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Abstract

Nowadays, society and business rely heavily on Information and Communication
Technology (ICT) systems, which are progressing faster than ever. To stay on pace
with them, focus is shifted towards integration of individual ICT systems into
complex systems, which offers more functionality than simply the sum of individual
systems. In this regard, Cyber-Physical Systems (CPSs) have gained significant
importance and System-of-Systems (SoS) approach has been suggested for modeling
complex CPSs to achieve a higher level goal, by dynamically building a large system
with existing autonomous, and heterogeneous constituent systems (CSs). An
important challenge in a system of Cyber-Physical Systems (SoCPSs) is to develop
seamless collaboration between autonomous constituent-CPSs (CCPSs) to coordinate
their operations. In this paper, we propose an agent based coordination mechanism
to coordinate resource allocation and demand in SoCPSs. The approach models each
CCPS as an agent and describes how multiple autonomous CCPSs, i.e., Virtual Power
Plant (VPP), Commercial Greenhouse Growers (CGGs), communicate and collaborate
with each other asynchronously through negotiation and how potential conflicts
between CCPSs with conflicting goals are resolved. The efficacy of the proposed
mechanism is validated through simulation of different real-world acyclic SoCPSs
topologies. The results show that proposed approach is able to balance the
individual requirements of multiple connected CPSs while achieving SoCPSs’ mission.

Keywords: Multi-objective multi-issue optimization, Cooperation and coordination,
Multi-agent systems, Distributed energy resources

Introduction
The past few decades have given us enormous Information and Communication Tech-

nology (ICT) innovations with a clear indication that ICT advancements will continue

at a rapid pace. To maintain the pace of the progress and the need for low cost, effi-

cient and more capable systems, has led to a shift in focus towards the integration of

independently developed ICT systems into a more complex system, which offers more

functionality and performance than simply the sum of the individual systems (Bartocci

et al. 2014). Besides functional benefits, there are some major concerns and challenges
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in complex systems which need to be taken into consideration, i.e., heterogeneous

interacting entities; interaction and coordination of autonomous entities with conflict-

ing goals; adaptivity to changing environments (San Miguel et al. 2012). In this regard,

the concept of Cyber-Physical Systems (CPSs) has gained a significant importance in

recent years. CPSs combine computational algorithms and communication with phys-

ical processes and act independently or co-operatively as part of a larger systems (Lee

2008). A CPS may represent entities with complex nature i.e., comprising multiple con-

flicting local objectives. The optimal design and operation of a CPS require these mul-

tiple objectives to be coordinated locally and a support for decision making among

conflicting objectives.

Resource allocation in CPS forms an important part of coordination and the alloca-

tion of resources in a system combining several autonomous-yet-interacting CPSs is

quite challenging, if 1) resources are shared, 2) resources varies over time, 3) overall

system evolves over time. This fosters a need to design smart and resource-efficient sys-

tems, which must provide effective allocation of resources to its resource-consuming

processes to avoid suboptimal system performance due to imbalances between demand

and allocation. To achieve this, coupling of system components is required in order to

enable communication between components to exchange, collect and process

information.

In order to cope with the growing complexity of advanced CPSs, the System-of-

Systems (SoS) engineering approach has been proposed in literature for modeling com-

plex CPSs (Zhang 2015). SoS is a collection of multiple, heterogeneous and autono-

mous constituent systems (CSs), which are networked to achieve a certain higher goal

(Damm and Vincentelli 2015). SoS exhibits emergent behavior due to the interactions

between CSs, which are connected by shared resources. To achieve such physical-cyber

integration and emergent behavior, both CPS and SoS paradigms exhibit a set of prop-

erties, which correspond to the complexity and requirements defined by a system com-

prising multiple autonomous CPSs, i.e., a System of Cyber-Physical Systems (SoCPSs)

where individual and heterogeneous CSs form individual CPSs, each representing an

autonomous physical entity to fulfill dedicated tasks. In union, these CPSs form a

SoCPSs that generates unique properties, referred to as “emergent properties”, which

do not belong to any constituent-CPS (CCPS) but actually appear due to the inter-

action of individual CCPSs. In the context of SoCPSs, where one CCPS consumes a re-

source allocated by another CCPS, the emergent behavior is described as the

“cumulative effect” of the interactions between CCPSs with respect to demand and allo-

cation of resources in that SoCPSs. The resource allocation emerges as a result of indi-

vidual decisions of CCPSs and the sequence of interactions between the CCPSs subject

to demand and availability of resources.

An important challenge with respect to the integration of autonomous CCPSs in

a SoCPSs is to develop seamless collaboration such that CCPSs collaborate and in-

fluence each other towards global goals, while respecting their individual goals. To

this end, this paper seeks to address the following research question, “How can we

coordinate the demand and allocation of shared resources in SoCPSs to engineer

an emergent behavior that meets the performance requirements of the SoCPSs’ ob-

jectives, while complying with the performance requirements of the individual

CCPS”.
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The main contributions of this work are, 1) a meta-model which describes a SoCPSs

design concept as well as the design of its CCPSs, 2) an intra-constituent agent (intra-

CA) optimization model, which handles internal decision making process of each

CCPS, and maintains its autonomous behavior, 3) an inter-constituent agent (inter-CA)

negotiation model, which facilitates the interaction between CCPSs in order to coordin-

ate interdependent actions belonging to different CCPSs, 4) a conflict resolution

method for solving conflicts between goals of CCPSs.

The remainder of this paper is organized as follows. Related work section provides an

overview and evaluation of literature. Proposed approach section describes the ap-

proach to address the research problem. Case study section presents a case study for

the experiments. Experiments section presents experiments and results to validate the

proposed approach. Finally, the conclusion section draws conclusion about the pre-

sented research.

Related work
The stated research problem spans multiple research areas. As a consequence, several

areas, i.e., SoS coordination, cooperative coordination and control, and MOMI negoti-

ation strategies are taken into consideration from the existing literature.

The SoS coordination strategies cover the methods for coordinating the CSs of an

SoS in order to meet SoS mission. The authors in (Fang and DeLaurentis 2015) pro-

posed a coordination approach based on approximate dynamic programming and

transfer contract mechanism to facilitate hierarchy of stakeholders to reach an agree-

ment with conflicting interests and budget constraints. The approach tries to avoid

budget violations but stakeholders might end up in a situation where budget requests

violate budget constraints. The authors in (Barnes II et al. 2017) presents classification

and analysis of coordination strategies (centralized, hierarchical, peer and decentralized)

for coordinating CSs in an SoS. None of the coordination strategies account for the fact

that each CS may have internal conflicting objectives negotiating over several decision

variables. A price-based coordination of constrained SoS is proposed in (Wenzel et al.

2017), where a chemical production site comprises multiple autonomous production

plants. The price and resource utilization vectors are exchanged among centralized co-

ordinator and production plants to coordinate shared resources.

Cooperative coordination and control strategies are used to solve cooperative control

problems, where the individuals in the group share a common goal and act according

to the mutual interest of the group (Beard et al. 2006). These approaches can be

roughly classified as leader-follower approaches and leaderless approaches. In leader-

follower approach (Pasqualetti et al. 2008; Sugar and Kumar 1998), the leader pursues

the group objective and followers are supposed to follow their leader. The approach

compromises over autonomy and does not consider cases where followers’ objectives

may be in conflict with each other or with the group objective. In leaderless approaches

(Khazaei and Nguyen 2017; Ren et al. 2005), the agents try to achieve the group object-

ive without any leader and cooperate through a coordination variable, which is the min-

imal amount of information to be shared among members of the group.

