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Appendix A: General pooling theory

Assume that a vector of 𝑚 estimators �̂�𝑛 = (�̂�1,𝑛, . . . , �̂�𝑚,𝑛)⊤ of a common parameter 𝜃 is available
from 𝑛 observations. Suppose there exist nonrandom sequences 𝑣1,𝑛, . . . , 𝑣𝑚,𝑛 → ∞ such that the
𝑚−dimensional vector (√𝑣1,𝑛 (�̂�1,𝑛 − 𝜃), . . . ,

√
𝑣𝑚,𝑛 (�̂�𝑚,𝑛 − 𝜃))⊤ is asymptotically Gaussian with bias

vector 𝑩 and covariance matrix V. We consider the problem of finding an optimal way to pool the
estimators �̂� 𝑗 ,𝑛. In other words, we consider the estimator

�̂�𝑛 (𝝎) = �̂�𝑛 (𝜔1, . . . , 𝜔𝑚) =
𝑚∑︁
𝑗=1

𝜔 𝑗 �̂� 𝑗 ,𝑛 =𝝎⊤�̂�𝑛

where the weights 𝝎 = (𝜔1, . . . , 𝜔𝑚)⊤ summing up to 1 remain to be selected. This class of estimators
contains convex combinations, but also allows for weight vectors with negative elements. There are two
obvious criteria for optimality of the weights, either by minimizing the asymptotic variance of �̂�𝑛 (𝝎)
or its Asymptotic Mean Squared Error. The following theorem provides the optimality conditions for
each criterion, along with the closed form expressions of the optimal weights.

Theorem A.1. Assume that there exist nonrandom sequences 𝑣1,𝑛, . . . , 𝑣𝑚,𝑛 →∞, with 𝑣1,𝑛/𝑣 𝑗 ,𝑛 →
𝑐 𝑗 ∈ (0,∞) for any 𝑗 , such that

(√𝑣1,𝑛 (�̂�1,𝑛 − 𝜃), . . . ,
√
𝑣𝑚,𝑛 (�̂�𝑚,𝑛 − 𝜃))⊤

𝑑−→N(𝑩,V)

where 𝑩 ∈ R𝑚 and V is an 𝑚 ×𝑚 symmetric positive semidefinite matrix. Set 𝑣𝑛 =
∑𝑚
𝑗=1 𝑣 𝑗 ,𝑛. Then, for

any choice of weights 𝝎 such that 𝝎⊤1 =
∑𝑚
𝑗=1𝜔 𝑗 = 1, one has

√
𝑣𝑛 (�̂�𝑛 − 𝜃1)⊤ 𝑑−→N(𝑩𝒄 ,V𝒄) and

√
𝑣𝑛 (�̂�𝑛 (𝝎) − 𝜃) 𝑑−→N

(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
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where 𝑩𝒄 = D1/2
𝒄 𝑩 and V𝒄 = D1/2

𝒄 VD1/2
𝒄 with D𝒄 = (∑𝑚

𝑖=1 𝑐
−1
𝑖
) diag(𝑐1, . . . , 𝑐𝑚). The matrix V is posi-

tive definite if and only if V𝒄 is so, and then we have the following results:

1. (Variance-optimal weights) There is a unique solution to the minimization problem of 𝝎⊤V𝒄𝝎 sub-
ject to the constraint 𝝎⊤1 = 1, which is

𝝎 (Var) =
V−1
𝒄 1

1⊤V−1
𝒄 1

, and then
√
𝑣𝑛 (�̂�𝑛 (𝝎 (Var) ) − 𝜃) 𝑑−→N

(
1⊤V−1

𝒄 𝑩𝒄

1⊤V−1
𝒄 1

,
1

1⊤V−1
𝒄 1

)
.

2. (AMSE-optimal weights) There is a unique solution to the minimization problem of AMSE(𝝎) =
𝑣−1
𝑛 [(𝝎⊤𝑩𝒄)2 +𝝎⊤V𝒄𝝎] subject to the constraint 𝝎⊤1 = 1, which is

𝝎 (AMSE) =
(1 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)V−1

𝒄 1 − (1⊤V−1
𝒄 𝑩𝒄)V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
,

and then

√
𝑣𝑛 (�̂�𝑛 (𝝎 (AMSE) ) − 𝜃) 𝑑−→N

(
1⊤V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
,

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄)2 (1⊤V−1
𝒄 1) − (2 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄) (1⊤V−1

𝒄 𝑩𝒄)2

[(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]2

)
.

The optimal value of AMSE(𝝎) is

AMSE(𝝎 (AMSE) ) = 1
𝑣𝑛

×
1 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.

Finally, if �̂�⊤
𝑛1 = 1 with �̂�𝑛

P−→𝝎, then
√
𝑣𝑛 (�̂�𝑛 (�̂�𝑛) − �̂�𝑛 (𝝎)) = oP (1), and especially

√
𝑣𝑛 (�̂�𝑛 (�̂�𝑛) − 𝜃)

𝑑−→N
(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
.

Proof of Theorem A.1. Clearly

√
𝑣𝑛 (�̂�𝑛 − 𝜃1)⊤ = diag(

√︁
𝑣𝑛/𝑣1,𝑛, . . . ,

√︁
𝑣𝑛/𝑣𝑚,𝑛) (

√
𝑣1,𝑛 (�̂�1,𝑛 − 𝜃), . . . ,

√
𝑣𝑚,𝑛 (�̂�𝑚,𝑛 − 𝜃))⊤.

Using the fact that 𝑣𝑛/𝑣 𝑗 ,𝑛 = (𝑣1,𝑛/𝑣 𝑗 ,𝑛) × (𝑣𝑛/𝑣1,𝑛) → 𝑐 𝑗
∑𝑚
𝑖=1 𝑐

−1
𝑖

and the assumption on the joint
convergence of the �̂� 𝑗 ,𝑛, one finds

√
𝑣𝑛 (�̂�𝑛 − 𝜃1)⊤ 𝑑−→N(D1/2

𝒄 𝑩,D1/2
𝒄 VD1/2

𝒄 ) =N(𝑩𝒄 ,V𝒄)

as required. The assertion on the limiting distribution of �̂�𝑛 (𝜔1, . . . , 𝜔𝑚) now immediately follows
from writing �̂�𝑛 (𝝎) − 𝜃 = 𝝎⊤ (�̂�𝑛 − 𝜃1). The final statements when 𝝎 is replaced by �̂�𝑛 satisfying

�̂�⊤
𝑛1 = 1 and �̂�⊤

𝑛

P−→𝝎 are consequences of the identity

√
𝑣𝑛 (�̂�𝑛 (�̂�𝑛) − �̂�𝑛 (𝝎)) =√

𝑣𝑛 (�̂�𝑛 −𝝎)⊤ (�̂�𝑛 − 𝜃1)

and Slutsky’s lemma.
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We turn to solving the minimization problems. The fact that positive definiteness of V entails positive
definiteness of V𝒄 immediately follows from the identity 𝒙⊤V𝒄𝒙 = (D1/2

𝒄 𝒙)⊤V(D1/2
𝒄 𝒙) and the fact that

D𝒄 is nonsingular. This means in particular that the quadratic form 𝝎 ↦→𝝎⊤V𝒄𝝎 is strictly convex. A
standard calculation involving the Lagrange multiplier method then shows that the solution of the
problem

min𝝎⊤V𝒄𝝎 subject to 𝝎⊤1 = 1

satisfies V𝒄𝝎 = 𝜇1, where 𝜇 ∈ R is a Lagrange multiplier. Taking into account the constraint 𝝎⊤1 = 1
yields the solution

𝝎 (Var) =
V−1
𝒄 1

1⊤V−1
𝒄 1

.

The asymptotic normality statement for 𝝎 =𝝎 (Var) is obvious.

We now solve the AMSE minimization problem, that is,

min{(𝝎⊤𝑩𝒄)2 +𝝎⊤V𝒄𝝎} subject to 𝝎⊤1 = 1.

Straightforward calculations show that the gradient of the strictly convex function 𝝎 ↦→ (𝝎⊤𝑩𝒄)2 +
𝝎⊤V𝒄𝝎 is 2(V𝒄 + 𝑩𝒄𝑩

⊤
𝒄 )𝝎. The optimal solution therefore satisfies (V𝒄 + 𝑩𝒄𝑩

⊤
𝒄 )𝝎 = 𝜇1 where 𝜇 ∈ R

is a Lagrange multiplier. Note now that

V𝒄 + 𝑩𝒄𝑩
⊤
𝒄 = V1/2

𝒄 (I𝑚 + V−1/2
𝒄 𝑩𝒄𝑩

⊤
𝒄 V−1/2

𝒄 )V1/2
𝒄

where I𝑚 is the identity matrix with 𝑚 columns and V−1/2
𝒄 is the unique symmetric positive definite

square root of V−1
𝒄 . This means that V𝒄 + 𝑩𝒄𝑩

⊤
𝒄 is invertible, and

(V𝒄 + 𝑩𝒄𝑩
⊤
𝒄 )−1 = V−1/2

𝒄

(
I𝑚 −

V−1/2
𝒄 𝑩𝒄𝑩

⊤
𝒄 V−1/2

𝒄

1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄

)
V−1/2
𝒄 .

Conclude, by taking the constraint 𝝎⊤1 = 1 into account, that the optimal solution is

𝝎 (AMSE) =
(1 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)V−1

𝒄 1 − (1⊤V−1
𝒄 𝑩𝒄)V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2

as announced. Then, if 𝝎 =𝝎 (AMSE) , straightforward but tedious calculations show that

(𝝎⊤𝑩𝒄)2 =
(1⊤V−1

𝒄 𝑩𝒄)2

[(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]2

and 𝝎⊤V𝒄𝝎 =
(1 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)2 (1⊤V−1

𝒄 1) − (2 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 𝑩𝒄)2

[(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]2
.

The asymptotic normality of �̂�𝑛 (𝝎 (AMSE) ) immediately follows, and the optimal value of the AMSE is

𝑣−1
𝑛 [(𝝎⊤𝑩𝒄)2 +𝝎⊤V𝒄𝝎] = 1

𝑣𝑛
×

1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.

The proof is complete.
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We discuss some implications of these optimal choices in terms of, among others, regularization of
bias-optimal weights, sensitivity to uncertainty in weight estimation and gains in asymptotic variance.

Remark A.1 (Asymptotic variance-optimal weights versus pseudo-maximum likelihood). The
asymptotic variance-optimal combination �̂�𝑛 (𝝎 (Var) ) is in fact also a pseudo-maximum likelihood es-

timator of 𝜃. Indeed, as suggested by Theorem A.1, pretend that
√
𝑣𝑛 (�̂�𝑛 − 𝜃1)⊤ 𝑑

= N(𝑩𝒄 ,V𝒄), and
assume that 𝑩 = 0 and V is known and positive definite. Then 𝑩𝒄 = 0 and V𝒄 is known and positive
definite too, so that

�̂�
⊤
𝑛

𝑑
=N(𝜃1,V𝒄/𝑣𝑛).

Considering the vector of estimates �̂�𝑛 as a single data point from the multivariate N(𝜃1,V𝒄/𝑣𝑛)
distribution from which 𝜃 is to be estimated, the log-likelihood is, as a function of 𝜃,

log 𝐿 (𝜃) = −𝑣𝑛
2
(�̂�𝑛 − 𝜃1)⊤V−1

𝒄 (�̂�𝑛 − 𝜃1) − 1
2

log((2𝜋/𝑣𝑛)𝑚 det V𝒄)

= −𝑣𝑛
2

[
(1⊤V−1

𝒄 1)𝜃2 − 2(1⊤V−1
𝒄 �̂�𝑛)𝜃

]
+ constant.

This is obviously a degree 2 strictly concave polynomial maximized at

1⊤V−1
𝒄 �̂�𝑛

1⊤V−1
𝒄 1

=

(
V−1
𝒄 1

1⊤V−1
𝒄 1

)⊤
�̂�𝑛 = (𝝎 (Var) )⊤�̂�𝑛 = �̂�𝑛 (𝝎 (Var) ).

In other words, the maximum likelihood estimator of 𝜃 based on �̂�𝑛 in a multivariate Gaussian model
is nothing but the variance-optimal pooled estimator �̂�𝑛 (𝝎 (Var) ).

Remark A.2 (AMSE-optimal weights as a regularization of bias-optimal weights). In contrast to
variance-optimal weights, the AMSE-optimal solution attempts to balance both the bias and variance
of the pooled estimator. One may consider instead the more general form AMSE(𝝎, 𝜆) ∝ (𝝎⊤𝑩𝒄)2 +
𝜆(𝝎⊤V𝒄𝝎), with a penalty parameter 𝜆 > 0. The optimal set of weights for this generalized AMSE
criterion is

𝝎 (AMSE) (𝜆) =
(𝜆 + 𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)V−1

𝒄 1 − (1⊤V−1
𝒄 𝑩𝒄)V−1

𝒄 𝑩𝒄

(𝜆 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.

