = n-1 k=0 E i,z e -e -s Zn e Sn ; Z n > 0, T k = k, L k,n > 0 + E i,z e -e -s Zn e Sn ; Z n > 0, T n = n = J 1 (n) + J 2 (n). (4.9) 
By Lemma 10,

lim sup n→∞ √ nJ 2 (n) ≤ lim n→∞ √ nP i,z T n = n, Z n > 0 = 0. (4.10)
We now deal with the term J 1 (n). We shall make use of the notation P n (i, y, z) defined in (4.5). By the Markov property (conditioning with respect to F k = σ{X 0 , Z 0 , . . . , X k , Z k }), and using (4.2), we obtain

E i,z e -e -s Zn e Sn ; Z n > 0, T k = k, L k,n > 0 = E i,z P n-k (X k , s + S k , Z k ); T k = k, Z k > 0 .
Therefore

J 1 (n) = n-1 k=0 1 √ n -k E i,z √ n -kP n-k (X k , s + S k , Z k ); T k = k, Z k > 0 .
Denote for brevity

E k = E i,z √ n -kP n-k (X k , s + S k , Z k ); T k = k, Z k > 0 .
It is easy to see that, with some l ≤ n,

√ nJ 1 (n) = l k=0 √ n √ n -k E k + n-1 k=l+1 √ n √ n -k E k = J 11 (n, l) + J 12 (n, l). (4.11)
For J 12 (n, l), we have, using (4.5),

J 12 (n, l) = n-1 k=l+1 √ n √ n -k E k ≤ n-1 k=l+1 √ n √ n -k E i,z √ n -kP X k (τ 0 > n -k); T k = k, Z k > 0 .
Using point 2 of Proposition 2 and Lemma 10,

J 12 (n, l) ≤ c n-1 k=l+1 √ n √ n -k P i,z T k = k, Z k > 0 ≤ cz n-1 k=l+1 √ n √ n -k 1 k 3/2 ≤ cz 1 √ n + 2 √ l ,
where to bound the second line we split the summation in two parts for k > k/2 and k ≤ k/2. Let ε > 0 be arbitrary. Then there exists n ε,z such that, for n ≥ l ≥ n ε,z ,

J 12 (n, l) ≤ ε. (4.12)
For J 11 (n, l), we have

J 11 (n, l) = l k=0 √ n √ n -k E i,z √ n -kP n-k (X k , s + S k , Z k ); T k = k, Z k > 0 .
Since l is fixed, taking the limit as n → ∞, by Lemmata 9 and 10,

lim n→∞ J 11 (n, l) = l k=0 E i,z P ∞ (X k , s + S k , Z k ); T k = k, Z k > 0 ≤ l k=0 P i,z T k = k, Z k > 0 ≤ ∞ k=0 cz k 3/2 ≤ cz. (4.13) 
Since ε is arbitrary, from (4.11), (4.12) and (4.13), taking the limit as l → ∞, we deduce that

lim n→∞ √ nJ 1 (n) = ∞ k=0 E i,z P ∞ (X k , s + S k , Z k ); T k = k, Z k > 0 .
From this and (4.9), (4.10) we deduce the first assertion of the proposition. The second one is proved in the same way.

Now we proceed to prove Theorem 2. Denote by µ n,i,z,j (B) = P i,z Z n e -Sn ∈ B, X n = j Z n > 0 the joint law law of Zn e Sn and X n = j given Z n > 0 under P i , where B is any Borel set of R + . Set for short µ n,i,z (B) = P i,z Z n e -Sn ∈ B Z n > 0 .

We shall prove that the sequence (µ n,i,z ) n≥1 is convergent in law. For this we use the convergence of the corresponding Laplace transformations: It is obvious that u(i, z, e -s ) is also a Laplace transformation at t = e -s of a measure on R + which assigns the mass 0 to the set {0} and that u(i, z) is the total mass of this measure. Therefore the ratio u(i,z,e -s )

E i,z (e -
u(i,z)
is the Laplace transformation of a probability measure µ i,z on R + such that µ i,z ({0}) = 0.

Proof of Theorems 3 and 4

Recall that by the properties of the harmonic function, for any i ∈ X there exists y i ≥ 0 such that (i, y) ∈ supp V for any y ≥ y i .

First we prove the following auxiliary statement.