Negotiation protocols focus on finding a trade off and good compromise among non-

cooperative agents with conflicting interests. The authors in (Aydoğan et al. 2014;

Fujita et al. 2012; Klein et al. 2003) proposed mediator based protocol, where agents
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evaluate proposals proposed by a Mediator and announce their decision such that Me-

diator is able to find a final contract, which maximizes the social welfare. However, the

approach is limited to handle negotiation between agents representing simple entities

and it does not provide conflict resolution in case agents pursue constrained objectives.

In (Clausen et al. 2017), a Multi-Agent System (MAS) based design of a Virtual Power

Plant (VPP) constituting complex and heterogeneous Distributed Energy Resource

(DER), is proposed, which enables synchronous bilateral negotiation between VPP and

DER to coordinate Load Management (LM) actions of DER.

To the best of our knowledge, none of the existing SoS coordination strategies ac-

count for the fact that CSs are complex entities with several internal, conflicting objec-

tives negotiating over several decision variables, which may end up with conflicts, and

thus do not handle complex CSs. While some cooperative coordination and control

strategies use unselfish and cooperative agents to reach consensus, i.e., maximize the

group objective. Therefore, it is necessary to focus on self-interested agents rather than

cooperative agents to solve real world complex problem scenarios. Furthermore,

leader-follower approaches seem infeasible for solving our research problem as auton-

omy is compromised and consumers are required to follow the allocation made by re-

source domain.

Negotiation strategies have mostly focused on solving MOMI negotiation problem in-

volving interdependent issues distributed among simple entities, while disregarding that

agents are complex entities and MOMI problems may span over complex control do-

mains. They also lack in modeling the emergent behavior of the overall system and

handling scenarios, where agents’ preferences may change over time and where agents

cannot reach an agreement. Therefore, coordination mechanism is proposed, that uni-

fies the properties of SoS coordination strategies, cooperative coordination and control

strategies, and negotiation protocols, to engineer an emergent behavior that meets the

performance requirements of the SoCPSs’ objectives, while complying with the per-

formance requirements of the objectives of the individual CCPSs.

Proposed approach
The agent-based coordination and control mechanism proposed here for coordinating

the allocation and demand of multiple autonomous-yet-interacting CPSs constitutes

meta-model of SoCPSs, intra-constituent optimization model and an inter-constitution

negotiation model (Umair 2018), described as follows.

Meta-model of system of cyber-physical systems

The meta-model of SoCPSs comprises three levels, i.e., strategic level, tactical level and

perceptual level as shown in Fig. 1. Each of the levels is described in the following

subsections.

Strategic level

The strategic level captures the “big picture” view of SoCPSs and defines strategic goals,

which a SoCPSs strives to achieve. A SoCPSs comprises a network of multiple instances

of CPSs, which exhibit the properties of both CPS and SoS, and perform seamless col-

laboration to fulfill an overall purpose of the system as shown in Fig. 1. A SoCPSs is
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defined as a collection of N (CCPSs), as SoCPSs ¼ ⋃
N

i¼1
ðCCPSÞi . A SoCPSs has a set of n

Strategic Goals (SGs) to achieve, which represent the desired emergent behavior of the

overall system. This is a consequence of SGs in connected CCPSs, which may represent

individual goals or goals of coordinating other CCPSs with respect to resources. This is

defined as, SG(SoCPSs) = {SG(1, SoCPSs), SG(2, SoCPSs),…, SG(n, SoCPSs)}. The examples of SGs

in a commercial domain might include reduce energy consumption, maximise comfort

etc.

Tactical level

The tactical level includes actions aiming to accomplish CCPSs as well as SoCPSs’

goals. Each CCPS constitutes a complex entity and therefore defined as a tuple:

CCPS ¼< TC CCPSð Þ; I CCPSð Þ;R CCPSð Þ TC CCPSð Þ
� �

>

The CCPS is associated to the solving of a set of SGs. Each of the CCPSs has a set of

m Tactical Concerns (TCs), which it implements, in order to accomplish its SGs, de-

fined as TC(CCPS) = {TC(1, CCPS), TC(2, CCPS),…, TC(m,CCPS)}, where TC(CCPS) ≠∅. An SG

can be accomplished by implementing either single or multiple TCs. For example the

SG of maximising comfort in a commercial domain requires implementation of mul-

tiple TCs with respect to temperature and CO2 levels in order to accomplish comfort.

The set of TC(CCPS) in CCPS negotiates over issues to achieve their SGs. The issue rep-

resents a decision point over a resource, the value of which is negotiated by one or sev-

eral TCs. The set I(SoCPSs) defines the set of p issues in SoCPSs as, I(SoCPSs) = {I(1, SoCPSs),

I(2, SoCPSs),…, I(p, SoCPSs)}. Each TCi, where TCi TC(CCPS), may negotiate over a subset

Fig. 1 SoCPSs illustration
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of these. Specifically, each TCi is allowed to negotiate over the set of issues, I(CCPS) and

I(CCPS) ≠∅, belonging to CCPS. This means that the successful operation of a complex

CCPS requires TCs to be optimized locally such that a CCPS is able to make a local de-

cision over several issues. The internal decision making process of each CCPS is de-

scribed in next section. We define a TC as a function of I and N as, TC = f(ITC,NTC),

where ITC = {I1, I2, I3,…, Ir} represents the set of r issues, over which TC negotiates and

NTC = {N1,N2,N3,…,Nq} represents the set of q inputs which a TC may have.

R(CCPS)(TC(CCPS)), represents the relative importance of TCs towards each other within

a CCPS. The TCs in each CCPS might have different significance relative to each other.

For e.g., a TC pursing an SG of achieving an uninterrupted light hours during the day

in a commercial domain, seems to be relatively more important than a TC pursuing an

SG of minimizing energy consumption. In this kind of situation, it is necessary to en-

sure the satisfaction of relatively more important TC before the satisfaction of relatively

less important TC, to guarantee correct behavior of the system. To achieve this, the no-

tion of relative importance is introduced, where we define the relative importance of

each TC towards every other TC in each CCPS, i.e., for a specific pair (TCi, TCj), a TCi

can be either relatively more important, relatively less important or equally important

to TCj. The notion of relative importance determines the ordering of TCs, which is uti-

lized in the decision making process of CCPS.

Perceptual level

The perceptual level involves different types of knowledge that a CCPS perceives from

the environment, to pursue respective SGs. An input is an abstraction used to repre-

sent, 1) a preference input, a TC has, to define its preference, 2) a sensory input that

comes from a sensor, 3) a weather forecast or electricity price input that comes from

external entities. A preference input can be constrained or unconstrained. A con-

strained input imposes some conditions or restrictions on the values assigned to issues,

which values must conform to, whereas an unconstrained input does not impose any

condition or restriction on the values assigned to issues, which values must conform to.

In order to meet the overall SoCPSs objectives, while respecting the objectives of in-

dividual CCPSs, the operations of CCPSs need to be coordinated. We model a SoCPSs

as a MAS where each CCPS is modeled as an agent, constituent agent (CA), meant to

achieve SGs associated with CCPS. Each CA is an autonomous complex entity, which

pursues a set of TCs, settles down a subset of issues I(CPSoSs) with peers (connected

CAs) through negotiation. To this end, the Inter-Constituent Tactical Concerns

(ICTCs) are introduced within each CA to represent the connected CAs in order to en-

able seamless collaboration between CAs constituting MAS. This is needed when one

CA needs resources owned by another CA. To preserve autonomous behavior in each

CA in this context, relative importance is used, to ensure that a CA is able to carry out

its dedicated task regardless of other CAs, while striving to achieve SGs of the MAS.