As expected, 𝝎 (AMSE) (𝜆) →𝝎 (Var) as 𝜆→∞, and we have, with 𝝎 (AMSE) =𝝎 (AMSE) (1), that

[((𝝎 (Var) )⊤𝑩𝒄)2 + (𝝎 (Var) )⊤V𝒄𝝎
(Var) ] − [((𝝎 (AMSE) )⊤𝑩𝒄)2 + (𝝎 (AMSE) )⊤V𝒄𝝎

(AMSE) ]

=
(1⊤V−1

𝒄 𝑩𝒄)2 [(𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]
(1⊤V−1

𝒄 1)2 [(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]
≥ 0

by the Cauchy-Schwarz inequality, with equality if and only if the vectors V−1/2
𝒄 1 and V−1/2

𝒄 𝑩𝒄 are
either orthogonal (when the two sets of weights lead to the same estimator) or collinear (when 𝑩𝒄 is a
constant vector).

The other solution, when 𝜆 ↓ 0 and the vector 𝑩𝒄 is not constant, is

𝝎 (AMSE) (0) =
(𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄)V−1

𝒄 1 − (1⊤V−1
𝒄 𝑩𝒄)V−1

𝒄 𝑩𝒄

(𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.
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[The denominator is indeed strictly positive, again by the Cauchy-Schwarz inequality.] When 𝑚 ≥ 3,
this set of weights is the unique minimizer of 𝝎⊤V𝒄𝝎 subject to the constraints 𝝎⊤𝑩𝒄 = 0 and 𝝎⊤1 =

1, that is, the unique set of weights minimizing the variance under the constraint that the bias is 0.
This is shown by noting that the solution of this problem satisfies V𝒄𝝎 = 𝜇1 + 𝜇′𝑩𝒄 , where 𝜇 and
𝜇′ are two Lagrange multipliers; taking the constraints 𝝎⊤𝑩𝒄 = 0 and 𝝎⊤1 = 1 into account and
solving the associated system of two linear equations provides the solution 𝝎 (Bias) = 𝝎 (AMSE) (0). In
practice, this tends to produce a very unstable pooled estimator, particularly when the asymptotic
biases of the individual estimators are relatively close. The AMSE-optimal weights are a powerful way
of regularizing such bias-optimal weights and avoiding their inherent instability.

Remark A.3 (On the improvement in asymptotic variance and the sensitivity to uncertainty).
While the naive pooled estimator, obtained for 𝝎 = 1/(1⊤1), has asymptotic variance (1⊤V𝒄1)/(1⊤1)2,

the variance-optimal pooled estimator has the improved asymptotic variance 1/(1⊤V−1
𝒄 1). The im-

provement factor is

𝑅𝒄 =
1⊤V𝒄1
(1⊤1)2

/
1

1⊤V−1
𝒄 1

=
1⊤V𝒄1

1⊤1
×

1⊤V−1
𝒄 1

1⊤1
.

By the Cauchy-Schwarz inequality, the product of Rayleigh quotients 𝑅𝒄 is greater than or equal to 1,
with equality if and only if 1 is an eigenvector of V𝒄 , meaning that the naive pooled estimator is also
variance-optimal if and only if V𝒄 is a positive multiple of a (doubly) stochastic matrix. A sharp upper
bound on 𝑅𝒄 follows from a Kantorovich inequality (see e.g. [14]): if 0 < 𝜆1,𝒄 ≤ · · · ≤ 𝜆𝑚,𝒄 are the
eigenvalues of V𝒄 ,

𝑅𝒄 ≤
1
4

(
2 +

𝜆1,𝒄

𝜆𝑚,𝒄
+
𝜆𝑚,𝒄

𝜆1,𝒄

)
.

If 0 < 𝜆1 ≤ · · · ≤ 𝜆𝑚 are the eigenvalues of V and cond(V) = 𝜆𝑚/𝜆1 is the condition number of V
(i.e. the ratio between its largest and lowest eigenvalues), this can be further bounded above in a
somewhat nicer fashion. Note indeed that for any 𝒙 ≠ 0,

𝒙⊤V𝒄𝒙

𝒙⊤𝒙
=
(D1/2

𝒄 𝒙)⊤V(D1/2
𝒄 𝒙)

(D1/2
𝒄 𝒙)⊤ (D1/2

𝒄 𝒙)
× (D1/2

𝒄 𝒙)⊤ (D1/2
𝒄 𝒙)

𝒙⊤𝒙
.

Now clearly (
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
min

1≤ 𝑗≤𝑚
𝑐 𝑗 ≤

(D1/2
𝒄 𝒙)⊤ (D1/2

𝒄 𝒙)
𝒙⊤𝒙

≤
(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
max

1≤ 𝑗≤𝑚
𝑐 𝑗

and so by the Courant-Fischer min-max characterization of eigenvalues of a symmetric matrix by the
Rayleigh quotient (see Theorem 10, p.116 in [19]),(

𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
min

1≤ 𝑗≤𝑚
𝑐 𝑗 ≤

𝜆1,𝒄

𝜆1
≤

(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
max

1≤ 𝑗≤𝑚
𝑐 𝑗

and

(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
min

1≤ 𝑗≤𝑚
𝑐 𝑗 ≤

𝜆𝑚,𝒄

𝜆𝑚
≤

(
𝑚∑︁
𝑖=1

𝑐−1
𝑖

)
max

1≤ 𝑗≤𝑚
𝑐 𝑗 .

As a consequence,

𝑅𝒄 ≤
1
4

(
2 +

max1≤ 𝑗≤𝑚 𝑐 𝑗
min1≤ 𝑗≤𝑚 𝑐 𝑗

{
1

cond(V) + cond(V)
})
.
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In finite-samples, however, the uncertainty in the estimation of the weights may play a role in the
performance of the pooled estimator. The sensitivity to this uncertainty can be measured using the
condition number of the asymptotic variance function 𝝎 ↦→ 𝝎⊤V𝒄𝝎. The (relative) condition number
of a nonlinear real-valued differentiable function 𝑓 at 𝒙 ≠ 0 w.r.t. the Euclidean norm ∥ · ∥ is (see [22])

cond( 𝑓 , 𝒙) = ∥∇ 𝑓 (𝒙)∥∥𝒙∥
| 𝑓 (𝒙) | = lim

𝜀↓0
sup

∥𝒉 ∥≤𝜀

| 𝑓 (𝒙 + 𝒉) − 𝑓 (𝒙) |
| 𝑓 (𝒙) |

/
∥𝒉∥
∥𝒙∥

where ∇ 𝑓 (𝒙) is the gradient of 𝑓 at 𝒙. For 𝑓 : 𝝎 ↦→𝝎⊤V𝒄𝝎, ∇ 𝑓 (𝝎) = 2V𝒄𝝎, so

cond(𝝎 ↦→𝝎⊤V𝒄𝝎,𝝎
(Var) ) = 2

∥V−1
𝒄 1∥∥1∥

1⊤V−1
𝒄 1

= 2
(

1⊤V−2
𝒄 1

1⊤1

)1/2 (
1⊤V−1

𝒄 1
1⊤1

)−1

.

This condition number is always larger than 2 by the Cauchy-Schwarz inequality. It can also be
bounded from above using the Courant-Fischer min-max principle again:

cond(𝝎 ↦→𝝎⊤V𝒄𝝎,𝝎
(Var) ) ≤ 2

𝜆𝑚,𝒄

𝜆1,𝒄
≤ 2

max1≤ 𝑗≤𝑚 𝑐 𝑗
min1≤ 𝑗≤𝑚 𝑐 𝑗

cond(V).

This means that the variance-optimal pooled estimator tends to achieve its best theoretical perfor-
mance when at least a severe unbalance occurs between sample sizes or when the covariance matrix
V approaches singularity, with the caveat that the resulting pooled estimator might be unstable if the
estimated variance-optimal weights are not accurate enough.

Remark A.3 suggests the following practical guidelines for the choice of optimal weights. If the
estimated weights are not too large in absolute values, then the associated (variance-optimal or AMSE-
optimal) pooling strategy can be favored over both naive pooling and individual estimation. Other-
wise, the resulting pooled estimator might be unstable and highly variable: its stability can then be
checked by making use of bootstrap or resampling. To see why pooled estimators can have arbi-
trarily large variances under the sole assumption that 𝝎⊤1 = 1, consider the case when 𝑚 = 2 and
�̂�1,𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑋𝑖 and �̂�2,𝑛 = 𝑛−1 ∑𝑛
𝑖=1𝑌𝑖 are sample means of i.i.d. random pairs (𝑋𝑖 ,𝑌𝑖) having

common expectation 𝑚, unit marginal variances and correlation 𝜌 ∈ (−1,1). In this case, the asymp-
totic variance of

√
𝑛(�̂�𝑛 (𝜔,1 −𝜔) −𝑚) is

(𝜔,1 −𝜔)
(

1 𝜌
𝜌 1

) (
𝜔

1 −𝜔

)
= 1 − 2(1 − 𝜌)𝜔(1 −𝜔)

which is obviously not bounded as |𝜔 | →∞.
If the chosen pooled estimator exhibits instability, one solution that keeps the advantages of pooling

to some extent is to limit oneself to convex combinations of weights. Indeed, if 𝝎 ≥ 0 elementwise,

𝝎⊤V𝒄𝝎 =

𝑚∑︁
𝑖, 𝑗=1

[V𝒄]𝑖, 𝑗𝜔𝑖𝜔 𝑗 ≤
𝑚∑︁

𝑖, 𝑗=1

[V𝒄]𝑖,𝑖 + [V𝒄] 𝑗 , 𝑗
2

𝜔𝑖𝜔 𝑗 =

𝑚∑︁
𝑖=1

[V𝒄]𝑖,𝑖𝜔𝑖 .

This especially means that convex combinations can never produce a worse asymptotic variance than
the individual estimator which contributes the highest variance to the pooling scheme. In fact, the naive
pooled estimator itself, whose asymptotic variance is bounded above by the average of the diagonal
elements of V𝒄 , already brings a very substantial improvement if the individual variances are very
different (for instance, due to unbalanced sample sizes).
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Appendix B: Results of the main paper and their proofs

B.1. Auxiliary results

Lemma B.1 contains a covariance calculation which strengthens and corrects Lemma 6 in [25] (which
is incorrect in the case of asymptotic independence). This generalized result is essential in the proof of
Theorem 1.

Lemma B.1. Suppose that 𝑋 and 𝑌 have continuous distribution functions and satisfy conditions
C2 (𝛾𝑋, 𝜌𝑋, 𝐴𝑋) and C2 (𝛾𝑌 , 𝜌𝑌 , 𝐴𝑌 ), respectively. Assume also that there is a function 𝑅 on [0,∞]2 \
{(∞,∞)} such that we have the convergence

lim
𝑠→∞

𝑠P
(
𝐹𝑋 (𝑋) ≤

𝑥

𝑠
, 𝐹𝑌 (𝑌 ) ≤

𝑦

𝑠

)
= 𝑅(𝑥, 𝑦)

for any (𝑥, 𝑦) ∈ [0,∞]2 \ {(∞,∞)}. Let 𝑘𝑋 = 𝑘𝑋 (𝑛), 𝑘𝑌 = 𝑘𝑌 (𝑛) be such that:

• 𝑘𝑋, 𝑘𝑌 →∞ and 𝑘𝑋/𝑛𝑋, 𝑘𝑌/𝑛𝑌 → 0;
• 𝑛𝑋/𝑛𝑌 → 𝑏 ∈ (0,∞) and 𝑘𝑋/𝑘𝑌 → 𝑐 ∈ (0,∞).

Assume finally that 𝑓 , 𝑔 are continuously differentiable in a neighborhood of infinity, ultimately in-
creasing, and such that 𝑓 ′, 𝑔′ are regularly varying at infinity with indices 𝑎𝑋 − 1 and 𝑎𝑌 − 1, where
0 ≤ 2𝑎𝑋𝛾𝑋 < 1 and 0 ≤ 2𝑎𝑌𝛾𝑌 < 1. Then we have

𝑘𝑋

𝑛𝑋
Cov

( [ 𝑓 (𝑋) − 𝑓 (𝑈𝑋 (𝑛𝑋/𝑘𝑋))]1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) }
E( [ 𝑓 (𝑋) − 𝑓 (𝑈𝑋 (𝑛𝑋/𝑘𝑋))]1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) })

− 1,

[𝑔(𝑌 ) − 𝑔(𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))]1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) }
E( [𝑔(𝑌 ) − 𝑔(𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))]1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) })

− 1
)

→ (1 − 𝑎𝑋𝛾𝑋) (1 − 𝑎𝑌𝛾𝑌 )
𝛾𝑋𝛾𝑌

∫ ∞

1

∫ ∞

1
𝑥𝑎𝑋−1𝑦𝑎𝑌−1𝑅

(
𝑏−1𝑐𝑥−1/𝛾𝑋 , 𝑦−1/𝛾𝑌

)
𝑑𝑥 𝑑𝑦

= (1 − 𝑎𝑋𝛾𝑋) (1 − 𝑎𝑌𝛾𝑌 )
∫ 1

0

∫ 1

0
𝑢−𝑎𝑋𝛾𝑋𝑣−𝑎𝑌 𝛾𝑌 𝑅

(
𝑏−1𝑐𝑢, 𝑣

) 𝑑𝑢
𝑢

𝑑𝑣

𝑣
,

𝑘𝑋

𝑛𝑋
Cov

( [ 𝑓 (𝑋) − 𝑓 (𝑈𝑋 (𝑛𝑋/𝑘𝑋))]1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) }
E( [ 𝑓 (𝑋) − 𝑓 (𝑈𝑋 (𝑛𝑋/𝑘𝑋))]1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) })