Lemma 11. Assume Conditions 1-4. Let i ∈ X and z ∈ N, z = 0. For any θ ∈ (0, 1)

and y ≥ 0 large enough such that (i, y) ∈ supp V ,

lim m→∞ lim n→∞ √ nP i,z Z m > 0, Z [θn] = 0, τ y > n = 0. Proof. Let m, n ≥ 1 be such that [θn] > m. Then J m,n (θ, y) := P i,z Z m > 0, Z [θn] = 0, τ y > n = P i,z (Z m > 0, τ y > n) -P i,z Z [θn] > 0, τ y > n = E i,z P i,z (Z m > 0|X 1 , . . . , X m ) -P i,z Z [θn] > 0|X 1 , . . . , X [θn] ; τ y > n ≤ E i,z q m,z (0) -q [θn],z ( 
0) ; τ y > n .

Denote P n (i, y) = P i (τ y > n). By the Markov property

E i,z q m,z (0) -q [θn],z (0) ; τ y > n = E i q m,z (0) -q [θn],z (0) P n-[θn] (X [θn] , y + S [θn] ); τ y > [θn] .
Using point 2 of Proposition 2 and the point 3 of Proposition 1, on the set {τ y > [θn]},

P n-[θn] (X [θn] , y + S [θn] , z) ≤ c 1 + y + S [θn] n -[θn] ≤ c 1 + V (X [θn] , y + S [θn] ) (1 -θ)n . Therefore √ nJ m,n (θ, y) ≤ E i q m,z (0) -q [θn],z (0) √ nP n-[θn] (X [θn] , y + S [θn] ); τ y > [θn] ≤ c √ 1 -θ E i q m,z (0) -q [θn],z (0) ; τ y > [θn] + c √ 1 -θ E i q m,z (0) -q [θn],z (0) V (X [θn] , y + S [θn] ); τ y > [θn] .
Using the bound (3.1) and again the point 2 of Proposition 2, lim sup

n→∞ E i q m,z (0) -q [θn],z (0) ; τ y > [θn] ≤ lim n→∞ P i τ y > [θn] = 0. If (i, y) ∈ supp V , E i q m,z (0) -q [θn],z (0) V (X [θn] , y + S [θn] ); τ y > [θn] ≤ E i V (X [θn] , y + S [θn] ); τ y > [θn] = V (i, y) = 0.
If (i, y) ∈ supp V , changing the measure by (2.14), we have

E i q m,z (0) -q [θn],z (0) V (X [θn] , y + S [θn] ); τ y > [θn] = V (i, y)E + i,y q m,z (0) -q [θn],z ( 
0) .

Taking the limit as n → ∞ and then as m → ∞, by Lemma 6,

lim m→∞ lim n→∞ E i q m,z (0) -q [θn],z (0) V (X [θn] , y + S [θn] ); τ y > [θn] = 0.
Taking into account the previous bounds we obtain the assertion of the lemma.

Proof of Theorem 3. Let i, j ∈ X, y ≥ 0, z ∈ N, z = 0, t ∈ R. Then, for any n ≥ 1 and y ≥ 0,

P i,z S n √ nσ ≤ t, X n = j, Z n > 0 = P i,z S n √ nσ ≤ t, X n = j, Z n > 0, τ y > n + P i,z S n √ nσ ≤ t, X n = j, Z n > 0, τ y ≤ n = I 1 (n, y) + I 2 (n, y). (5.1) 
By Lemma 8,

√ nI 2 (n, y) ≤ √ nP i,z (Z n > 0, τ y ≤ n) ≤ cze -y (1 + y). (5.2) 
In the sequel we study I 1 (n, y). Let θ ∈ (0, 1) be arbitrary. We decompose I 1 (n, y) into two parts:

I 1 (n, y) = P i,z S n √ nσ ≤ t, X n = j, Z [θn] > 0, Z n > 0, τ y > n = P i,z S n √ nσ ≤ t, X n = j, Z [θn] > 0, τ y > n -P i,z S n √ nσ ≤ t, X n = j, Z [θn] > 0, Z n = 0, τ y > n = I 11 (n, θ, y) -I 12 (n, θ, y). (5.3) 
In the following lemma we prove that the second term √ nI 12 (n, θ, y) vanishes as n → ∞.

Lemma 12. Assume Conditions 1-4. For any i, j ∈ X, z ∈ N, z = 0, and y ≥ 0 sufficiently large,

lim n→∞ √ nP i,z S n √ nσ ≤ t, X n = j, Z [θn] > 0, Z n = 0, τ y > n = 0. (5.4) Proof. Obviously, |I 12 (n, θ, y)| = P i,z S n √ nσ ≤ t, X n = j, Z [θn] > 0, Z n = 0, τ y > n ≤ P i,z X n = j, Z [θn] > 0, Z n = 0, τ y > n = P i,z X n = j, Z [θn] > 0, τ y > n -P i,z (X n = j, Z n > 0, τ y > n) . (5.5) 
As in (3.18), choosing y ≥ 0 such that (i, y) ∈ supp V , we have

lim n→∞ √ nP i,z (X n = j, Z n > 0, τ y > n) = 2V (i, y) √ 2πσ U (i, y, z)ν(j). (5.6) 
We shall prove that for any θ ∈ (0, 1),

lim n→∞ √ nP i,z X n = j, Z [θn] > 0, τ y > n = 2V (i, y) √ 2πσ U (i, y, z)ν(j). (5.7) 
For any m ≥ 1 and n such that [θn] > m,