We define an ICTC as a function of I and N with the unique property that its minim-

izing function has a negotiable preference input. A preference input can be non-

negotiable or negotiable. A non-negotiable input cannot be negotiated during negoti-

ation, for example a TC in a commercial domain, has an input of achieving an uninter-

rupted light hours in an interval (Federal Energy Regulatory Commission 2020; Damm
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and Vincentelli 2015; Bartocci et al. 2014; Fang and DeLaurentis 2015; Fujita et al.

2012; Khazaei and Nguyen 2017; Klein et al. 2003; Lee 2008; Munroe and Luck 2004)

during the day. A negotiable input can be negotiated during negotiation, for example

output of the connected agent A1. This input may serve as a resource for the TC in the

agent A2, defined as, ICTC = f(IICTC,NICTC), where, IICTC represents the set of issues,

over which ICTC negotiates and NICTC represents a negotiable preference input of

ICTC. The negotiation between CAs is described in inter-CA negotiation model sub-

section in detail. A notion (mutual dependence) described by (Sichman et al. 1998), is

adopted to coordinate the operations of connected CAs through ICTCs. The ICTCs of

each CA require resources that do not belong to its own set of resources/actions and

depend on CAs, which it is connected to, in order to coordinate interdependent actions

to achieve a common goal. With regards to MAS, we took a bottom up approach, by

first explaining the internal mechanism of an individual CA, and later explaining how

individual CAs are networked to collaborate with each other to achieve MAS mission.

To this end, intra-CA optimization model and inter-CA negotiation model are pro-

posed. The internal decision making of CAs is described via intra-CA optimization

model, whereas communication and collaboration between CAs constituting MAS is

described through inter-CA negotiation model.

Intra-constituent agent optimization model

Each CA is considered as an independent system and defines a MOMI optimization

context consisting of m TCs, who negotiate over a set of r issues, ITC = {I1, I2, I3,…, Ir}.

The optimization context has a Mediator, which is responsible for managing the

optimization process. In step 1, the Mediator uses a Multi-Objective Genetic Algorithm

(MOGA) to generate random population of contracts. Each contract C contains a value

for each of the issues to which one or more TCs in the CA has interest, and the Medi-

ator will suggest this population of contracts to the TCs for evaluation. To this end,

each TC provides a method, evaluate(), which takes a contract as an argument, and

returns a cost-value as an evaluation of the contract. The cost function of each TC

evaluates TC’s preference in the form of a vector towards the contract or more specific-

ally, a subset of issue values in each contract that the TC has interest in. Then in step

2, the TCs assign cost values to all contracts in the population. Each TC t will then re-

spond with a cost qt, C which describes how well a given contract C fits the preference

input of the TC t. In step 3, the Mediator selects the subset of contracts, which will act

as a basis for generating the contracts for the next iteration. In order to select this sub-

set of contracts, the Mediator applies the Pareto criterion, which filters out all the dom-

inated contracts from the current population and keeps only non-dominated contracts.

In step 4, the Mediator evolves the non-dominated population of contracts by perform-

ing crossover and mutation on randomly selected contracts in the Pareto set. The

crossover operator makes sure that the new contracts inherit characteristics from par-

ent contracts and the mutation operator maintains diversity in the population of con-

tracts. Here, step 2 is executed again and the generated contracts are added to the

Pareto set, if they fulfill the Pareto criterion. This process is repeated from step 2 to

step 4 until a termination criterion is met. At termination, the Mediator selects a final

contract which maximizes social welfare.
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Selection of final contract

Each CA may have TCs with conflicting preferences. In case of conflicting preferences,

optimization process does not end up with one optimal contract across all the TCs. In

fact, multiple contracts (trade offs) exist on the Pareto front Pf. The Mediator in each

CA is then responsible for selecting a final contract from the Pareto front in order to

find a good compromise among TCs. In order to ensure social welfare among the TCs

within each CA, which is considered as a suitable metric for assessing system perform-

ance (Chevaleyre et al. 2005), the Mediator employs cardinal preference aggregation

mechanism based on Social Welfare Orderings (SWOs). There exists several SWO

methods to measure social welfare among TCs, namely utilitarian, egalitarian, elitist,

Nash product, median rank dictator, leximin ordering, approximated fairness, fairness

analysis, quantitative fairness and entropy explained in (Umair et al. 2019; Clausen

et al. 2020). Before applying the selection criterion based on SWO, the cost of each TC

t is normalized for each contract C in the Pareto set Pf. The TCs participating in the

optimization context, negotiate over a set of issues, which may belong to different do-

mains and ranges of these issues may differ from each other. It is important to

normalize the cost of TCs for each issue to a continuous range with upper and lower

bounds, otherwise TCs’ cost with different scales/ranges will not contribute equally in

the selection of final contract. In this regard, 0–1 scaling is used to normalize TCs’

costs, defined as q0ðt;CÞ ¼ ðqt;C−qt; minÞ
ðqt; max−qt; minÞ. The minimum and maximum values are extracted

from the non-dominated population of contracts Pf for each TC t, in order to

normalize its cost, defined as, qðt; minÞ ¼ min
C∈P f

ðqt;CÞ; qt; max ¼ max
C∈P f

ðqt;CÞ . The costs

returned by all TCs for each issue range from 0 to 1. This specific way of

normalization, where costs are normalized with respect to TCs as opposed to a global

value, ensures that we are not forced to compare values which are not inter-

comparable. That is due to the fact that values are defined in the 0–1 range depending

on the area expanded in the given TC domain. After normalization, we apply the selec-

tion criterion based on SWO, in order to select the final contract. The selection of ap-

propriate SWO depends on the behavior we expect from the system.

Relative importance of tactical concerns

The TCs in each CA might have different significance relative to each other. For ex-

ample a TC pursing an SG of achieving an uninterrupted light hours during the day in

a commercial domain, seems to be relatively more important than a TC pursuing an

SG of minimizing energy consumption. In this kind of situation, it is necessary to en-

sure the satisfaction of relatively more important TC before the satisfaction of relatively

less important TC, to guarantee correct behavior of the system. To achieve this, the no-

tion of relative importance is introduced, where we define the relative importance of

each TC towards every other TC in CA, i.e., for a specific pair (TCi, TCj), a TCi can be

either relatively more important, relatively less important or equally important to TCj.

The notion of relative importance determines the ordering of TCs, which is carried out

in the following way. Initially, the TCs are sorted based on relative importance of each

possible pair of TCs towards each other. In result, a sorted list of TCs is generated and

the first TC in the sorted list is assigned the highest rank. Each pair of consecutive
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TCs, i.e., current and immediate previous, in the sorted list is then traversed. This is

followed by the step, where the relative importance of each pair of consecutive TCs is

fetched. The fetched values are then compared to determine the ranks of rest of the

TCs. If the relative importance of consecutive pair of TCs (TCi, TCj), towards each

other is equal, then TCj will be assigned equal rank as that of TCi otherwise TCj will be

assigned lower rank as compared to TCi. This process is repeated until all TCs are

assigned ranks. To select the final contract, we incorporate the notion of relative im-

portance to the selection criterion based on SWO. The selection mechanism will now

guarantee the selection of a final contract, which satisfies TCs with higher rank before

it satisfies TCs with lower rank in the hierarchy.

Inter-constituent agent negotiation model

To address the problem of coordinating allocation and demand of shared resources in

a SoCPSs, the autonomous CAs must collaborate with each other, to achieve an overall

system goal, while adhering to their individual goals. To make this happen, the opera-

tions of autonomous CAs need to be coordinated through negotiation. The proposed

multi-party cooperative coordination mechanism enables multiple asynchronous bilat-

eral negotiations between connected CAs. The negotiation process is based on a pro-

posal/counterproposal-protocol, shown in Fig. 2, where the resource-CA and

consumer-CA exchange plans for resource allocation and resource demands respect-

ively. To facilitate this, the autonomously running CAs activate the ICTCs, to weave

the negotiation with their connected CAs. The activation of ICTCs will leverage CAs’

capabilities to perform not only intra-CA optimization but also support bilateral negoti-

ations with their connected CAs. The initial connection between resource-CA and

consumer-CA is established by the consumer-CA.