− 1,
1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) }
P(𝑌 >𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))

− 1
)

→ 1 − 𝑎𝑋𝛾𝑋
𝛾𝑋

∫ ∞

1
𝑥𝑎𝑋−1𝑅

(
𝑏−1𝑐𝑥−1/𝛾𝑋 ,1

)
𝑑𝑥 = (1 − 𝑎𝑋𝛾𝑋)

∫ 1

0
𝑢−𝑎𝑋𝛾𝑋𝑅

(
𝑏−1𝑐𝑢,1

) 𝑑𝑢
𝑢
,

𝑘𝑋

𝑛𝑋
Cov

( [𝑔(𝑌 ) − 𝑔(𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))]1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) }
E( [𝑔(𝑌 ) − 𝑔(𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))]1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) })

− 1,
1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) }
P(𝑋 >𝑈𝑋 (𝑛𝑋/𝑘𝑋))

− 1
)

→ 1 − 𝑎𝑌𝛾𝑌
𝛾𝑌

∫ ∞

1
𝑦𝑎𝑌−1𝑅

(
𝑏−1𝑐, 𝑦−1/𝛾𝑌

)
𝑑𝑦 = (1 − 𝑎𝑌𝛾𝑌 )

∫ 1

0
𝑦−𝑎𝑌 𝛾𝑌 𝑅

(
𝑏−1𝑐, 𝑣

) 𝑑𝑣
𝑣
,
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and

𝑘𝑋

𝑛𝑋
Cov

(
1{𝑋>𝑈𝑋 (𝑛𝑋/𝑘𝑋) }
P(𝑋 >𝑈𝑋 (𝑛𝑋/𝑘𝑋))

− 1,
1{𝑌>𝑈𝑌 (𝑛𝑌 /𝑘𝑌 ) }
P(𝑌 >𝑈𝑌 (𝑛𝑌/𝑘𝑌 ))

− 1
)
→ 𝑅(𝑏−1𝑐, 1)

as 𝑛→∞.

Proof of Lemma B.1. Write

𝑛𝑌

𝑘𝑌
=

𝑛𝑋

𝑘𝑋 × (𝑛𝑋/𝑛𝑌 ) × (𝑘𝑌/𝑘𝑋)
=
𝑛𝑋

𝑘 ′
𝑌

and note that 𝑘𝑋/𝑘 ′𝑌 → 𝑐/𝑏. Follow then the proof of Lemma 6 in [25], and use the change of variables
𝑢 = 𝑥−1/𝛾𝑋 and 𝑣 = 𝑦−1/𝛾𝑌 ; in the specific case when 𝑅 is everywhere 0, each covariance term in fact
converges to 1, so the announced convergences hold because 𝑘𝑋/𝑛𝑋 → 0.

Next, we provide a general lemma about second-order regular variation with (strictly) negative sec-
ond order parameter.

Lemma B.2. Let 𝑈 satisfy condition C2 (𝛾, 𝜌, 𝐴), 𝐹 be the associated distribution function and 𝐹 =

1 − 𝐹 be the associated survival function. If 𝜌 < 0, then there exists a constant 𝐶 > 0 such that

𝑈 (𝑡) =𝐶𝑡𝛾
(
1 + 𝐴(𝑡)

𝜌
+ o( |𝐴(𝑡) |)

)
as 𝑡→∞

and 𝐹 (𝑥) =𝐶1/𝛾𝑥−1/𝛾
(
1 + 𝐴(1/𝐹 (𝑥))

𝛾𝜌
+ o( |𝐴(1/𝐹 (𝑥)) |)

)
as 𝑥→∞.

Proof of Lemma B.2. The first asymptotic expansion on 𝑈 is a direct consequence of the equation
below Equation (2.3.23) in [7]. For the second one, write

𝑈 (1/𝐹 (𝑥)) =𝐶 [𝐹 (𝑥)]−𝛾
(
1 + 𝐴(1/𝐹 (𝑥))

𝜌
+ o( |𝐴(1/𝐹 (𝑥)) |)

)
as 𝑥→∞.

Isolating [𝐹 (𝑥)]−𝛾 and using a Taylor expansion then yields

𝐹 (𝑥) =𝐶1/𝛾 [𝑈 (1/𝐹 (𝑥))]−1/𝛾
(
1 + 𝐴(1/𝐹 (𝑥))

𝛾𝜌
+ o( |𝐴(1/𝐹 (𝑥)) |)

)
as 𝑥→∞.

Use finally the local inversion relationship 𝑈 (1/𝐹 (𝑥)) = 𝑥(1 + o( |𝐴(1/𝐹 (𝑥)) |)) (see for example
Lemma 1 in [4]) to complete the proof.

The following lemma is a stronger version of Proposition A.5 in [21], appropriate for our purpose of
showing the consistency of the tests of equality of tail indices and extreme quantiles.

Lemma B.3. Assume that (𝒁𝑛) is a sequence of 𝑚−dimensional random vectors such that

𝑣𝑛 (𝒁𝑛 − 𝒖𝑛)
𝑑−→N(0,𝚺)
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where 𝑣𝑛 →∞, (𝒖𝑛) is a sequence of 𝑚−dimensional nonrandom vectors and 𝚺 is an 𝑚 ×𝑚 positive
definite symmetric matrix. Let (𝚺𝑛) be a random sequence of positive semidefinite symmetric matrices

such that 𝚺𝑛
P−→ 𝚺. Set

𝑫𝑛 = 𝑣𝑛𝚺
−1/2
𝑛

(
𝒁𝑛 −

1⊤𝚺
−1
𝑛 𝒁𝑛

1⊤𝚺
−1
𝑛 1

1

)
which is a well-defined sequence of 𝑚−dimensional random vectors with arbitrarily high probability
as 𝑛→∞. Let ∥ · ∥ denote the Euclidean norm on R𝑚.

(i) If there is a real sequence (𝑐𝑛) such that 𝑣𝑛 (𝒖𝑛 − 𝑐𝑛1) → 0, then 𝑫⊤
𝑛𝑫𝑛

𝑑−→ 𝜒2
𝑚−1.

(ii) If lim inf𝑛→∞ inf𝑐∈R ∥𝒖𝑛 − 𝑐1∥ > 0, then 𝑫⊤
𝑛𝑫𝑛

P−→∞.

Proof of Lemma B.3. With arbitrarily high probability as 𝑛→∞,

𝑫𝑛 = 𝑣𝑛𝚺
−1/2
𝑛

(
𝒁𝑛 − 𝒖𝑛 −

1⊤𝚺
−1
𝑛 (𝒁𝑛 − 𝒖𝑛)

1⊤𝚺
−1
𝑛 1

1

)
+ 𝑣𝑛𝚺

−1/2
𝑛

(
𝒖𝑛 −

1⊤𝚺
−1
𝑛 𝒖𝑛

1⊤𝚺
−1
𝑛 1

1

)
(B.1)

= 𝑣𝑛𝚺
−1/2
𝑛

(
𝒁𝑛 − 𝒖𝑛 −

1⊤𝚺
−1
𝑛 (𝒁𝑛 − 𝒖𝑛)

1⊤𝚺
−1
𝑛 1

1

)
+ 𝑣𝑛𝚺

−1/2
𝑛

(
𝒖𝑛 − 𝑐1 − 1⊤𝚺

−1
𝑛 (𝒖𝑛 − 𝑐1)

1⊤𝚺
−1
𝑛 1

1

)
(B.2)

whatever 𝑐 ∈ R is. The first term in (B.1) and (B.2) converges in distribution to the Euclidean projection
of a standard Gaussian random vector with independent components onto the orthogonal complement
of the line spanned by the vector 𝚺−1/21. Applying Cochran’s theorem, taking 𝑐 = 𝑐𝑛 in (B.2) and
noting that the second term therein is asymptotically negligible yields statement (i). To show statement
(ii), use (B.1) and the reverse triangle inequality to get

lim inf
𝑛→∞

∥𝑫𝑛∥ ≥ lim inf
𝑛→∞

{
𝑣𝑛 inf

𝑐∈R

𝚺−1/2
𝑛 (𝒖𝑛 − 𝑐1)

} + OP (1)

with arbitrarily high probability as 𝑛→∞. Use the assumption ℓ = lim inf𝑛→∞ inf𝑐∈R ∥𝒖𝑛 − 𝑐1∥ > 0 to
get

lim inf
𝑛→∞

∥𝑫𝑛∥ ≥ lim inf
𝑛→∞

{
𝑣𝑛

(
inf
𝑐∈R

∥𝒖𝑛 − 𝑐1∥
𝚺−1/2
𝑛

𝒖𝑛 − 𝑐1
∥𝒖𝑛 − 𝑐1∥

)} + OP (1)

≥ ℓ lim inf
𝑛→∞

{
𝑣𝑛 inf

∥𝒖 ∥=1

𝚺−1/2
𝑛 𝒖

} + OP (1).

Now

sup
∥𝒖 ∥=1

���𝚺−1/2
𝑛 𝒖

 − 𝚺−1/2𝒖
��� ≤ sup

∥𝒖 ∥=1

(𝚺−1/2
𝑛 − 𝚺−1/2

)
𝒖
 ≤ 𝚺−1/2

𝑛 − 𝚺−1/2
 P−→ 0

by continuity of the matrix square root mapping. [On the right-hand side the norm is the matrix norm
induced by the Euclidean norm.] Obviously inf∥𝒖 ∥=1 ∥𝚺−1/2𝒖∥ > 0 and therefore

inf
∥𝒖 ∥=1

𝚺−1/2
𝑛 𝒖

 P−→ inf
∥𝒖 ∥=1

𝚺−1/2𝒖
 > 0.

Hence lim inf𝑛→∞ ∥𝑫𝑛∥ =∞ in probability, proving statement (ii).
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The next lemma makes it possible to use the second-order condition on𝑈 in the distributed inference
framework uniformly over all machines in the case 𝑚→∞.

Lemma B.4. Let (𝑌𝑖, 𝑗 ), 𝑖, 𝑗 ≥ 1, be a double array of unit Pareto random variables such that for any
𝑗 , the 𝑌𝑖, 𝑗 , 𝑖 ≥ 1, are independent, and denote by 𝑌1:𝑛 𝑗 , 𝑗 ≤ · · · ≤ 𝑌𝑛 𝑗 :𝑛 𝑗 , 𝑗 the order statistics related to
the sample (𝑌1, 𝑗 , . . . ,𝑌𝑛 𝑗 , 𝑗 ). Assume that 𝑚 = 𝑚(𝑛) → ∞, and 𝑘 𝑗 = 𝑘 𝑗 (𝑛), 𝑛 𝑗 = 𝑛 𝑗 (𝑛) are such that
sup1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 → 0 and inf1≤ 𝑗≤𝑚 𝑛 𝑗/log𝑚→∞. Then

inf
1≤ 𝑗≤𝑚

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗
P−→+∞.

Proof of Lemma B.4. Define

𝐾𝑖 = max

(
𝑛𝑖 sup

1≤ 𝑗≤𝑚

𝑘 𝑗

𝑛 𝑗
,
√
𝑛𝑖

)
.

Then inf1≤ 𝑗≤𝑚 𝐾 𝑗 →∞, sup1≤ 𝑗≤𝑚 𝐾 𝑗/𝑛 𝑗 → 0, and 𝐾𝑖 ≥ 𝑘𝑖 , so that

inf
1≤ 𝑗≤𝑚

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ≥ inf
1≤ 𝑗≤𝑚

𝑌𝑛 𝑗−𝐾 𝑗 :𝑛 𝑗 , 𝑗 .

It is therefore enough to treat the case when additionally inf1≤ 𝑗≤𝑚 𝑘 𝑗 →∞.

Let first 𝑌𝑛−𝑘:𝑛 be the (𝑛 − 𝑘)th largest order statistic of an i.i.d. unit Pareto sample of size 𝑛. Then, for
any 𝑡 > 1,

P(𝑌𝑛−𝑘:𝑛 ≤ 𝑡) = P(1/𝑌𝑛−𝑘:𝑛 ≥ 1/𝑡) =
∫ 1

1/𝑡

𝑛!
𝑘!(𝑛 − 𝑘 − 1)!𝑥

𝑘 (1 − 𝑥)𝑛−𝑘−1𝑑𝑥

≤
(
𝑛

𝑘

)
(1 − 1/𝑡)𝑛−𝑘 .