P i,z X n = j, Z [θn] > 0, τ y > n = P i,z X n = j, Z m > 0, Z [θn] > 0, τ y > n = P i,z (X n = j, Z m > 0, τ y > n) -P i,z X n = j, Z m > 0, Z [θn] = 0, τ y > n . (5.8) 
By Lemma 2,

lim n→∞ √ nP i,z (X n = j, Z m > 0, τ y > n) = 2V (i, y) √ 2πσ P + i,z,y (Z m > 0) ν(j).
Taking the limit as m → ∞, by (3.17), we have 

lim m→∞ lim n→∞ √ nP i,z (X n = j, Z m > 0, τ y > n) = 2V (i, y) √ 2πσ P + i,z,y (∩ m≥1 {Z m > 0})ν(j) = 2V (i, y) √ 2πσ U (i, y, z)ν(j). ( 5 
√ nP i,z X n = j, Z m > 0, Z [θn] = 0, τ y > n ≤ lim sup m→∞ lim n→∞ √ nP i,z Z m > 0, Z [θn] = 0, τ y > n = 0,
which together with (5.8) and (5.9) proves (5.7). From (5.5), (5.6) and (5.7) we obtain the assertion of the lemma.

To handle the term I 11 (n, θ, y) we choose any m satisfying 1 ≤ m ≤ [θn] and split it into two parts: 

I 11 (n, θ, y) = P i,z S n √ nσ ≤ t, X n = j, Z m > 0, τ y > n -P i,z S n √ nσ ≤ t, X n = j, Z m > 0, Z [θn] = 0, τ y > n = I 111 (n, m, y) -I 112 (n, m, θ, y). ( 5 
≤ lim m→∞ lim n→∞ √ nP i,z Z m > 0, Z [θn] = 0, τ y > n = 0. (5.11)
The following lemma gives a limit for √ nI 111 (n, m, y) as n → ∞ and m → ∞.

Lemma 13. Assume Conditions 1-4. Suppose that i, j ∈ X, z ∈ N, z = 0 and t ∈ R.

Then, for any y ≥ 0 sufficiently large,

lim m→∞ lim n→∞ √ nP i,z S n √ nσ ≤ t, X n = j, Z m > 0, τ y > n = 2Φ + (t) √ 2πσ
V (i, y)U (i, y, z)ν(j).

(5.12)

Proof. Without loss of generality we can assume that n ≥ 2m. Let y ≥ 0 be so large that (i, y) ∈ supp V. Set t n,y = t + y √ nσ . Then I 111 (n, m, y) can be rewritten as I 111 (n, m, y) = P i,z y + S n √ nσ ≤ t n,y , X n = j, Z m > 0, τ y > n .

If t < 0, we have t n,y < 0, for n large enough, then the assertion of the lemma becomes obvious since I 111 (n, m, y) = 0 = Φ + (t). Therefore, it is enough to assume that t ≥ 0. To find the asymptotic of I 111 (n, m, y) we introduce the following notation: V (i, y)U (i, y, z)ν(j).

(5.18)

From (5.17) and (5.18), taking consecutively the limits as n → ∞ and m → ∞, we obtain, for any i, j ∈ X, z ∈ N, z = 0, t ∈ R and y ≥ 0 sufficiently large, such that

(i, y) ∈ supp V , lim n→∞ √ nP i,z S n σ √ n ≤ t, X n = j, Z n > 0 - 2Φ + (t) √ 2πσ
V (i, y)U (i, y, z)ν(j)

≤ cze -y (1 + y).

Taking the limit as y → ∞, we obtain, for any i, j ∈ X, z ∈ N, z = 0 and t ∈ R, lim n→∞ √ nP i,z S n σ √ n ≤ t, X n = j, Z n > 0 = Φ + (t)ν(j)u(i, z),

where u(i, z) > 0 is defined in Proposition 5. This proves the first assertion of the theorem. The second assertion is obtained from the first one by using Theorem 1.

Proof of Theorem 4. The assertion of Theorem 4 is easily obtained from Theorem 3. Let ε > 0 be arbitrary. By simple computations,

P i,z log Z n σ √ n - S n √ nσ ≥ ε, X n = j, Z n > 0 = P i,z
Z n e Sn ≥ e ε √ nσ , X n = j, Z n > 0

+ P i,z
Z n e Sn ≤ e -ε √ nσ , X n = j, Z n > 0 .