Initially, the consumer-CA calculates a demand proposal based on an intra-CA

optimization among its TCs, explained earlier in intra-CA optimization model subsec-

tion. In addition to the activation of ICTCs, the Mediator in each CA has now the re-

sponsibility of selecting the best candidate contract (demand/allocation proposal) in

each iteration of intra-CA optimization.

To select the best candidate contract, the selection mechanism based on the notion

of SWO and relative importance is employed. During inter-CA negotiation, the relative

importance of CA-specific TCs is higher than the relative importance of ICTCs. This

implies that the best candidate contract complies with the SGs of the respective CA

while adhering to the SGs of connected CA. Once the best candidate contract is

Fig. 2 Inter-CA negotiation illustration
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selected in consumer-CA, it is then communicated as a negotiable preference input for

the ICTC in resource-CA. In response, resource-CA calculates a counter allocation

proposal in a similar fashion as did by consumer-CA, while taking into consideration

the demand proposal communicated by consumer-CA. The counter allocation proposal

is then sent back to the consumer-CA via ICTC of consumer-CA. In case the agree-

ment is not reached between resource-CA and consumer-CA, i.e., the proposed alloca-

tion plan does not match the proposed demand plan, each CA checks the termination

condition. If termination condition is not met yet, the control in each CA goes back to

initial step, which leads to generating and exchanging a new set of proposals for re-

source allocation and demand plans through ICTCs. As the inter-CA negotiation

evolves, the negotiable preference input of ICTCs changes to reflect the updated per-

spective of the connected CAs in each CA. In this way ICTCs ensure that the prefer-

ences of connected CAs are represented in each iteration of intra-CA optimization,

yielding a system capable of performing intra-CA optimization as well as inter-CA ne-

gotiation. Due to back and forth exchange of proposals, consumer-CA and resource-

CA influence the internal operation of each other in order to narrow down their differ-

ences and achieve common inter-CA goal (allocation = demand) through their respect-

ive ICTCs (Umair et al. 2015). Hence, due to mutual dependence, collaboration

regarding inter-CA goals has happened which helps to achieve equilibrium between

connected CAs and thus the SoCPSs. This process is repeated until negotiating CAs

reach an agreement or the allowed inter-CA negotiation period times out. In case of

agreement, the final contract (demand/allocation) selected by Mediator in each CA, is

executed. While in other case, where CAs do not reach an agreement and negotiation

time is over, it is necessary to ensure that negotiating CAs always reach an agreement

in case where conflict of preferences exists. This could happen in a situation where re-

sources are constrained and consumer-CAs require more than available resources.

Here, one of the negotiating CAs in bilateral negotiation must make concession on is-

sues under negotiation. In this regard, the proposed approach supports conflict reso-

lution based on local reasoning of each CA, to guarantee that connected CAs finally

reach an agreement. Therefore, in each CA, Mediator resolves the conflict and selects

the final contract.

Conflict resolution

A conflict is a clash between the SGs of the connected CAs constituting SoCPSs.

To resolve the conflict, we apply the notion of non-social (resource) dependence to

the negotiation object, i.e., issue, which is dependent on a resource, within each

consumer-CA. By resource-dependent issue we mean that, the values that issue

takes on constitute the use of the resource, i.e., electricity (Munroe and Luck

2004) . A resource-dependency can be constrained or unconstrained. We have

modeled constrained and unconstrained resource dependence relation between con-

nected CAs in terms of constrained and unconstrained preference inputs. A CA

with an ICTC, having a constrained preference input means that CA will follow re-

source allocation made by its peer CA strictly. On the other hand, a CA with an

ICTC having an unconstrained preference input means that a CA is allowed to use

resources as much as it needs.
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In order to distinguish between constrained and unconstrained preference inputs, we

therefore define the notion of relative importance based on another factor, i.e., prefer-

ence importance factor, which defines the ordering of the TCs within each CA in a

similar fashion as that of relative importance factor in the section above. The only dif-

ference is the ordering criterion, which is now based on relative preference importance

of TCs towards each other, i.e., a TC with a constrained preference input is relatively

more important than the one with an unconstrained preference input. The TCs with

the same preference importance will be ranked based on their relative importance to-

wards each other. The ranking of TCs is carried out by comparing the preference im-

portance of consecutive pair (TCi, TCj) of TCs in the sorted list. If the values matched

with each other, TCj will be assigned rank based on the relative importance of TCi and

TCj towards each other. Otherwise TCj will be assigned the rank, which is less than the

rank of TCi. The same flow of operations will be performed for each consecutive pair

of TCs. As mentioned earlier, during inter-CA negotiation, an ordering of TCs based

on relative importance is used for selecting the best candidate contract. Similarly, when

inter-CA negotiation ends, an ordering of TCs based on preference factor is used for

selecting the final contract. At the termination of inter-CA negotiation, the Mediator in

each CA uses preference importance factor to rearrange CA-specific TCs and ICTCs in

a hierarchy, which will guarantee the selection of a final contract in each CA, which

satisfies TCs with a higher rank before it considers TCs with a lower rank. This is how,

the conflict resolution mechanism ensures the selection of a final contract from the

population of contracts, that matches with the available amount of resources.

Asynchronous coordination

During bilateral communication, each CA communicates with its connected CAs asyn-

chronously. The CA does not block waiting for a reply from its connected CA. Each

CA uses the most recently received/updated information from the connected CA and

proceeds further with its execution. In our proposed coordination mechanism, all CAs

are continuously running. It is important to coordinate the activities of CAs in order to

achieve overall SoCPSs goal. The CAs synchronize and coordinate their activities with

their connected CAs based on the notion of input.

Initially, each CA performs intra-CA optimization and when it is truthful, it

starts inter-CA negotiation, where it communicates with its connected CAs. A CA

is truthful if the population is unchanged for 5 iterations and TCs with the highest

relative importance return a cost 0 for the selected best contract. During inter-CA

negotiation, if a CA reaches an agreement with any of its connected CAs, it is ne-

gotiating, it locks the issue values over which an agreement is made, and stops

inter-CA negotiation with whom agreement is made. Meanwhile, it carries on its

intra-CA optimization and also inter-CA negotiation with the connected-CAs, with

whom an agreement is not made yet. The CA goes to a wait state and stops both

intra-CA optimization and inter-CA negotiation in case it reaches an agreement

with all of its connected CAs. If an input to any TC in a CA is changed, then all

the issues related to that TC are unlocked. This also leads to re-initiation of intra-

CA optimization process. The inter-CA negotiation may also re-initiate, if the ne-

gotiable preference input of any ICTC in a CA is changed.
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A situation may arise, where a consumer-CA consumes multiple constrained and un-

constrained resources in a way, that makes consumption of independent resources,

interdependent i.e., the consumer may require a specific ratio between the amount of

each resource allocated to it. In intra-CA optimization context, the dependencies

among resources can be thought of as dependencies among issues, which represent re-

source dependent decision variables. To ensure the correct behavior of the system, the

dependencies among resource-dependent issues within each CA should be taken into

consideration and utilized, when issues are required to be locked in case of an agree-

ment state between negotiating CAs. In this regard, we introduce the notion of issues’

dependencies. Issue dependency in general is a result of multiple issues being linked

through a TC. Issue interdependency then can span multiple CAs, if a TCn negotiates

over a set of issues In = {I1, n, I2, n,…, Iq, n} such that one of the issues Ic (Ic ⊂ In), over

which it negotiates, is also negotiated over by an ICTC with a constrained preference.