By Stirling’s formula, 𝑁! = (𝑁/𝑒)𝑁
√

2𝜋𝑁 (1 + o(1)) as 𝑁→∞. A Taylor expansion of 𝑥 ↦→ log(1 + 𝑥)
around 0 and straightforward computations then yield(

𝑛

𝑘

)
= exp (−(1/2) log(2𝜋𝑘) − 𝑘 log(𝑘/𝑛) + 𝑘 (1 + 𝜖 (𝑛, 𝑘, 𝑛/𝑘)))

where the function 𝜖 (whose value changes from this line to the next) is such that 𝜖 (𝑥, 𝑦, 𝑧) → 0 as
min(𝑥, 𝑦, 𝑧) →∞. Consequently, since 𝑥 log 𝑥→ 0 as 𝑥 ↓ 0,

P(𝑌𝑛−𝑘:𝑛 ≤ 𝑡) ≤
(
𝑛

𝑘

)
(1 − 1/𝑡)𝑛−𝑘 = exp(𝑛[log(1 − 1/𝑡) + 𝜖 (𝑛, 𝑘, 𝑛/𝑘)]). (B.3)

Thus, by our assumptions on the 𝑛 𝑗 and 𝑘 𝑗 ,

P

(
inf

1≤ 𝑗≤𝑚
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ≤ 𝑡

)
≤

𝑚∑︁
𝑗=1

P(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 ≤ 𝑡) (the 𝑌𝑖, 𝑗 , 𝑖 ≥ 1, are i.i.d. unit Pareto)

≤ 𝑚 sup
1≤ 𝑗≤𝑚

P(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 ≤ 𝑡)

≤ 𝑚 exp
(
[log(1 − 1/𝑡) + o(1)] inf

1≤ 𝑗≤𝑚
𝑛 𝑗

)
→ 0.
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This completes the proof.

Lemma B.5 is a result of general interest on certain expectations of intermediate Pareto order statis-
tics. It will be key when it comes to evaluating the bias term of the pooled tail index estimator in the
case 𝑚→∞ of the distributed inference context.

Lemma B.5. Let 𝜑 be a measurable, regularly varying function at infinity with index 𝜌 ≤ 0, and
bounded on all compact intervals of the form [1, 𝑥0], 𝑥0 > 1. Let 𝑌𝑛−𝑘:𝑛 be the (𝑛 − 𝑘)th largest order
statistic of an i.i.d. unit Pareto sample of size 𝑛. Then, for any 𝑘 ≥ 1, E(𝜑(𝑌𝑛−𝑘:𝑛)) is finite and, for any
𝛿 > 0, there exists a positive integer 𝑛0 such that

min(𝑛, 𝑛/𝑘) ≥ 𝑛0 ⇒
����E(𝜑(𝑌𝑛−𝑘:𝑛))

𝜑(𝑛/𝑘) − 𝑘𝜌 Γ(𝑘 − 𝜌 + 1)
𝑘!

���� ≤ 𝛿.
[The quantity 𝑘𝜌Γ(𝑘 − 𝜌 + 1)/𝑘! is bounded in 𝑘 ≥ 1.] In particular, if 𝑘 = 𝑘 (𝑛) →∞ with 𝑘/𝑛→ 0,
then E(𝜑(𝑌𝑛−𝑘:𝑛))/𝜑(𝑛/𝑘) → 1 as 𝑛→∞, and if 𝑘 is instead fixed, then E(𝜑(𝑌𝑛−𝑘:𝑛))/𝜑(𝑛) → Γ(𝑘 −
𝜌 + 1)/𝑘! as 𝑛→∞. [The latter convergence also applies when 𝑘 = 0.]

Proof of Lemma B.5. By Equation (2.1.6) on p.10 of [6] and the identity Γ(𝑁 + 1) = 𝑁! valid for any
nonnegative integer 𝑁 ,

E(𝜑(𝑌𝑛−𝑘:𝑛)) =
Γ(𝑛 + 1)

Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

∫ ∞

1
𝜑(𝑥)𝑥−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 .

Since 𝜑 is bounded on compact intervals and 𝑥−1/2−𝜌𝜑(𝑥) is bounded in a neighborhood of infinity,
this expectation is finite.

To show the announced convergence, we define, for any 𝑥0 > 1,

𝐼𝑛 (𝑥0) =
∫ 𝑥0

1
𝜑(𝑥)𝑥−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 and 𝐽𝑛 (𝑥0) =
∫ ∞

𝑥0

𝜑(𝑥)𝑥−𝑘
(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 ,

as well as

𝐼 ′𝑛 (𝑥0) =
∫ 𝑥0

1
𝑥𝜌−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 and 𝐽 ′𝑛 (𝑥0) =
∫ ∞

𝑥0

𝑥𝜌−𝑘
(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 .

Note first that ���� 𝐽𝑛 (𝑥0)
𝜑(𝑛/𝑘) −

(
𝑘

𝑛

)𝜌
𝐽 ′𝑛 (𝑥0)

���� ≤ ∫ ∞

𝑥0

���� 𝜑(𝑥)𝜑(𝑛/𝑘) −
(
𝑘𝑥

𝑛

)𝜌���� 𝑥−𝑘 (
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 .

Choose 𝜄 ∈ (0,1) arbitrarily small. Then, by Proposition B.1.10 on p.369 of [7], we can fix 𝑥0 > 1 such
that, if 𝑛/𝑘 is large enough,���� 𝐽𝑛 (𝑥0)

𝜑(𝑛/𝑘) −
(
𝑘

𝑛

)𝜌
𝐽 ′𝑛 (𝑥0)

���� ≤ 𝜄∫ ∞

𝑥0

((
𝑘𝑥

𝑛

)𝜌+ 𝜄
+

(
𝑘𝑥

𝑛

)𝜌− 𝜄)
𝑥−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 .
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Clearly

∫ ∞

𝑥0

((
𝑘𝑥

𝑛

)𝜌+ 𝜄
+

(
𝑘𝑥

𝑛

)𝜌− 𝜄)
𝑥−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2

≤ Γ(𝑛 − 𝑘)
[(
𝑘

𝑛

)𝜌+ 𝜄
Γ(𝑘 − 𝜌 − 𝜄 + 1)
Γ(𝑛 − 𝜌 − 𝜄 + 1) +

(
𝑘

𝑛

)𝜌− 𝜄
Γ(𝑘 − 𝜌 + 𝜄 + 1)
Γ(𝑛 − 𝜌 + 𝜄 + 1)

]
.

Hence, if 𝜓(𝑎, 𝑥) = 𝑥𝑎Γ(𝑥 − 𝑎 + 1)/Γ(𝑥 + 1) for 𝑎 < 1 and 𝑥 ≥ 0, the inequality

Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

∫ ∞

𝑥0

((
𝑘𝑥

𝑛

)𝜌+ 𝜄
+

(
𝑘𝑥

𝑛

)𝜌− 𝜄)
𝑥−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 ≤ 𝜓(𝜌 + 𝜄, 𝑘)
𝜓(𝜌 + 𝜄, 𝑛) +

𝜓(𝜌 − 𝜄, 𝑘)
𝜓(𝜌 − 𝜄, 𝑛) .

Since the Gamma function is continuous on (0,∞), the function 𝜓 is obviously continuous on (−∞,1)×
[0,∞) and, from [26], 𝜓(𝑎, 𝑥) → 1 as 𝑥→∞ uniformly in 𝑎 belonging to any compact subinterval of
(−∞,1), so there is a fixed constant 𝐶1 > 0 such that

Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

���� 𝐽𝑛 (𝑥0)
𝜑(𝑛/𝑘) −

(
𝑘

𝑛

)𝜌
𝐽 ′𝑛 (𝑥0)

���� ≤ 𝐶1𝜄 (B.4)

when 𝑛 and 𝑛/𝑘 are large enough. Besides, since 𝑥1−𝜌𝜑(𝑥) →∞ as 𝑥→∞ and 𝜑 is bounded on [1, 𝑥0],

Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

���� 𝐼𝑛 (𝑥0)
𝜑(𝑛/𝑘) −

(
𝑘

𝑛

)𝜌
𝐼 ′𝑛 (𝑥0)

����
≤ Γ(𝑛 + 1)

Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

∫ 𝑥0

1

���� 𝜑(𝑥)𝜑(𝑛/𝑘) −
(
𝑘𝑥

𝑛

)𝜌���� 𝑥−𝑘 (
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2

≤ Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

( 𝑛
𝑘

)1−𝜌 ∫ 𝑥0

1
𝐶2

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 =𝐶2

(
𝑛

𝑘

) ( 𝑛
𝑘

)1−𝜌
(
1 − 1

𝑥0

)𝑛−𝑘
when 𝑛/𝑘 is large enough, where 𝐶2 = 𝐶2 (𝑥0) is a finite positive constant. Stirling’s formula, a Taylor
expansion of 𝑥 ↦→ log(1 + 𝑥) and straightforward computations then entail(

𝑛

𝑘

)
= exp(− log(𝑘!) + 𝑘 log(𝑛/𝑒) + (𝑛 − 𝑘) log(1 + 𝑘/(𝑛 − 𝑘)) + 𝜀(𝑛, 𝑛/𝑘))

where the function 𝜀 (whose value may change from one line to the next) is such that 𝜀(𝑥, 𝑦) → 0 as
min(𝑥, 𝑦) →∞. Moreover

log(𝑘!) =
𝑘∑︁
𝑗=2

log 𝑗 ≥
𝑘∑︁
𝑗=2

∫ 𝑗

𝑗−1
log 𝑡 𝑑𝑡 =

∫ 𝑘

1
log 𝑡 𝑑𝑡 = 𝑘 log 𝑘 − 𝑘

and thus simple calculations yield
(
𝑛

𝑘

)
≤ exp(𝑛 × 𝜀(𝑛, 𝑛/𝑘)). Conclude that

Γ(𝑛 + 1)
Γ(𝑘 + 1)Γ(𝑛 − 𝑘)

���� 𝐼𝑛 (𝑥0)
𝜑(𝑛/𝑘) −

(
𝑘

𝑛

)𝜌
𝐼 ′𝑛 (𝑥0)

���� ≤ 𝐶2 exp(𝑛[log(1 − 1/𝑥0) + 𝜀(𝑛, 𝑛/𝑘)]) ≤ 𝜄 (B.5)
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when 𝑛 and 𝑛/𝑘 are large enough. Combine (B.4) and (B.5) and note that for any 𝑥0 > 1,

𝐼 ′𝑛 (𝑥0) + 𝐽 ′𝑛 (𝑥0) =
∫ ∞

1
𝑥𝜌−𝑘

(
1 − 1

𝑥

)𝑛−𝑘−1
𝑑𝑥

𝑥2 =
Γ(𝑘 − 𝜌 + 1)Γ(𝑛 − 𝑘)

Γ(𝑛 − 𝜌 + 1)

to get ����E(𝜑(𝑌𝑛−𝑘:𝑛))
𝜑(𝑛/𝑘) − 𝑛−𝜌 Γ(𝑛 + 1)

Γ(𝑛 − 𝜌 + 1) × 𝑘
𝜌 Γ(𝑘 − 𝜌 + 1)

Γ(𝑘 + 1)

���� ≤ 𝜄(𝐶1 + 1)

for 𝑛 and 𝑛/𝑘 large enough. Use once again the convergence 𝑛𝜌Γ(𝑛 − 𝜌 + 1)/Γ(𝑛 + 1) → 1 as 𝑛→∞
and the boundedness of 𝑘𝜌Γ(𝑘 − 𝜌 + 1)/Γ(𝑘 + 1) = 𝜓(𝜌, 𝑘) in 𝑘 ≥ 0 to obtain����E(𝜑(𝑌𝑛−𝑘:𝑛))

𝜑(𝑛/𝑘) − 𝑘𝜌 Γ(𝑘 − 𝜌 + 1)
Γ(𝑘 + 1)

���� ≤ 𝜄(𝐶1 + 2)

for 𝑛 and 𝑛/𝑘 large enough. This completes the proof since 𝜄 is arbitrarily small.

B.2. Main results

Proof of Theorem 1. It suffices to show that

(
√︁
𝑘1 (�̂�1 (𝑘1) − 𝛾1), . . . ,

√︁
𝑘𝑚 (�̂�𝑚 (𝑘𝑚) − 𝛾𝑚))⊤

𝑑−→N(𝑩,V).

The second convergence stated in Theorem 1 (in the case 𝛾 𝑗 = 𝛾 for all 𝑗) and the assertions about
optimal weights and the composite estimator with estimated weights will then directly follow from
Theorem A.1.

Apply Corollary 1 in [25] to get, for any 𝑗 ,√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾 𝑗 ) =

√︁
𝑘 𝑗 (�̃� 𝑗 (𝑘 𝑗 ) − 𝛾 𝑗 ) + oP (1)

where �̃� 𝑗 (𝑘 𝑗 ) =
∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }
.

We then equivalently show the joint asymptotic normality of the
√︁
𝑘 𝑗 (�̃� 𝑗 (𝑘 𝑗 ) − 𝛾 𝑗 ), which are ratios

of i.i.d. sums. By Lemma 3(ii) in [25] with 𝑓 = log,

E( [log 𝑋 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )] |𝑋 𝑗 >𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )) = 𝛾 𝑗 +
1

1 − 𝜌 𝑗
𝐴(𝑛 𝑗/𝑘 𝑗 ) + o(1/

√︁
𝑘 𝑗 ).