Fix some A > 1. Then, for n sufficiently large, such that e ε √ n > A,

P i,z log Z n σ √ n - S n √ nσ ≥ ε, X n = j, Z n > 0 ≤ P i,z
Z n e Sn ≥ A, X n = j, Z n > 0

+ P i,z
Z n e Sn ≤ 1/A, X n = j, Z n > 0 , Z n e Sn ≤ 1/A, X n = j, Z n > 0 ≤ µ i,z ([0, 1/A])ν(j)u(i, z).

Since µ i,z is a probability mesure of mass 0 in 0, taking the limit as A → +∞, we have that

lim n→+∞ √ nP i,z log Z n σ √ n - S n √ nσ ≥ ε, X n = j, Z n > 0 = 0.
As ε is arbitrary, using Theorem 3 we conclude the proof.

. 22 )

 22 Using point 1 of Proposition 3 and point 1 of Proposition 2, we have lim n→∞ √ nP i y + S n ≤ y 0 , τ y > n = 0. (2.23)

. 13 ) 6 .

 136 Lemma Assume Conditions 1, 3 and k (0) = 0. For any (i, y) ∈ supp V , z ≥ 1 and s ∈ [0, 1), lim n→+∞

  for y , t ∈ R and 1≤ k = n -m ≤ n, Φ k (i, y , t ) = P i y + S k σ √ k ≤ t ; τ y > k .Set t n,m,y = t n,y√ n √ n-m = (t + y √ nσ ) √ n √ n-m . By the Markov property, I 111 (n, m, y) = E i,z Φ n-m (X m , y + S m , t n,m,y ); Z m > 0, τ y > m .Since t n,m,y ≤ √ 2(t + y/σ), by Proposition 3, there exists an ε > 0 such that for any(i, y ) ∈ X × R, √ n -m Φ n-m (i, y , t n,m,y ) -2V (i, y ) 2π(n -m)σ Φ + t n,m,y ≤ c ε,t,y 1 + max{y , 0} 2 (n -m) ε .(5.13) Therefore, using (5.13),A n (m, y) :=I 111 (n, m, y) -E i,z 2V (X m , y + S m ) 2π(n -m)σ Φ + t n,m,y ; Z m > 0, τ y > m ≤ c ε,t,y 1 + E i,z max{y + S m , 0} 2 (n -m) 1/2+ε .This implies that lim n→∞ √ nA n (m, y) = 0.(5.14)Note that with m and y ≥ 0 fixed, we have t n,m,y → t as n → ∞. Thereforelim n→+∞ √ nE i,z 2V (X m y + S m ) √ 2πkσ Φ + t n,m ; Z m > 0, τ y > m = 2Φ + (t) √ 2πσ E i,z V (X m , y + S m ); Z m > 0, τ y > m .(5.15)When (i, y) ∈ supp V , the change of measure (2.13), givesE i,z V (X m , y + S m ); Z m > 0, τ y > m = V (i, y)P + i,y,z (Z m > 0). (5.16)Since P + i,y,z (Z m > 0) = E + i,y q m,z (0), using Lemma 6,lim m→+∞ P + i,y,z (Z m > 0) = lim m→+∞ E + i,y q m,z (0) = E + i,y q ∞,z (0) = U (i, y, z),which, together with (5.14), (5.15) and (5.16), giveslim m→∞ lim n→∞ √ nI 111 (n, m, y) = 2Φ + (t) √ 2πσ V (i, y)U (i, y, z)ν(j),which proves the assertion of the lemma for t ≥ 0.We now perform the final assembling. From (5.1), (5.2), (5.3) and (5.4), we have, for any i, j ∈ X, z ∈ N, z = 0, t ∈ R and y sufficiently large,lim n→∞ √ nP i,z S n √ nσ ≤ t, X n = j, Z n > 0 -√ nI 11 (n, θ, y)≤ cze -y (1 + y).(5.17)From (5.10),(5.11), (5.12) we obtain lim m→∞ lim n→∞ √ nI 11 (n, θ, y) = 2Φ + (t) √ 2πσ

  Sn ≥ A, X n = j, Z n > 0 ≤ µ i,z ([A, +∞])ν(j)u(i, z),

t

  Zn e Sn Z n > 0) =

		√	nE i,z (e -t Zn e Sn ; Z n > 0) √ nP i,z (Z n > 0)	.
	By Proposition 6, we see that, with t = e -s ,	
	lim n→∞	E i,z (e -e -s Zn e Sn Z n > 0) =	u(i, z, e -s ) u(i, z)	.
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