In such cases, all the issues in In are dependent on issue Ic. This implies that the

dependent issues in In cannot be locked before the dependee issue Ic is locked. This

mechanism is necessary for the correct behavior of the system and ensures that, a

consumer-CA cannot make an agreement with unconstrained resource-CAs, until it

reaches an agreement with constrained resource-CAs, if the resources are dependent

via some TC.

Autonomy

Each CA preserves its autonomy, i.e., the ability of a CA as part of a SoCPSs to make

independent choices. Each CA operates and updates information on its own pace and

has full control over its local decision making process, i.e., when to 1) initiate intra-CA

optimization process, 2) stop intra-CA optimization process, 3) re-initiate intra-CA

optimization process, 4) initiate inter-CA negotiation, 5) stop inter-CA negotiation and

6) re-initiate inter-CA negotiation. In the beginning, each CA initiates intra-CA

optimization process in order to optimize CA-specific TCs. Once it achieves local con-

vergence, then it truthfully communicates its preferences by initiating inter-CA negoti-

ation. When a CA reaches an agreement with its connected CA during inter-CA

negotiation, it makes a settlement with it and go ahead with its further execution with-

out waiting for its connected CA to make settlement with other connected CAs. Con-

sider a scenario where CA1 is coupled with CA2 and CA3. Assuming CA2 reaches an

agreement with its connected CA1. Meanwhile CA1 is still negotiating with CA3 and

haven’t reached an agreement with CA3 yet. CA2 will make a settlement with CA1,

without waiting for CA1 to reach an agreement with CA3 as well. In this kind of situ-

ation both intra-CA optimization process and inter-CA negotiation process are stopped

in CA2. The local convergence within each CA is valid until an input to any TC is

changed. Similarly, the agreement made between two connected-CAs is valid until an

input to their ICTCs is changed. Both intra-CA optimization process and inter-CA ne-

gotiation processes are re-initiated by an input change.

Case study
The concept of SoCPSs applies across various domains i.e., from energy to health care

to defense systems to transportation. In this regard, a brief overview of CGGs and VPP
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is given in the context of SoCPSs, to be used as an example of SoCPSs for experimental

validation of proposed approach.

CGGs play an important role in the production of ornamental pot plants and vegeta-

bles in Northern Europe. The production of plants depends on greenhouses because of

low temperature and light conditions in the winter season. To ensure an environmental

and production optimal operation, energy resources must be used efficiently and

process performance must be considered (Kjær et al. 2011; Kjaer et al. 2012). In this re-

gard, focus is on concepts and technologies that facilitate both energy efficiency and

process performance (Ma et al. 2020). In Denmark, CGGs account for about 1% of the

national electricity consumption of which approximately 95% is used for artificial

growth light. As large electricity consumers, CGGs are potential candidates in a DR

context through LM actions (Christensen et al. 2020a; Christensen et al. 2020b). Ac-

cording to the Federal Energy Regulatory Commission, DR is defined as changes in

electric usage by end-use customers from their normal consumption patterns in re-

sponse to changes in the price of electricity over time, or to incentive payments de-

signed to induce lower electricity use at times of high wholesale market prices or when

system reliability is jeopardized (Federal Energy Regulatory Commission 2020). LM ac-

tions comprise peak clipping, valley filling, and load shifting (Clausen et al. 2014).

There is a market opportunity for electricity consumers in participating in DR pro-

grams (Ma and Jørgensen 2018). This opportunity can be enhanced by participating in

a VPP, as DR program requirements (and risks) are shared between all members of the

VPP (Clausen et al. 2016). A VPP is a cluster of small and medium sized dispersed gen-

erator units, controllable loads and storage systems aggregated in order to represent

them as a single entity within the grid (Clausen et al. 2017; Othman et al. 2015).

CGG can provide LM services by time-shifting the use of artificial growth light from

one hour to another, either within the same day or the next day, without any negative

effect on their growth as long as these hours are provided within the same or following

days. The LM actions of CGGs can be aggregated into larger entities to constitute VPP,

that are easier to integrate with grid management (Clausen et al. 2015). In provision of

DR events, VPPs are operated according to a set of local targets, e.g., minimization of

generation cost, profit maximization, peak load reduction (Pudjianto et al. 2007). A spe-

cific example of a VPP is one, where a VPP propagates a DR event to a group of CGGs

through LM requests as shown in Fig. 3. In response, the CGGs then employ local deci-

sion strategies to adapt their electricity demand to the LM requests. Specifically, the

CGGs may employ a strategy for artificial lighting which adheres to production goals

Fig. 3 Conceptual model of a VPP
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while considering the request for LM from the VPP. The CGGs may shift light hours

to perform load shifting or increase the number of light hours to perform valley filling.

The response from the CGGs contains their demand profile. The VPP then applies its

own decision making to make counter proposals to the CGGs, in cases where demand

does not equal allocation. Once demand does equal allocation, the DR event has been

honored.

Experiments

The experimental validation of the proposed models is done through simulating differ-

ent acyclic topologies which map to real-world SoCPSs. Several experiments have been

conducted considering the case study, where SoCPSs is a collection of autonomous re-

source and consumer CPSs. Each CPS is represented by CA. The number of consumers

and resources vary in each set of experiments. Each experiment is run 20 times to val-

idate the efficacy of proposed approach and show resilience towards the potential ran-

dom behavior sparked by the use of a GA. The number of negotiation rounds is set to

1000. This number is empirically determined for algorithm convergence.

Single resource and multiple consumers

The first set of experiments maps to an acyclic topology (Fig. (4a)), where a single

resource-CA representing a VPP is connected to multiple consumer-CAs representing

CGGs. In this set of experiments, two scenarios are simulated: One with unconstrained

and the other with constrained resources to meet demand. The configuration of con-

sumer and resource CAs is described below.

Experimental setup

Each consumer-CA has been modeled using three TCs, i.e., a production-TC (P-TC)

which is a CA-specific TC pursuing a SG necessary to achieve the actual purpose of

consumer-CA, an energy-ICTC (E-ICTC), which represents resource-CA in the

consumer-CA and a minimize consumption-TC (MC-TC), which seeks to reduce the

electricity consumption used to reach the production goal. Each set of TCs negotiate

over a single issue reflecting a light plan. A light plan issue is a vector, ln = {l1, n, l2, n,…

lt, n}, that describes when artificial light is on or off in the greenhouse for an entire day.

The index {1, 2,…t} represents discrete time intervals expressed in hours. The value of

Fig. 4 Acyclic topologies. a Single resource multi consumers b Multi resources single consumer c Multi
resources multi consumers
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the time slot in the light plan issue ln is (on/off), which translates to the values 0 and 1.

The P-TC negotiates over a light plan issue ln, to ensure that sufficient amount of arti-

ficial light is switched on to achieve the production goal. It has a non-negotiable prefer-

ence, pn, which represents the amount of Photo Active Radiation (PAR) in

MolSqrMeter, required to achieve the production goal. The weather conditions affect

the contribution from artificial growth light during the day, i.e., the contribution is

more when weather is cloudy, whereas contribution is less in case of sunny weather.