Moreover, by Lemma 4 in [25],

√︁
𝑘 𝑗

(
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

[log 𝑋𝑖, 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

E( [log 𝑋 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) })
− 1

)
= OP (1)

and √︁
𝑘 𝑗

(
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

P(𝑋 𝑗 >𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ))
− 1

)
= OP (1).
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Pick 𝒂 ∈ R𝑚 \ {0}. Using the above three identities and linearizing yields

𝒂⊤
©«

√
𝑘1 (�̃�1 (𝑘1) − 𝛾1)

...√
𝑘𝑚 (�̃�𝑚 (𝑘𝑚) − 𝛾𝑚)

ª®®¬ −
𝑚∑︁
𝑗=1

𝑎 𝑗
𝜆 𝑗

1 − 𝜌 𝑗

=

𝑚∑︁
𝑗=1

𝑎 𝑗𝛾 𝑗

{√︁
𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

E( [log 𝑋 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) })
− 1

)

−
√︁
𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

P(𝑋 𝑗 >𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ))
− 1

)}
+ oP (1). (B.6)

We now express the right-hand side as a sum of independent random variables. A straightforward
modification of the proof of Lemma 4 in [25] provides, when 𝑛′

𝑗
= 𝑛′

𝑗
(𝑛) is such that 𝑛′

𝑗
/𝑛 𝑗 → 1,

√︁
𝑘 𝑗

©«
1
𝑛 𝑗

max(𝑛 𝑗 ,𝑛′𝑗 )∑︁
𝑖=min(𝑛 𝑗 ,𝑛′𝑗 )+1

[log 𝑋𝑖, 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

E( [log 𝑋 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) })
− 1

ª®®¬ = oP (1)

and

√︁
𝑘 𝑗

©«
1
𝑛 𝑗

max(𝑛 𝑗 ,𝑛′𝑗 )∑︁
𝑖=min(𝑛 𝑗 ,𝑛′𝑗 )+1

1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

P(𝑋 𝑗 >𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ))
− 1

ª®®¬ = oP (1).

Up to reordering the margins, one may assume without loss of generality that 𝑏𝑚 ≤ 𝑏𝑚−1 ≤ · · · ≤ 𝑏1.
When 𝑏 𝑗+1 < 𝑏 𝑗 , this means that 𝑛 𝑗+1 (𝑛) > 𝑛 𝑗 (𝑛) for 𝑛 large enough; if 𝑏 𝑗+1 = 𝑏 𝑗 , then 𝑛 𝑗+1/𝑛 𝑗 →
1, and according to the previous two identities, one may replace 𝑛 𝑗 and 𝑛 𝑗+1 by min(𝑛 𝑗 , 𝑛 𝑗+1) and
max(𝑛 𝑗 , 𝑛 𝑗+1) respectively, up to oP (1) terms in (B.6). In other words, we may in fact also assume that
𝑛1 ≤ 𝑛2 ≤ · · · ≤ 𝑛𝑚 without loss of generality. Define 𝑛0 = 0. Then one may reformulate (B.6) as

𝒂⊤
©«

√
𝑘1 (�̃�1 (𝑘1) − 𝛾1)

...√
𝑘𝑚 (�̃�𝑚 (𝑘𝑚) − 𝛾𝑚)

ª®®¬ −
𝑚∑︁
𝑗=1

𝑎 𝑗
𝜆 𝑗

1 − 𝜌 𝑗

=

𝑚∑︁
ℓ=1

𝑛ℓ∑︁
𝑖=𝑛ℓ−1+1

𝑚∑︁
𝑗=ℓ

𝑎 𝑗𝛾 𝑗

{√︁
𝑘 𝑗

𝑛 𝑗

(
[log 𝑋𝑖, 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

E( [log 𝑋 𝑗 − log𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 )]1{𝑋 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) })
− 1

)

−
√︁
𝑘 𝑗

𝑛 𝑗

(
1{𝑋𝑖, 𝑗>𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ) }

P(𝑋 𝑗 >𝑈 𝑗 (𝑛 𝑗/𝑘 𝑗 ))
− 1

)}
+ oP (1)

=

𝑚∑︁
ℓ=1

𝑛ℓ∑︁
𝑖=𝑛ℓ−1+1

𝑍𝑖,ℓ,𝑛 (𝒂) + oP (1).
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Note that the
∑𝑛ℓ
𝑖=𝑛ℓ−1+1 𝑍𝑖,ℓ,𝑛 (𝒂), 1 ≤ ℓ ≤ 𝑚, are independent. It is then enough to obtain the weak

convergence of each one of these random quantities. We shall show that

∀ℓ ∈ {1, . . . , 𝑚},
𝑛ℓ∑︁

𝑖=𝑛ℓ−1+1

𝑍𝑖,ℓ,𝑛 (𝒂)
𝑑−→N(0, 𝜎2

ℓ (𝒂)) (B.7)

with 𝜎2
ℓ (𝒂) =

(
1
𝑏ℓ

− 1
𝑏ℓ−1

) 
𝑚∑︁
𝑗=ℓ

𝑎2
𝑗𝑏 𝑗𝛾

2
𝑗 +

𝑚∑︁
𝑗 , 𝑗′=ℓ
𝑗≠ 𝑗′

𝑎 𝑗𝑎 𝑗′𝛾 𝑗𝛾 𝑗′
𝑅 𝑗 , 𝑗′ (𝑏 𝑗𝑐 𝑗′ , 𝑏 𝑗′𝑐 𝑗 )

√
𝑐 𝑗
√
𝑐 𝑗′

 .
[Here we make the convention that 𝑏0 =∞ and 1/∞ = 0, and that if 𝜎2 = 0, the Gaussian distribution
N(0, 𝜎2) corresponds to the degenerate distribution at 0.] Note further that for any ℓ, the 𝑍𝑖,ℓ,𝑛 (𝒂),
𝑛ℓ−1 + 1 ≤ 𝑖 ≤ 𝑛ℓ , are independent and centered, and that

𝑛ℓ∑︁
𝑖=𝑛ℓ−1+1

Var(𝑍𝑖,ℓ,𝑛 (𝒂)) → 𝜎2
ℓ (𝒂) and

𝑛ℓ∑︁
𝑖=𝑛ℓ−1+1

E|𝑍𝑖,ℓ,𝑛 (𝒂) |3 → 0.

Indeed, the second convergence is a direct consequence of the Hölder inequality, Lemma 4 in [25]
and the proportionality assumption on the 𝑘 𝑗 and 𝑛 𝑗 , while the first convergence is a consequence of
convergences 𝑘 𝑗/𝑘ℓ → 𝑐ℓ/𝑐 𝑗 and 𝑛 𝑗/𝑛ℓ → 𝑏ℓ/𝑏 𝑗 , Lemma B.1 and the identity

∀𝛼 > 0,
∫ 1

0

∫ 1

0
𝑅 𝑗 ,ℓ (𝛼𝑢, 𝑣)

𝑑𝑢

𝑢

𝑑𝑣

𝑣
=

∫ 1

0
𝑅 𝑗 ,ℓ (𝛼𝑢,1)

𝑑𝑢

𝑢
+
∫ 1

0
𝑅 𝑗 ,ℓ (𝛼, 𝑣)

𝑑𝑣

𝑣

valid by 1-homogeneity of 𝑅 𝑗 ,ℓ (see Theorem 1(ii) in [23]). Convergence (B.7) now follows from the
Lyapunov central limit theorem, see e.g. Theorem 27.3 in p.362 of [1] (except if ℓ ≥ 2 is such that
𝑏ℓ−1 = 𝑏ℓ , in which case it immediately follows from the fact that 𝜎2

ℓ
(𝒂) = 0). Then, by independence

of the
∑𝑛ℓ
𝑖=𝑛ℓ−1+1 𝑍𝑖,ℓ,𝑛 (𝒂) for 1 ≤ ℓ ≤ 𝑚, we get

𝒂⊤
©«

√
𝑘1 (�̃�1 (𝑘1) − 𝛾1)

...√
𝑘𝑚 (�̃�𝑚 (𝑘𝑚) − 𝛾𝑚)

ª®®¬ −
𝑚∑︁
𝑗=1

𝑎 𝑗
𝜆 𝑗

1 − 𝜌 𝑗
→N

(
0,

𝑚∑︁
ℓ=1

𝜎2
ℓ (𝒂)

)
.

Define 𝑅 𝑗 , 𝑗′ (𝑢, 𝑣) = min(𝑢, 𝑣) for 𝑗 = 𝑗 ′ and 𝑅 𝑗 , 𝑗′ otherwise and note that

𝑚∑︁
ℓ=1

𝜎2
ℓ (𝒂) =

𝑚∑︁
ℓ=1

(
1
𝑏ℓ

− 1
𝑏ℓ−1

) 𝑚∑︁
𝑗 , 𝑗′=ℓ

𝑎 𝑗𝑎 𝑗′𝛾 𝑗𝛾 𝑗′
𝑅 𝑗 , 𝑗′ (𝑏 𝑗𝑐 𝑗′ , 𝑏 𝑗′𝑐 𝑗 )

√
𝑐 𝑗
√
𝑐 𝑗′

=

𝑚∑︁
𝑗 , 𝑗′=1

𝑎 𝑗𝑎 𝑗′𝛾 𝑗𝛾 𝑗′
𝑅 𝑗 , 𝑗′ (𝑏 𝑗𝑐 𝑗′ , 𝑏 𝑗′𝑐 𝑗 )

√
𝑐 𝑗
√
𝑐 𝑗′

min( 𝑗 , 𝑗′)∑︁
ℓ=1

(
1
𝑏ℓ

− 1
𝑏ℓ−1

)
=

𝑚∑︁
𝑗 , 𝑗′=1

𝑎 𝑗𝑎 𝑗′𝛾 𝑗𝛾 𝑗′
𝑅 𝑗 , 𝑗′ (𝑏 𝑗𝑐 𝑗′ , 𝑏 𝑗′𝑐 𝑗 )
𝑏min( 𝑗 , 𝑗′)

√
𝑐 𝑗
√
𝑐 𝑗′

=

𝑚∑︁
𝑗=1

𝑎2
𝑗𝛾

2
𝑗 +

∑︁
1≤ 𝑗≠ 𝑗′≤𝑚

𝑎 𝑗𝑎 𝑗′𝛾 𝑗𝛾 𝑗′
𝑅 𝑗 , 𝑗′ (𝑏 𝑗𝑐 𝑗′ , 𝑏 𝑗′𝑐 𝑗 )

max(𝑏 𝑗 , 𝑏 𝑗′)
√
𝑐 𝑗
√
𝑐 𝑗′
.
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Conclude with the Cramér-Wold device.

Proof of Corollary 1. The assumptions ensure that each 𝜆 𝑗 is a consistent estimator of 𝜆 𝑗 , and there-
fore �̂�𝒄 is a consistent estimator of 𝑩𝒄 . We have also observed that the 𝑅 𝑗 ,ℓ are locally uniformly
consistent estimators of the 𝑅 𝑗 ,ℓ , and therefore V̂𝒄 is a consistent estimator of V𝒄 . It is then straightfor-
ward that �̂� (Var)

𝑛 and �̂� (AMSE)
𝑛 are consistent estimators of 𝝎 (Var) and 𝝎 (AMSE) , respectively. The result

now directly follows from Theorem 1.

Proof of Corollary 2. Following the proof of Corollary 1, �̂�𝒄 is a consistent estimator of 𝑩𝒄 , and
�̂� (Var)
𝑛 and �̂� (AMSE)

𝑛 are consistent estimators of 𝝎 (Var) and 𝝎 (AMSE) , respectively. Use then Corol-
lary 1 and (for the AMSE-optimal estimator) the statement of Theorem A.1 dedicated to AMSE-optimal
weighting.

Proof of Theorem 2. Recall that 𝑛 𝑗/𝑛 and 𝑘 𝑗/𝑘 have finite positive limits. As such,

log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1 =

log(𝑘 𝑗/𝑘) − log(𝑛 𝑗/𝑛)
log(𝑘/(𝑛𝑝)) → 0.

The first convergence is then a direct consequence of Theorem 1 and Theorem 4.3.8 on p.138 of [7]. To
show the second asymptotic normality result, let 𝑞 = 𝑞ℓ for a fixed ℓ ∈ {1, . . . , 𝑚}, and start by writing

log
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 )
𝑞(1 − 𝑝)

= log
(
𝑘

𝑛𝑝

)
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) +

[
log

(
𝑘 𝑗

𝑘

)
− log

(𝑛 𝑗
𝑛

)]
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

+ log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞 𝑗 (1 − 𝑘 𝑗/𝑛 𝑗 )
+ log

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞 𝑗 (1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞 𝑗 (1 − 𝑝)

)
+ log

(
𝑞 𝑗 (1 − 𝑝)
𝑞(1 − 𝑝)

)
.

By Theorems 2.4.8, 3.2.5 and the equation at the top of p.139 in [7],

log
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 )
𝑞(1 − 𝑝) = log

(
𝑘

𝑛𝑝

)
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) + log

(
𝑞 𝑗 (1 − 𝑝)
𝑞(1 − 𝑝)

)
+ OP (1/

√
𝑘).

Use Lemma B.2 to get

log
(
𝑞 𝑗 (1 − 𝑝)
𝑞(1 − 𝑝)

)
= log

(
𝑞 𝑗 (1 − 𝑝)
𝑞ℓ (1 − 𝑝)

)
= O( |𝐴 𝑗 (1/𝑝) |) + O( |𝐴ℓ (1/𝑝) |)

= o( |𝐴 𝑗 (𝑛 𝑗/𝑘 𝑗 ) |) + o( |𝐴ℓ (𝑛ℓ/𝑘ℓ ) |)

= o(1/
√
𝑘).