To capture this, we introduce the coefficient vector for P-TC, vn = {v1, n, v2, n,…vt, n},

which represents the contribution from artificial light in each hour during the day. The

cost function qn of P-TC is defined as, qn = ∣ pn − hn∣, where hn ¼
Pt
i¼1

ðvi;n�li;nÞ. Each of

the P-TC was given a preference of 400 MolSqrMeter. The coefficient vectors used for

each P-TC are shown in Fig. 5. The E-ICTC represents the preferences of the

resource-CA in the consumer-CA and negotiates over a light plan issue ln, used for

artificial lighting. It has a negotiable preference, en, which represents the energy alloca-

tion made by the resource-CA and is defined as en = {e1, n, e2, n,…et, n}. The E-ICTC is

responsible for converting light plan suggestions into energy demand plans to calculate

the amount of electricity needed to accommodate a given light plan. The conversion

from the light plan to the energy demand plan is done by mapping energy demand for

“off” hours in the light plan to 0 MWh in the energy plan, and “on” hours to an energy

demand of 1 MWh. The assumption made here is that all lights are on at the same

time and the installed lamp capacity is 1MW in total. To capture this, we introduce a

coefficient vector for E-ICTC, vn = {v1, n, v2, n,…vt, n}, of all 1’s, which is multiplied to

light plan issue ln, to get energy demand plan dn = {d1, n, d2, n,…dt, n} for artificial light.

The cost function qn of E-ICTC is defined as, qn ¼
Pt
i¼1

j ei;n−di;n j. The MC-TC tries to

minimize the amount of energy consumed in the consumer-CA. It negotiates over a

light plan issue ln and has a non-negotiable preference vector, pn = {p1, n, p2, n,…pt, n},

of all 0’s. The cost function qn of MC-TC is defined as., qn ¼
Pt
i¼1

j pi;n−li;n j.

During inter-CA negotiation, the best candidate contract in each CA is communi-

cated to the connected CAs in each negotiation round. To select the best candidate

contract, the P-TC in each consumer-CA is assigned high relative importance as com-

pared to E-ICTC and MC-TC, whereas E-ICTC has high relative importance in com-

parison to MC-TC. This configuration is chosen to exchange actual preferences of

consumer-CAs through ICTCs during inter-CA negotiation. When the negotiation is

over, the selection of final contract takes into account preference inputs of ICTCs. In

Fig. 5 Coefficient vectors of consumer-CAs. a One consumer at t0. b Two consumers at t1. c Three
consumers at t2
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case of unconstrained resources, ICTCs in each CA has unconstrained preferences.

This is contrary to the case of constrained resources, where ICTCs in each CA has con-

strained preferences. Here, the ICTC in each consumer-CA will be assigned high rela-

tive importance compared to P-TC. This configuration ensures an agreement between

connected-CAs in case of their conflicting preferences.

The resource-CA is modeled using an Aggregator-TC (A-TC), consumer-ICTC

(C-ICTC) and consumer sum ICTC (C- ICTCsum) for each connected consumer-

CA. The TCs in the resource-CA negotiate over issues reflecting energy alloca-

tion plans, one for each consumer-CA. An energy plan issue is a vector, en = {e1,

n, e2, n,…et, n}, that describes an hourly allocation of energy to the consumer-CAs

for an entire day. The value of a time slot in the energy allocation plan issue en
is 0 or 1 MWh. The A-TC represents the need to change planned consumption

of aggregated consumers based on market conditions or capacity constraints in

the VPP and negotiates over the summarized energy allocation plan issues for all

consumer-CAs, y ¼ PN
n
en , to ensure that the combined allocation complies with

the DR event. It has a non-negotiable preference input p = {p1, p2,…pt}, which

constitutes an hourly DR event provided by external DR service, where t defines

the number of time slots defined in the preference p. This is non-negotiable as

we assume that the DR dispatcher cannot be influenced. The cost function qn of

the A-TC is defined as, qn ¼
Pt
i¼1

j yi−pi j . The C-ICTC represents the preferences

of the consumer-CA in the resource-CA. The C-ICTC negotiates over one issue,

namely the energy allocation plan for the particular consumer-CA which it repre-

sents. The energy allocation plan issue for C-ICTC n ∈N, where N is the number

of C-ICTCs in the resource-CA, is defined as, en = {e1, n, e2, n,…et, n}, where t de-

fines the number of time slots defined in the energy allocation plan issue. During

inter-CA negotiation, each C-ICTC is assigned a negotiable preference, ln, which

represents the current best candidate contract for the light plan of the consumer-

CA, it represents. This is converted into an energy demand plan, dn using the

same conversion method as the E-ICTC. The cost function qn of C-ICTC is de-

fined as, qn ¼
Pt
i¼1

j ei;n−di;n j . The C- ICTCsum seeks to ensure, that the correct

amount of electricity is allocated for the consumer-CA it represents, regardless of the

time it is allocated. This is introduced to favor sufficient allocation over in-sufficient al-

location. It negotiates over the same issue as the corresponding C-ICTC. C- ICTCsum

also has the same negotiable preference, dn, which represents the current best candidate

contract for the light plan of the consumer-CA, it represents. The cost function of each

C- ICTCsum is defined as, qn ¼j Pt
i¼1

ei;n−
Pt
i¼1

di;n j. As in the case of consumer-CA, to se-

lect the best candidate contract, the A-TC in the resource-CA is assigned high relative

importance compared to the C-ICTCs and the C- ICTCssum to ensure the truthful com-

munication of preferences during inter-CA negotiation. The number of ICTCs in the

resource-CA depends on the number of consumer-CAs connected to the resource-CA

as one set of C-ICTC and C- ICTCsum is used for each consumer.
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Baseline experiment results

The baseline experiment is used to show how the proposed coordination mechanism

coordinates the allocation and consumption of shared resource in a dynamically evolv-

ing SoCPSs, where all the consumer-CAs will be allocated their requested demand. In

order to simulate that the SoCPSs evolves over time and our proposed coordination

mechanism is able to handle the allocation of shared resource among multiple

consumer-CAs, the consumer-CAs connect to the VPP at different time instants. Fig-

ure 6 shows the results of this experiment. As can be seen, consumer-CA 1 connects to

VPP at time instant t0 (Fig. (6a)), consumer-CA 2 connects at time instant t1 (Fig. (6b)),

and consumer-CA 3 connects at time instant t2 (Fig. (6c)). Before connecting to VPP,

each consumer-CA computes its baseline demand profile. A baseline profile represents

the optimal demand profile for consumer-CA. On receiving the baseline demand pro-

file from each consumer-CA, the VPP creates an issue and two C-ICTCs for each

consumer-CA, which negotiate over their respective issues. The baseline demand pro-

file received from each consumer-CA, will be regarded as a negotiable preference input

for their respective C-ICTCs and C − ICTCssum in the VPP. This is done to reflect that

consumer-CAs may adapt to the requests of the VPP. As a result, the aggregated base-

line will be deduced live and an allocation profile that matches with the aggregated

baseline demand profile is generated, if there is no LM request present. In this regard,

the C-ICTCs and ICTCssum for each consumer-CA also play their role and influence

the intra-CA optimization process by negotiating over the issues, they are interested in.

The C-ICTCs and ICTCssum in the VPP will try to minimize the distance between their

preference and issue values, they negotiate over. This is how, in case of no LM request,

each consumer-CA is provided its preferred energy plan i.e. no change is forced upon

the consumer-CAs and the aggregated demand profile corresponds to the aggregated

baseline demand profiles. Each consumer-CA is able to achieve its production goal, i.e.,

400 MolSqrMeter.

Peak clipping experiment results

This experiment illustrates how conflict is resolved between CAs, where conflict of

preferences exists. Therefore, a scenario is simulated, where the VPP receives a DR

event from a DR service, which requires modifications to the aggregated baseline pro-

file. To this end, the negotiable preference inputs of E-ICTCs in each consumer-CA are

Fig. 6 Results of baseline experiment
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defined as “constrained”, whereas the negotiable preference inputs of C-ICTCs in the

resource-CA are defined as “unconstrained”. This is done to reflect that the operation

of VPP is critical and in case of conflict, consumer-CAs must adapt to the allocation

made by VPP. Figure 7 shows the preference input of A-TC in the resource-CA, which

reflects the LM action peak clipping. The conflict can be seen at slot 11, where a DR

event requires modification to the aggregated baseline demand profile, by providing 1

MW less energy, in order to clip the peak. This situation requires one of the

consumer-CAs to shed its load in slot 11.

All consumer-CAs initiate inter-CA negotiation with the resource-CA and communi-

cate their truthful preferences during inter-CA negotiation. As can be seen in Fig. 8a,

the resource-CA honors the DR event and allocates 1MW less to one of the

consumer-CAs, i.e., consumer-CA 3 in slot 11, whereas consumer-CA 3 follows its

baseline demand profile and demands electricity in slot 11. This creates a conflict be-

tween the resource-CA and the consumer-CA 3 in slot 11.

As mentioned earlier, the proposed approach uses the notion of preference import-

ance to resolve the conflict in order to ensure agreement state between negotiating

CAs. As the E-ICTCs in the consumer-CAs, have a constrained preference, the E-

ICTCs will have higher relative importance compared to rest of the TCs. Therefore the

selection of a final contract in consumer-CA 3 will guarantee the satisfaction of E-

ICTCs, before it considers the satisfaction of local TCs. This is how, consumer-CA 3 fi-

nally reaches an agreement with the resource-CA and made a compromise of 1MW

and achieved a production of 350 instead of 400, whereas rest of the two consumer-

CAs achieve their production goal. Figure 8b shows the result after inter-CA negoti-

ation with conflict resolution. As can be seen, the VPP executes LM actions while ad-

hering to the energy demands of consumer-CAs. The aggregated demand profile of

consumer-CAs is exactly equal to the aggregated allocation made by the resource-CA

and this clearly indicates the state of agreement between negotiating CAs.

Hence, conflict is resolved through graceful degradation of the production require-

ments in the greenhouse under the assumption that accurate operation of the VPP is

critical.

Multiple resources and single consumer

The second set of experiments maps to an acyclic topology (Fig. 4b), where a single

consumer-CA is connected to multiple resource-CAs. A simulated CGG constitutes

the consumer-CA, whereas VPP constitutes resource-CA 1 and a Water Service Supply

(WSS) constitutes resource-CA 2.

Fig. 7 Illustration of DR event
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The greenhouse needs electricity for supplementary lighting as well as water, to en-

sure sufficient plant growth. In this regard, VPP is responsible for the allocation of elec-

tricity to the greenhouse in compliance to DR events, whereas the WSS is responsible

for the allocation of adequate water to the greenhouse, while adhering to its capacity

constraints. This set of experiments simulates a scenario, where the consumption of re-

sources is interdependent, i.e., the consumer-CA requires a specific ratio between the

amount of each resource allocated to it by resource-CAs. Here, one of the resources it

consumes is constrained in terms of amount of resources consumed and time, at which

the resources are consumed. The configuration of consumer and resource CAs is de-

scribed below.

Experimental setup

The consumer-CA has been modeled using three TCs, i.e., a production-TC (P-TC), an

energy-ICTC (E-ICTC), which represents resource-CA 1 in the consumer-CA and a

water-ICTC (W-ICTC), which represents resource-CA 2 in the consumer-CA. There

exists two issues reflecting a light plan and water plan. A light plan issue is a vector,

ln = {l1, n, l2, n,…lt, n}, which describes when artificial light is on or off in the consumer-

CA for an entire day. The value of the time slot in the light plan issue ln ranges from 0

to 2MW, as we assume that lamps have multiple light intensity levels. A water plan

issue is a vector, wn = {w1, n,w2, n,…wt, n}, that describes an hourly water demand for

an entire day. The value of a time slot in the water plan issue wn is from 0 to 4 gal per

hour. The P-TC negotiates over a light plan issue ln and water plan issue wn to achieve

the production goal. The cost function qn of P-TC is defined as, qn ¼
Pt
i¼1

j 0:5− di;n
wi;n

j if wi;n > 0;
Max:Double otherwise

(
which shows that a cost of 0 is returned for each hour in

which a 2:1 ratio between energy allocation and water allocation exists. The configur-

ation of E-ICTC is maintained as described in section above. However, in this set of ex-

periments, E-ICTC has a “unconstrained” negotiable preference input. This implies that

adequate amount of resources is available in the resource-CA 1.The W-ICTC repre-

sents the preferences of the resource-CA 2 in the consumer-CA and negotiates over a

water plan issue wn. It has a “constrained” negotiable preference input, an, which repre-

sents the water allocation made by the resource-CA 2 and is defined as an = {a1, n, a2,

n…at, n}. This reflects a scenario where water is a limited resource (as opposed to elec-

tricity). The cost function qn of W-ICTC is defined as, qn ¼
Pt
i¼1

j ai;n−wi;n j . During

inter-CA negotiation, the relative importance of P-TC is higher than E-ICTC and W-

Fig. 8 Results of peak clipping experiment
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ICTC, whereas the relative importance of W-ICTC is higher than E-ICTC. At the ter-

mination of inter-CA negotiation, the relative importance of W-ICTC with a con-

strained preference, will be higher than E-ICTC and P-TC, whereas the relative

importance of P-TC will be higher than E-ICTC.

Both resource-CA 1 and resource-CA 2 are modeled in a similar way to the

resource-CA described in single resource and multiple consumers subsection, using an

Aggregator-TC (A-TC), and two ICTCs, consumer-ICTC (C-ICTC) and consumer sum

ICTC (C- ICTCsum) with “unconstrained” negotiable preference inputs, as a single

consumer-CA is connected to each resource-CA. Here, the non-negotiable preference

input of A-TC in resource-CA 2 represents an hourly WSS capacity.

Multi resource coordination (without issue dependence) experiment results

This experiment serves to highlight the resource-demand coordination problem, which

arises when a consumer connected to multiple independent resources, consumes re-

sources in a way that creates dependencies among resources and completely disregards

consumption based resource interdependency. Figure 9a shows the initial hourly energy

and water demand for the entire day in the consumer-CA. It can be seen that the water

demand in each time slot is exactly double of the energy demand in the same time slot.

This implies, that P-TC in the consumer-CA is fully satisfied and ensures that the prefer-

ence of consumer-CA is truthfully communicated to the resource-CAs. Figure 9b shows

the result of inter-CA negotiation of consumer-CA with its connected resource-CAs.

It can be seen that in slots 1, 2, 5 and 8, the final allocations made by resource-CA 1

and resource-CA 2 do not fulfill P-TC preference and ends up with an energy alloca-

tion which does not fully adhere to the ratio to achieve production in the hours needed

in consumer-CA. Consumer-CA ultimately deviates from its preference in order to

comply with constrained resource allocation. This experiment, disregards issues’ de-

pendencies, therefore in the beginning, when consumer-CA starts inter-CA negotiation

with resource-CAs, it reaches an agreement with resource-CA 1 immediately, because

resource-CA 1 is unconstrained and therefore it allocates the exact amount of energy

demanded by consumer-CA. On reaching an agreement with resource-CA 1, both

resource-CA 1 and consumer-CA lock their respective issues en and ln. As a result,

when resource-CA 2 makes water allocation for consumer-CA, while adhering to its

capacity constraints, it creates a conflict with the light plan ln in consumer-CA, which

already has been locked on reaching an agreement with resource-CA 1. This is why, P-

TC in consumer-CA could not achieve the required ratio of energy to water demand

and is forced to make a compromise over the allocated energy and water resources.