Here the regular variation property of the 𝐴 𝑗 with index 𝜌 𝑗 < 0 was used along with the assumption√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) → 𝜆 𝑗 , the asymptotic proportionality between the 𝑘 𝑗 , and the asymptotic proportionality

between the 𝑛 𝑗 . Hence the identity

log
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 )
𝑞(1 − 𝑝) = log

(
𝑘

𝑛𝑝

)
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) + OP (1/

√
𝑘)
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and therefore

log
𝑞★𝑛 (1 − 𝑝 |�̂�𝑛)
𝑞ℓ (1 − 𝑝) = log

𝑞★𝑛 (1 − 𝑝 |�̂�𝑛)
𝑞(1 − 𝑝) = log

(
𝑘

𝑛𝑝

)
(�̂�𝑛 (�̂�𝑛) − 𝛾) + OP (1/

√
𝑘).

Conclude using Theorem 1.

Proof of Corollary 3. Set 𝒁𝑛 = �̂�𝑛 and note that Λ𝑛 = 𝑫⊤
𝑛𝑫𝑛, where

𝑫𝑛 =
√
𝑘V

−1/2
𝒄

(
𝒁𝑛 −

1⊤V
−1
𝒄 𝒁𝑛

1⊤V
−1
𝒄 1

1

)
.

Theorem 1 yields
√
𝑘 (𝒁𝑛 − 𝜸) 𝑑−→ N(0,V𝒄). Besides, the fact that V𝒄 is a consistent estimator of

V𝒄 results from the local uniform consistency of the 𝑅 𝑗 ,ℓ , highlighted in Section 2.2. Conclude by
applying Lemma B.3. The assertion on the asymptotic confidence interval is an immediate consequence
of Theorem 1 and of the consistency of V̂𝒄 .

Proof of Corollary 4. Similarly to the proof of Corollary 3, note that 𝐿𝑛 (𝑝) = 𝑫⊤
𝑛𝑫𝑛, where now

𝑫𝑛 =

√
𝑘

log(𝑘/(𝑛𝑝))V
−1/2
𝒄

(
𝒁𝑛 (𝑝) −

1⊤V
−1
𝒄 𝒁𝑛 (𝑝)

1⊤V
−1
𝒄 1

1

)
.

We check the assumptions of Lemma B.3. Let log 𝒒(1 − 𝑝) = (log 𝑞1 (1 − 𝑝), . . . , log 𝑞𝑚 (1 − 𝑝)) and
note that, by the arguments of the proof of Theorem 2,

√
𝑘

log(𝑘/(𝑛𝑝)) (𝒁𝑛 (𝑝) − log 𝒒(1 − 𝑝)) 𝑑−→N(0,V𝒄).

Again V𝒄 is a consistent estimator of V𝒄 . Use now Lemma B.2 to get

log 𝑞 𝑗 (1 − 𝑝) − log 𝑞ℓ (1 − 𝑝) = O( |𝐴 𝑗 (1/𝑝) |) + O( |𝐴ℓ (1/𝑝) |)

under assumption (H), which allows to apply Lemma B.3(i) to get the result under the null hypothesis.
Under the alternative hypothesis (H ′), if we had

lim inf
𝑛→∞

inf
𝑐∈R

∥ log 𝒒(1 − 𝑝(𝑛)) − 𝑐1∥ = 0 (with ∥ · ∥ the Euclidean norm)

then there would exist a sequence of integers (𝑛𝑘) and constants 𝑐𝑛𝑘 such that log 𝑞 𝑗 (1 − 𝑝(𝑛𝑘)) −
𝑐𝑛𝑘 → 0 for any 𝑗 . Then one would have log 𝑞 𝑗 (1− 𝑝(𝑛𝑘)) − log 𝑞ℓ (1− 𝑝(𝑛𝑘)) → 0 for any pair ( 𝑗 , ℓ),
which is a contradiction because, by Lemma B.2, at least one of the log 𝑞 𝑗 (𝛼) − log 𝑞ℓ (𝛼) converges
to a nonzero quantity as 𝛼 ↑ 1. Conclude by applying Lemma B.3(ii).

Proof of Corollary 5. This immediately follows from Theorem 1.

Proof of Corollary 6. Recall that 𝑘 𝑗/𝑘→ (∑𝑚
𝑖=1 𝑐

−1
𝑖
)−1𝑐−1

𝑗
and apply Corollary 5.
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Proof of Theorem 3. The first convergence immediately follows from Remark 8. To prove the second
result, note first that

∀ 𝑗 ∈ {1, . . . , 𝑚},
����𝑈 (𝑛 𝑗/𝑘 𝑗 )
𝑈 (𝑛/𝑘) −

(
𝑛 𝑗 𝑘

𝑛𝑘 𝑗

)𝛾 ���� = O( |𝐴(𝑛/𝑘) |)

by Theorem 2.3.9 in [7]. Use then the assumptions 𝑘 𝑗/𝑛 𝑗 = (𝑘/𝑛) (1 + O(1/
√
𝑘)) and

√
𝑘𝐴(𝑛/𝑘) →

𝜆 ∈ R to get, by a Taylor expansion,

∀ 𝑗 ∈ {1, . . . , 𝑚},
𝑈 (𝑛 𝑗/𝑘 𝑗 )
𝑈 (𝑛/𝑘) = 1 + O(1/

√
𝑘).

Combine Corollaries 1 and 3 in [25] to obtain√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) =

√︁
𝑘 𝑗 (𝛾 𝑗 − 𝛾) + oP (1)

where 𝛾 𝑗 =

∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }
.

By Lemma 3(ii) in [25] again with 𝑓 = log,

E( [log 𝑋 − log𝑈 (𝑛/𝑘)] |𝑋 >𝑈 (𝑛/𝑘)) = 𝛾 + 1
1 − 𝜌 𝐴(𝑛/𝑘) + o(1/

√
𝑘).

Write 𝑛/𝑘 = 𝑛 𝑗/𝑘 ′𝑗 with 𝑘 ′
𝑗
= 𝑛 𝑗 𝑘/𝑛 = 𝑘 𝑗 (1 + o(1)). By Lemma 4 in [25],

√︁
𝑘 𝑗

(
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

[log 𝑋𝑖, 𝑗 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

E( [log 𝑋 − log𝑈 (𝑛/𝑘)]1{𝑋>𝑈 (𝑛/𝑘) })
− 1

)
= OP (1)

and √︁
𝑘 𝑗

(
1
𝑛 𝑗

𝑛 𝑗∑︁
𝑖=1

1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

P(𝑋 >𝑈 (𝑛/𝑘)) − 1

)
= OP (1).

Linearizing the 𝛾 𝑗 and using the fact that
√
𝑘𝐴(𝑛/𝑘) → 𝜆 then yields

√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) −

√︁
𝑘 𝑗

√
𝑘

𝜆

1 − 𝜌

= 𝛾

{√︁
𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

E( [log 𝑋 − log𝑈 (𝑛/𝑘)]1{𝑋>𝑈 (𝑛/𝑘) })
− 1

)

−
√︁
𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

P(𝑋 >𝑈 (𝑛/𝑘)) − 1

)}
+ oP (1).

We now concentrate on obtaining a similar representation for the Hill estimator of the pooled data.
Apply again Corollary 1 in [25] to obtain

√
𝑘 (�̂� (Hill)

𝑛 (𝑘) − 𝛾) =
√
𝑘 (�̃�𝑛 (𝑘) − 𝛾) + oP (1)
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where �̃�𝑛 (𝑘) =
∑𝑛
𝑖=1 [log 𝑋𝑖 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖>𝑈 (𝑛/𝑘) }∑𝑛

𝑖=1 1{𝑋𝑖>𝑈 (𝑛/𝑘) }
.

Linearize similarly �̃�𝑛 (𝑘) to get

√
𝑘 (�̂� (Hill)

𝑛 (𝑘) − 𝛾) − 𝜆

1 − 𝜌

= 𝛾

{
√
𝑘

(
𝑛−1 ∑𝑛

𝑖=1 [log 𝑋𝑖 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖>𝑈 (𝑛/𝑘) }
E( [log 𝑋 − log𝑈 (𝑛/𝑘)]1{𝑋>𝑈 (𝑛/𝑘) })

− 1

)
−
√
𝑘

(
𝑛−1 ∑𝑛

𝑖=1 1{𝑋𝑖>𝑈 (𝑛/𝑘) }
P(𝑋 >𝑈 (𝑛/𝑘)) − 1

)}
+ oP (1)

= 𝛾

{
√
𝑘

(
𝑛−1 ∑𝑚

𝑗=1
∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

E( [log 𝑋 − log𝑈 (𝑛/𝑘)]1{𝑋>𝑈 (𝑛/𝑘) })
− 1

)

−
√
𝑘

(
𝑛−1 ∑𝑚

𝑗=1
∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

P(𝑋 >𝑈 (𝑛/𝑘)) − 1

)}
+ oP (1)

=

𝑚∑︁
𝑗=1

𝑛 𝑗

𝑛

√
𝑘√︁
𝑘 𝑗

× 𝛾
{√︁

𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 [log 𝑋𝑖, 𝑗 − log𝑈 (𝑛/𝑘)]1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

E( [log 𝑋 − log𝑈 (𝑛/𝑘)]1{𝑋>𝑈 (𝑛/𝑘) })
− 1

)

−
√︁
𝑘 𝑗

(
𝑛−1
𝑗

∑𝑛 𝑗

𝑖=1 1{𝑋𝑖, 𝑗>𝑈 (𝑛/𝑘) }

P(𝑋 >𝑈 (𝑛/𝑘)) − 1

)}
+ oP (1).

Use now the linearized expression of �̂� 𝑗 (𝑘 𝑗 ) to obtain

√
𝑘 (�̂� (Hill)

𝑛 (𝑘) − 𝛾) − 𝜆

1 − 𝜌 =

𝑚∑︁
𝑗=1

𝑛 𝑗

𝑛

√
𝑘√︁
𝑘 𝑗

(√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) −

√︁
𝑘 𝑗

√
𝑘

𝜆

1 − 𝜌

)
+ oP (1)

=
√
𝑘

𝑚∑︁
𝑗=1

𝑛 𝑗

𝑛
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) −

𝜆

1 − 𝜌 + oP (1).

Since all the 𝑘 𝑗/𝑛 𝑗 have the same limit, and the �̂� 𝑗 (𝑘 𝑗 ) are
√︁
𝑘 𝑗−consistent, we find

√
𝑘 (�̂� (Hill)

𝑛 (𝑘) − 𝛾) − 𝜆

1 − 𝜌 =
√
𝑘

𝑚∑︁
𝑗=1

𝑘 𝑗

𝑘
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) −

𝜆

1 − 𝜌 + oP (1)

=
√
𝑘 (�̂�𝑛 (�̃� (Var)

𝑛 ) − 𝛾) − 𝜆

1 − 𝜌 + oP (1),

which completes the proof.

Proof of Theorem 4. By Corollary 1, the optimal AMSE attainable using weighted pooling is

AMSE(𝝎 (AMSE) ) = 1
𝑘
×

1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄

(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2
.
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We now collect a few further relationships. Define S𝛼,𝛽 =
∑𝑚
𝑗=1 𝑐

−𝛼
𝑗
𝑏
−𝛽
𝑗

. Recall the identity

𝜆 𝑗 = 𝑐
𝜌−1/2
𝑗

𝑏
−𝜌
𝑗
𝜆1 = 𝑐

𝜌−1/2
𝑗

𝑏
−𝜌
𝑗

©«
𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
𝜌−1/2 ©«

𝑚∑︁
𝑗=1

1
𝑏 𝑗

ª®¬
−𝜌

𝜆 (B.8)

(see Section 3.1). According to (B.8) and Remark 8, we have

𝛾2 (1 − 𝜌)2

𝜆2 (1⊤V−1
𝒄 𝑩𝒄)2 − (1⊤V−1

𝒄 1)

=
1
𝛾2

©«
1
𝜆2

©«
𝑚∑︁
𝑗=1

𝜆 𝑗
√
𝑐 𝑗

ª®¬
2

−
𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®®¬
©«
𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1

=
1
𝛾2

©«
©«
𝑚∑︁
𝑗=1

1
𝑐 𝑗

×
[
𝑐 𝑗

𝑏 𝑗

]𝜌ª®¬
2 ©«

𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
2𝜌−2 ©«

𝑚∑︁
𝑗=1

1
𝑏 𝑗

ª®¬
−2𝜌

− 1
ª®®¬

=
1
𝛾2

(
S2

1−𝜌,𝜌S
2𝜌−2
1,0 S−2𝜌

0,1 − 1
)
> 0 (B.9)

(see also Section C.4 below). Recall moreover that (𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2 is positive,
by the Cauchy-Schwarz inequality and is, according to (B.8), a multiple of 𝜆2, because

(𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2

=
1

𝛾4 (1 − 𝜌)2

©«
𝑚∑︁
𝑗=1

𝜆2
𝑗

𝑚∑︁
𝑗=1

1
𝑐 𝑗

− ©«
𝑚∑︁
𝑗=1

𝜆 𝑗
√
𝑐 𝑗

ª®¬
2ª®®¬

©«
𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1

=
𝜆2

𝛾4 (1 − 𝜌)2

(
S1−2𝜌,2𝜌S1,0 −S2

1−𝜌,𝜌

)
S2𝜌−2

1,0 S−2𝜌
0,1 > 0. (B.10)

We then compare AMSE(𝝎 (AMSE) ) to AMSE(Hill) = 𝑘−1 (𝛾2 + 𝜆2/(1 − 𝜌)2) by calculating

𝑘 (1 − 𝜌)2

𝜆2 (AMSE(𝝎 (AMSE) ) − AMSE(Hill) ) [(1 + 𝑩⊤
𝒄 V−1

𝒄 𝑩𝒄) (1⊤V−1
𝒄 1) − (1⊤V−1

𝒄 𝑩𝒄)2]

=

{
𝛾2 (1 − 𝜌)2

𝜆2 (1⊤V−1
𝒄 𝑩𝒄)2 − 1⊤V−1

𝒄 1
}
− [(𝑩⊤

𝒄 V−1
𝒄 𝑩𝒄) (1⊤V−1

𝒄 1) − (1⊤V−1
𝒄 𝑩𝒄)2]

=
1
𝛾2

[(
S2

1−𝜌,𝜌S
2𝜌−2
1,0 S−2𝜌

0,1 − 1
)
− 𝜆2

𝛾2 (1 − 𝜌)2

(
S1−2𝜌,2𝜌S1,0 −S2

1−𝜌,𝜌

)
S2𝜌−2

1,0 S−2𝜌
0,1

]
.

Here the identity 𝛾2 (1⊤V−1
𝒄 1) = 1 was used at the first step, and Equations (B.9) and (B.10) were used

at the last step. Hence AMSE(𝝎 (AMSE) ) ≥ AMSE(Hill) if and only if

𝜆2 ≤ 𝛾2 (1 − 𝜌)2
S2

1−𝜌,𝜌S
2𝜌−2
1,0 S−2𝜌

0,1 − 1(
S1−2𝜌,2𝜌S1,0 −S2

1−𝜌,𝜌

)
S2𝜌−2

1,0 S−2𝜌
0,1

.
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Note then that 𝑑 𝑗 = (𝑐 𝑗/𝑏 𝑗 ) × (S1,0/S0,1), and therefore

S1−𝜌,𝜌S𝜌1,0S
−𝜌
0,1 =

𝑚∑︁
𝑗=1

𝑑
𝜌

𝑗

𝑐 𝑗
= 𝑆𝜌 and S1−2𝜌,2𝜌S2𝜌

1,0S
−2𝜌
0,1 =

𝑚∑︁
𝑗=1

𝑑
2𝜌
𝑗

𝑐 𝑗
= 𝑆2𝜌 .

Recall finally that S1,0 = 𝑆0: the proof is complete after some more straightforward algebra.

Proof of Corollary 7. This follows from Corollary 5 and the consistency of the estimators of the bias
components.

Proof of Corollary 8. This immediately follows from combining Theorem 2, Corollary 5, Theorems 3
and 4, and Corollary 7.

In the next few proofs we use Rényi’s representation of order statistics of an independent standard
exponential sample, which states that

(𝐸𝑘:𝑛)1≤𝑘≤𝑛
𝑑
=

©«
𝑘∑︁
𝑗=1

𝐸 𝑗

𝑛 − 𝑗 + 1
ª®¬1≤𝑘≤𝑛

(B.11)

whenever 𝐸1, . . . , 𝐸𝑛 are independent unit exponential random variables. See for example p.37 of [7].

Proof of Theorem 5. Up to reordering and without loss of generality, let ℓ′ ∈ {ℓ + 1, . . . , 𝑚} be such
that 𝑘 𝑗 →∞ for any 𝑗 ∈ {ℓ + 1, . . . , ℓ′}, and 𝑘 𝑗 is bounded for any 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚}. Write

√
𝑘 (�̂�𝑛 (�̃� (Var)

𝑛 ) − 𝛾) =
ℓ∑︁
𝑗=1

𝜔
(Var)
𝑛, 𝑗

×
√
𝑘 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

+
ℓ′∑︁

𝑗=ℓ+1

𝜔
(Var)
𝑛, 𝑗

×
√
𝑘 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) +

𝑚∑︁
𝑗=ℓ′+1

𝜔
(Var)
𝑛, 𝑗

×
√
𝑘 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾).

Follow the proof of Theorem 3.2.5 in [7] to find that, for any 𝑗 ∈ {1, . . . , ℓ′},√︁
𝑘 𝑗

(
�̂� 𝑗 (𝑘 𝑗 ) − 𝛾 −

𝐴(𝑛 𝑗/𝑘 𝑗 )
1 − 𝜌

)
𝑑−→N(0, 𝛾2).

Besides, for any 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚},

𝜔
(Var)
𝑛, 𝑗

√︄
𝑘

𝑘 𝑗
=

√︂
𝑘 𝑗

𝑘
=

√︄
𝑘

𝑘1
×
√
𝑘1

√︁
𝑘 𝑗∑𝑚

𝑖=1 𝑘𝑖
≤

√︄
𝑘

𝑘1

√︄
𝑘 𝑗

𝑘1
= O ©«

√︄
𝑘 𝑗

𝑘1

ª®¬→ 0.

Conclude that

∀ 𝑗 ∈ {ℓ + 1, . . . , ℓ′}, 𝜔 (Var)
𝑛, 𝑗

×
√
𝑘 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) = oP (1).



22 A. Daouia et al.

We now turn to the case 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚}. Let (𝑌𝑖) be independent unit Pareto random variables. Just
as in the proof of Theorem 3.2.5 in [7], we have

√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

𝑑
= 𝛾

√︁
𝑘 𝑗

©« 1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

log
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗
− 1ª®¬

+
√︁
𝑘 𝑗𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 ) ×

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗

]𝜌
− 1

)
+ oP

©«
√︁
𝑘 𝑗 |𝐴(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 ) | ×

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

[
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗

]𝜌+𝜀ª®¬
where 𝐴0 is asymptotically equivalent to 𝐴 and 𝜀 > 0 is arbitrarily small. By Rényi’s representa-
tion (B.11),

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

log
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗
− 1 𝑑

=
1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

log𝑌𝑖 − 1 = OP (1)

and similarly

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗

]𝜌
− 1

)
= OP (1) and

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

[
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗

]𝜌+𝜀
= OP (1).

Since 𝑘 𝑗 is bounded and 𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 → ∞ with probability 1 (see Lemma 3.2.1 in [7]), we have

𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 )
P−→ 0, resulting in

√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) = OP (1). Conclude that

∀ 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚}, 𝜔 (Var)
𝑛, 𝑗

×
√
𝑘 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) = OP

(√︂
𝑘 𝑗

𝑘

)
= oP (1).

Use now the convergences

𝜔
(Var)
𝑛, 𝑗

→
(
ℓ∑︁
𝑖=1

1
𝑐𝑖

)−1
1
𝑐 𝑗

and
√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

𝑑−→N
(
𝜆 𝑗

1 − 𝜌 , 𝛾
2
)

valid for any 𝑗 ∈ {1, . . . , ℓ} and the independence of the �̂� 𝑗 (𝑘 𝑗 ) to obtain

√
𝑘 (�̂�𝑛 (�̃� (Var)

𝑛 ) − 𝛾) 𝑑−→N
©«

1
1 − 𝜌

©«
ℓ∑︁
𝑗=1

𝜆 𝑗
√
𝑐 𝑗

ª®¬ ©«
ℓ∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
−1/2

, 𝛾2ª®®¬ .
The result about the asymptotic normality of the variance-optimal pooled tail index estimator follows
due to the convergences

√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 ) → 𝑐

𝜌−1/2
𝑗

𝑏
−𝜌
𝑗
𝜆1, valid for any 𝑗 ∈ {1, . . . , ℓ}, and

𝜆

𝜆1
= lim
𝑛→∞

√
𝑘

√
𝑘1

×
𝐴(∑ℓ

𝑖=1 𝑛𝑖/
∑ℓ
𝑖=1 𝑘𝑖)

𝐴(𝑛1/𝑘1)
=

©«
ℓ∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
1/2−𝜌 ©«

ℓ∑︁
𝑗=1

1
𝑏 𝑗

ª®¬
𝜌
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which entail 𝜆 𝑗 = 𝑐
𝜌−1/2
𝑗

𝑏
−𝜌
𝑗

(∑ℓ
𝑗=1 𝑐

−1
𝑗

)𝜌−1/2 (∑ℓ
𝑗=1 𝑏

−1
𝑗

)−𝜌
𝜆 for any 𝑗 ∈ {1, . . . , ℓ}.

Let us turn to the asymptotic behavior of the extreme quantile estimator. Write
√
𝑘

log(𝑘/(𝑛𝑝)) log
𝑞★𝑛 (1 − 𝑝 |�̃� (Var)

𝑛 )
𝑞(1 − 𝑝) −

√
𝑘 (�̂�𝑛 (�̃� (Var)

𝑛 ) − 𝛾)

=

𝑚∑︁
𝑗=1

√︁
𝑘 𝑗

√
𝑘

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

} √︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) +

1
log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )

+ 1
log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)
. (B.12)

In the first part of the proof, we showed that
√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾) = OP (1) for any 𝑗 . Control then the first

term on the right-hand side as������ 𝑚∑︁𝑗=1

√︁
𝑘 𝑗

√
𝑘

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

} √︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

������
= OP

(
max

1≤ 𝑗≤𝑚

√︁
𝑘 𝑗

√
𝑘

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����) = oP (1). (B.13)

To control the second term, we first apply Theorem 2.4.8 on p.52 of [7] to get������ 1
log(𝑘/(𝑛𝑝))

ℓ′∑︁
𝑗=1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )

������ = OP

(
1

log(𝑘/(𝑛𝑝))

)
= oP (1). (B.14)

Then, by Theorems 1.1.6 on p.10, Lemma 1.2.9 on p.22 and Theorem 2.1.1 on p.38, all from [7],

∀ 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚},
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 1/𝑛 𝑗 )
𝑑−→𝑌 𝑗

where 𝑌 𝑗 is a positive random variable with probability 1 (to apply Theorem 2.1.1 on p.38 of [7],
observe that since for such 𝑗 , 𝑘 𝑗 is nondecreasing and bounded, it must be constant eventually). Hence

∀ 𝑗 ∈ {ℓ′ + 1, . . . , 𝑚}, log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
= log

𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 1/𝑛 𝑗 )
+ log

𝑞(1 − 1/𝑛 𝑗 )
𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )

= OP (1)

using the regular variation property of 𝑡 ↦→ 𝑞(1 − 𝑡−1). It follows that������ 1
log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=ℓ′+1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )

������ = oP

(
1

log(𝑘/(𝑛𝑝))

)
= oP (1). (B.15)

It remains to control the final term in (B.12). Use Lemma B.2 to get, for any 𝑗 ,

log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)
=
𝐴(𝑛 𝑗/𝑘 𝑗 ) − 𝐴(1/𝑝)

𝜌
+ o( |𝐴(𝑛 𝑗/𝑘 𝑗 ) |) + o( |𝐴(1/𝑝) |).
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For 𝑗 ∈ {1, . . . , ℓ}, the assumptions on 𝑘 𝑗 , 𝑛 𝑗 , 𝑘 , 𝑛 and 𝑝 immediately yield 𝑘 𝑗/(𝑛 𝑗 𝑝) →∞, resulting
in particular in 𝐴(1/𝑝) = o( |𝐴(𝑛 𝑗/𝑘 𝑗 ) |), and so������ 1

log(𝑘/(𝑛𝑝))

ℓ∑︁
𝑗=1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)������ = O
(

1
log(𝑘/(𝑛𝑝))

)
= o(1). (B.16)

For 𝑗 ∈ {ℓ + 1, . . . , 𝑚},
√︁
𝑘 𝑗 |𝐴(1/𝑝) | = o(

√︁
𝑘 𝑗 |𝐴(𝑛1/𝑘1) |) = o(

√
𝑘1 |𝐴(𝑛1/𝑘1) |) = o(1), and then������ 1

log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=ℓ+1

√︁
𝑘 𝑗

√
𝑘

√︁
𝑘 𝑗 log

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)������ = O
(

1
log(𝑘/(𝑛𝑝))

)
= o(1). (B.17)

Combine (B.12), (B.13), (B.14), (B.15), (B.16) and (B.17) to complete the proof.

Proof of Theorem 6. This proof is different from those of Theorems 1, 2 and 3 in [3], not only because
it allows for a general weighted distributed estimator and heterogeneous effective sample sizes 𝑘 𝑗 , but
also because we use the second-order condition (as allowed by Lemma B.4) differently, resulting in a
distinct treatment of the bias term (warranted by Lemma B.5) that allows to tackle the cases of bounded
and unbounded 𝑘 𝑗 in a unified way. In particular, we only resort to a convergence in mean square rather
than to a (seemingly unspecified) “weak law of large numbers for triangular array” as on p.8 of [3].