Fig. 9 Multi resource coordination without issue dependency. a Initial resource demand of consumer-CA b
Results of constrained allocation without issue dependency
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Multi resource coordination (with issue dependence) experiment results

This experiment shows, how the notion of issues dependencies helps to resolve multi-

resource coordination problem, highlighted in the previous experiment. In this experi-

ment, we have employed the notion of issues’ dependencies to resolve the problem

such that consumer-CA is allocated its preferred amount of resources while complying

with the constrained resource allocation. Considering issues’ dependencies, the issue ln
is dependent on an issue wn. That’s why issue ln is not allowed to be locked before issue

wn. In the beginning, when consumer-CA reaches an agreement with the resource-CA

1, both CAs stop inter-CA negotiation. Resource-CA 1 locks its respective issue en but

the consumer-CA does not lock issue ln due to that issue being dependent on issue wn,

from the perspective of the consumer-CA. Meanwhile, resource-CA 2 makes water al-

location for consumer-CA, while adhering to its capacity constraints. This leads to a

conflict between water allocation plan and energy allocation plan. As a result, the P-TC

in the consumer-CA, favors a light plan, which retains the correct ratio of energy to

water demand. The consumer-CA communicates back the updated energy demand

plan to the resource-CA 1.

On receiving an updated input, resource-CA 1 re-initiates intra-CA optimization

as well as inter-CA negotiation. As resource-CA 1 is unconstrained, it allocates the

exact amount of energy, that is recently demanded by consumer-CA. This allows

consumer-CA to achieve the required ratio of energy to water resource. This is

how, all CAs reach an agreement and the consumer-CA achieves its goal. Fig-

ure 10a shows the initial hourly energy and water demand for the entire day in

the consumer-CA. Figure 10b shows the result of inter-CA negotiation of

consumer-CA with its connected resource-CAs. It can be seen that the final alloca-

tions made by resource-CA 1 and resource-CA 2 fulfill the preference of P-TC

(correct ratio of energy to water allocation), which is valid for achieving the pro-

duction goal in the consumer-CA.

Multiple resources and multiple consumers

In third set of experiments, the acyclic topology of second set of experiments is ex-

tended to capture more complex topological structure (Fig. 4c), where multiple

consumer-CAs are connected to multiple resource-CAs. Here CGG constitutes

consumer-CAs, VPP constitutes resource-CA 1 and WSS constitutes resource-CA 2.

The experiment shows that each CA has an autonomous control over local processes

and performs asynchronous bilateral negotiation with its connected CAs. Each CA will

stop inter-CA negotiation, when an agreement with its connected-CAs has been

reached.

Fig. 10 Multi resource coordination with issue dependency. a Initial resource demand of cosumer-CA. b
Results of constrained allocation with issue dependency
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Experimental setup

The configuration of consumer and resource CAs is maintained as described in the sec-

tion above. Consumer-CA 1 has two issues, i.e., light plan ln and water plan wn.

Consumer-CA 1 is connected to resource-CA 2 to negotiate over wn. Similarly

consumer-CA 2 has also two issues, i.e., light plan ln and water plan wn, and negotiates

over both ln and wn with resource-CA 1 and resource-CA 2 respectively. Finally,

consumer-CA 3 comprises two issues as well, i.e., light plan ln and water plan wn.

Consumer-CA 3 is connected with resource-CA 1 to negotiate over ln.

Results

This experiment simulates a scenario where adequate resources are available with re-

spect to the resource demand. This implies that ICTCs in each CA have “uncon-

strained” negotiable preferences. All consumer-CAs should reach an agreement with

their connected resource-CAs without making any compromise over their production

goals. Figures 11 and 12 shows the costs of TCs in each CA during inter-CA negoti-

ation. It can be seen that the constituent-specific TCs in each CA, i.e., A-TC in

resource-CAs and P-TC in consumer-CAs return 0 cost since beginning of inter-CA

negotiation.

This implies that each CA truthfully communicates its preferences to the connected

CA during inter-CA negotiation. It can also be seen that each CA took different num-

ber of inter-CA negotiation rounds to reach an agreement with its connected resource-

CAs. This shows that each of the CAs performs autonomous bilateral negotiation at its

own pace asynchronously.

As mentioned earlier, the resource-CA 1 is negotiating with consumer-CA 2 and

consumer-CA 3. It can be seen in Fig. 12c that E-ICTC in consumer-CA 3 return 0

cost at negotiation round 30. This indicates that consumer-CA 3 reaches an agreement

with its connected resource-CA 1, without waiting for resource-CA 1 to reach an

agreement with consumer-CA 2 as well. Both intra-CA optimization and inter-CA ne-

gotiation processes are stopped in consumer-CA 3. Similarly, resource-CA 1 reaches an

agreement with consumer-CA 3 at negotiation round 11 because both C-ICTC 3 and

C − ICTCsum 3 return 0 cost. The resource-CA 1 makes a partial agreement and stop

inter-CA negotiation with consumer-CA 3, but carries on intra-constituent

optimization and inter-CA negotiation with consumer-CA 2. Resource-CA 2 is also

connected to two consumers, i.e., consumer-CA 1 and consumer-CA 2. Figure 12b

shows that W-ICTC in consumer-CA 2 returns 0 cost at negotiation round 13, which

means that consumer-CA 2 reaches an agreement with resource-CA 2 and stops bilat-

eral negotiation with resource-CA 2. However, it continues bilateral negotiation with

Fig. 11 Cost of TCs in resource-CAs during inter-CA negotiation. a Cost of TCs in resource-CA 1. b Cost of
TCs in resource-CA2
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resource-CA 1 until it reaches an agreement with resource-CA 1 at negotiation round

29. Meanwhile, resource-CA 2 reaches an agreement with both consumer-CAs at nego-

tiation round 8, where all ICTCs representing consumer-CAs return 0 cost. Hence, the

results clearly indicate that each CA preserves its autonomy and has full control to

make independent choices about when to start and stop intra-CA optimization and

inter-CA negotiation.

Conclusion
This paper addresses the problem of coordinating demand and allocation of shared re-

sources in a system consisting of CPSs, i.e., SoCPSs. In this regard, a meta-model of

SoCPSs is proposed, where each CCPS is modeled as an agent, i.e., CA. The meta-

model comprises intra-CA optimization model and inter-CA negotiation model. The

intra-CA optimization model uses MOMI optimization to provide an internal decision

making process in each CA. The inter-CA negotiation model focuses on asynchronous

bilateral negotiation between autonomous CAs to coordinate the interdependent issues

distributed across multiple connected CAs and introduces support for conflict reso-

lution within each CA and across CAs. To validate the efficacy of the proposed ap-

proach, multiple acyclic topologies (ranging from simple to complex) which mimic

real-world SoCPSs are simulated. The results show that the proposed approach is able

to 1) integrate and recognize different types of CAs and their heterogeneous nature, 2)

maintain the operational independence of connected CAs, 3) create a cooperative co-

ordination mechanism that can achieve a global objective without risking sub-

optimality or sub optimization of individual CAs, 4) support dynamic evolution of the

overall SoCPSs, 5) able to find an agreement- in terms of allocation and demand among

connected-CAs without having global knowledge about SoCPS.

Regarding future work, we plan to test the proposed approach in different problem

domains, in order to see if the model presented for intra-CA optimization and inter-

CA negotiation is applicable to other types of resource allocation problems. Further-

more, the topological structures, that we considered for experimentation, are based on

our strict assumption that the type of relationship between connected-CAs constituting

Fig. 12 Cost of TCs in cosumer-CAs during inter-CA negotiation. a Cost of TCs in consumer-CA 1. b Cost of
TCs in consumer-CA 2. c Cost of TCs in consumer-CA 3
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SoCPS is acyclic. Hence, the ability to handle cyclic topologies, where the connected-

CAs have circular dependencies, is also a topic for our future research.
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