It is a consequence of condition C2 (𝛾, 𝜌, 𝐴) that for 𝑡 and 𝑡𝑥 large enough,���� log𝑈 (𝑡𝑥) − log𝑈 (𝑡) − 𝛾 log 𝑥
𝐴0 (𝑡)

− 𝑥
𝜌 − 1
𝜌

���� ≤ 𝜀(min(𝑡, 𝑡𝑥))𝑥𝜌max(𝑥𝜀 (min(𝑡 ,𝑡 𝑥)) , 𝑥−𝜀 (min(𝑡 ,𝑡 𝑥)) ) (B.18)

where 𝐴0 is asymptotically equivalent to 𝐴 and 𝜀 is a positive function such that 𝜀(𝑧) → 0 as 𝑧→∞.
See Theorem B.2.18 in [7], applied to 𝑡 ↦→ log(𝑡−𝛾𝑈 (𝑡)); the function 𝐴0 can, and is chosen here to,

have constant sign. Now {𝑋𝑖, 𝑗 ,1 ≤ 𝑗 ≤ 𝑚,1 ≤ 𝑖 ≤ 𝑛 𝑗 }
𝑑
= {𝑈 (𝑌𝑖, 𝑗 ),1 ≤ 𝑗 ≤ 𝑚,1 ≤ 𝑖 ≤ 𝑛 𝑗 } where the 𝑌𝑖, 𝑗

are i.i.d. unit Pareto, and thus

√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

𝑑
= 𝛾

1√︁
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
log

𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗
− 1

)
+
√︁
𝑘 𝑗𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) ×

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
+ 𝑅𝑛, 𝑗

where the equality in distribution holds jointly in 𝑗 ∈ {1, . . . , 𝑚} and

|𝑅𝑛, 𝑗 | ≤ 𝜀(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )
√︁
𝑘 𝑗 |𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) | ×

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)𝜌+𝜀 (𝑌𝑛𝑗−𝑘 𝑗 :𝑛𝑗 , 𝑗
)
.

Write then �̂�𝑛 (𝝎) − 𝛾 =∑𝑚
𝑗=1𝜔 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾), set 𝑣𝑛 = (∑𝑚

𝑗=1𝜔
2
𝑗
/𝑘 𝑗 )−1/2, and note that

𝑣𝑛 (�̂�𝑛 (𝝎) − 𝛾) 𝑑= 𝑆𝑛,1 + 𝑆𝑛,2 + 𝑆𝑛,3 (B.19)
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with 𝑆𝑛,1 = 𝛾𝑣𝑛
𝑚∑︁
𝑗=1

𝜔 𝑗√︁
𝑘 𝑗

©« 1√︁
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

[
log

𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗
− 1

]ª®¬ ,
𝑆𝑛,2 = 𝑣𝑛

𝑚∑︁
𝑗=1

𝜔 𝑗𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) ×
1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
and 𝑆𝑛,3 = 𝑣𝑛

𝑚∑︁
𝑗=1

𝜔 𝑗√︁
𝑘 𝑗

× 𝑅𝑛, 𝑗 .

We handle each of these three sums separately.

Asymptotic behavior of 𝑆𝑛,1: We show that 𝑆𝑛,1 has a Gaussian limiting distribution. Firstly, by the
fact that the log𝑌𝑖, 𝑗 are i.i.d. unit exponential and Rényi’s representation (B.11),

©«
𝑘 𝑗∑︁
𝑖=1

log
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

ª®¬1≤ 𝑗≤𝑚

𝑑
=

©«
𝑘 𝑗∑︁
𝑖=1

𝐸𝑖, 𝑗
ª®¬1≤ 𝑗≤𝑚

where the 𝐸𝑖, 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑘 𝑗 , are i.i.d. unit exponential. Therefore

𝑆𝑛,1
𝑑
= 𝛾𝑣𝑛

𝑚∑︁
𝑗=1

𝜔 𝑗√︁
𝑘 𝑗

©« 1√︁
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(𝐸𝑖, 𝑗 − 1)ª®¬ = 𝛾
𝑚∑︁
𝑗=1

𝑘 𝑗∑︁
𝑖=1

𝑍𝑚,𝑖, 𝑗 .

The 𝑍𝑚,𝑖, 𝑗 are independent and have expectation 0. We wish to apply the Lyapunov central limit theo-
rem. To do so, we start by noting that

Var ©«
𝑚∑︁
𝑗=1

𝑘 𝑗∑︁
𝑖=1

𝑍𝑚,𝑖, 𝑗
ª®¬ =

𝑚∑︁
𝑗=1

𝑘 𝑗∑︁
𝑖=1

Var(𝑍𝑚,𝑖, 𝑗 ) = 1.

Besides, for any 𝛿 > 0, the moment E|𝐸1,1 − 1|2+𝛿 is obviously finite, and

𝑚∑︁
𝑗=1

𝑘 𝑗∑︁
𝑖=1

E|𝑍𝑚,𝑖, 𝑗 |2+𝛿 = 𝑣2+𝛿
𝑛

𝑚∑︁
𝑗=1

1

𝑘
𝛿/2
𝑗

(
𝜔2
𝑗

𝑘 𝑗

)1+𝛿/2

E|𝐸1,1 − 1|2+𝛿

= E|𝐸1,1 − 1|2+𝛿
∑𝑚
𝑗=1 𝑘

−𝛿/2
𝑗

(𝜔2
𝑗
/𝑘 𝑗 )1+𝛿/2

(∑𝑚
𝑗=1𝜔

2
𝑗
/𝑘 𝑗 )1+𝛿/2

.

Conclude that, if 𝛿 is chosen as in assumption (W),∑𝑚
𝑗=1

∑𝑘 𝑗

𝑖=1 E|𝑍𝑚,𝑖, 𝑗 |
2+𝛿

[Var(∑𝑚
𝑗=1

∑𝑘 𝑗

𝑖=1 𝑍𝑚,𝑖, 𝑗 )]1+𝛿/2
= O ©«

∑𝑚
𝑗=1 𝑘

−𝛿/2
𝑗

(𝜔2
𝑗
/𝑘 𝑗 )1+𝛿/2

(∑𝑚
𝑗=1𝜔

2
𝑗
/𝑘 𝑗 )1+𝛿/2

ª®¬→ 0 as 𝑛→∞.

By Lyapunov’s central limit theorem then,

𝑆𝑛,1
𝑑−→N(0, 𝛾2). (B.20)
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Asymptotic behavior of 𝑆𝑛,2: We show that 𝑆𝑛,2 − E(𝑆𝑛,2) converges to 0 in mean square (and there-
fore also in probability), and we calculate an asymptotic equivalent of E(𝑆𝑛,2) that we will interpret
as a bias term. The derivation again uses Rényi’s representation (B.11): the arguments of the proof of
Lemma 3.2.3 in p.71 of [7] show that the random vectors

(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )1≤ 𝑗≤𝑚 and ©«𝑇𝑛, 𝑗 = 1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)ª®¬1≤ 𝑗≤𝑚

are independent, and

𝑇𝑛, 𝑗
𝑑
=

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌
(𝑌𝜌
𝑖
− 1), 𝑌𝑖 i.i.d. unit Pareto.

In particular E(𝑇𝑛, 𝑗 ) = 1/(1 − 𝜌) and Var(𝑇𝑛, 𝑗 ) = 𝑣𝜌/𝑘 𝑗 where 𝑣𝜌 = Var( 1
𝜌
(𝑌𝜌1 − 1)) < ∞. By

Lemma B.5 and the fact that 𝐴0 and 𝐴 are asymptotically equivalent,

sup
1≤ 𝑗≤𝑚

����E(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ))
𝐴(𝑛 𝑗/𝑘 𝑗 )

− 𝑘𝜌
𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

����→ 0 as 𝑛→∞. (B.21)

Moreover, by the Cauchy-Schwarz inequality,

lim sup
𝑛→∞

𝑣𝑛

𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴(𝑛 𝑗/𝑘 𝑗 ) | ≤ lim sup
𝑛→∞

©«
𝑚∑︁
𝑗=1

{√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )

}2ª®¬
1/2

<∞. (B.22)

This yields

E(𝑆𝑛,2) = 𝑣𝑛
𝑚∑︁
𝑗=1

𝜔 𝑗E(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ))E(𝑇𝑛, 𝑗 )

=
𝑣𝑛

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗 𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 ) + o ©«𝑣𝑛
𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴(𝑛 𝑗/𝑘 𝑗 ) |ª®¬
=

𝑣𝑛

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗 𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 ) + o(1). (B.23)

Let us now control the variance of 𝑆𝑛,2. Recall the obvious formula

Var(𝑋𝑌 ) = E(𝑋2)E(𝑌2) − [E(𝑋)E(𝑌 )]2 = E(𝑋2) Var(𝑌 ) + Var(𝑋) [E(𝑌 )]2

valid for any pair of square-integrable independent random variables 𝑋 and 𝑌 . Using this formula gives

Var(𝑆𝑛,2) = 𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗E(𝐴2

0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) Var(𝑇𝑛, 𝑗 ) + 𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗 Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) [E(𝑇𝑛, 𝑗 )]2

= 𝑣2
𝑛𝑣𝜌

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
E(𝐴2

0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) +
𝑣2
𝑛

(1 − 𝜌)2

𝑚∑︁
𝑗=1

𝜔2
𝑗 Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )).
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By Lemma B.5,

𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
E(𝐴2

0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) = O ©«𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
𝐴2 (𝑛 𝑗/𝑘 𝑗 )

ª®¬ = O

(
sup

1≤ 𝑗≤𝑚
|𝐴(𝑛 𝑗/𝑘 𝑗 ) |2

)
= o(1).

Besides, writing Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) = E(𝐴2
0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) − [E(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ))]2 and using again

Lemma B.5 entails

sup
1≤ 𝑗≤𝑚

�����Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ))
𝐴2 (𝑛 𝑗/𝑘 𝑗 )

−
{
𝑘

2𝜌
𝑗

Γ(𝑘 𝑗 − 2𝜌 + 1)
𝑘 𝑗 !

−
[
𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

]2
}�����→ 0

as 𝑛→∞. It follows that

𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗 Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ))

= 𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗

{
𝑘

2𝜌
𝑗

Γ(𝑘 𝑗 − 2𝜌 + 1)
𝑘 𝑗 !

−
[
𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

]2
}
𝐴2 (𝑛 𝑗/𝑘 𝑗 ) + o ©«𝑣2

𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗𝐴

2 (𝑛 𝑗/𝑘 𝑗 )ª®¬
= 𝑣2

𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
× 𝑘 𝑗

{
𝑘

2𝜌
𝑗

Γ(𝑘 𝑗 − 2𝜌 + 1)
𝑘 𝑗 !

−
[
𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

]2
}
𝐴2 (𝑛 𝑗/𝑘 𝑗 ) + o(1)

because 𝑣2
𝑛

∑𝑚
𝑗=1𝜔

2
𝑗
𝐴2 (𝑛 𝑗/𝑘 𝑗 ) = 𝑣2

𝑛

∑𝑚
𝑗=1 (𝜔2

𝑗
/𝑘 𝑗 ) × {

√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )}2 = O(1) by virtue of

sup
1≤ 𝑗≤𝑚

{
√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )}2 ≤

𝑚∑︁
𝑗=1

{
√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )}2 = O(1).

Following [26], for any fixed 𝑎 ∈ R, Γ(𝑥 + 𝑎)/Γ(𝑥) = 𝑥−𝑎 (1 + O(1/𝑥)) as 𝑥→∞, and thus

lim sup
𝑘→∞

𝑘

�����𝑘2𝜌 Γ(𝑘 − 2𝜌 + 1)
𝑘!

−
[
𝑘𝜌

Γ(𝑘 − 𝜌 + 1)
𝑘!

]2
����� <∞.

This leads to

𝑣2
𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗 Var(𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )) = O ©«𝑣2

𝑛

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
𝐴2 (𝑛 𝑗/𝑘 𝑗 )

ª®¬ + o(1) = o(1).

Conclude that Var(𝑆𝑛,2) → 0 and use (B.23) to obtain������𝑆𝑛,2 − 𝑣𝑛

1 − 𝜌

𝑚∑︁
𝑗=1

𝜔 𝑗 𝑘
𝜌

𝑗

Γ(𝑘 𝑗 − 𝜌 + 1)
𝑘 𝑗 !

𝐴(𝑛 𝑗/𝑘 𝑗 )

������ P−→ 0. (B.24)
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Asymptotic behavior of 𝑆𝑛,3: Pick an arbitrary 𝜄 ∈ (0,1). Use Lemma B.4 to get, with arbitrarily high
probability as 𝑛→∞,

|𝑆𝑛,3 | ≤ 𝜄𝑣𝑛
𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) | ×
1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)𝜌+ 𝜄
. (B.25)

Use once again Rényi’s representation (B.11) to obtain that the random vectors

(𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 )1≤ 𝑗≤𝑚 and ©« 1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)𝜌+ 𝜄ª®¬1≤ 𝑗≤𝑚

are independent, and

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)𝜌+ 𝜄
𝑑
=

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

𝑌
𝜌+ 𝜄
𝑖

, 𝑌𝑖 i.i.d. unit Pareto.

In particular the right-hand side in (B.25) has a finite expectation, which we control as

𝜄𝑣𝑛

𝑚∑︁
𝑗=1

|𝜔 𝑗 |E( |𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) |)E(𝑌
𝜌+ 𝜄
1 )

≤ 𝜄E(𝑌𝜌+ 𝜄1 )
{
sup
𝑘≥1

𝑘𝜌
Γ(𝑘 − 𝜌 + 1)

𝑘!

} ©«𝑣𝑛
𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴(𝑛 𝑗/𝑘 𝑗 ) |
ª®¬ (1 + o(1))

by (B.21) and the boundedness of 𝑘𝜌Γ(𝑘 − 𝜌+1)/𝑘! for 𝑘 ≥ 1. This is arbitrarily small thanks to (B.22).
Conclude by (B.25) that

𝑆𝑛,3
P−→ 0. (B.26)

Combine (B.20), (B.24) and (B.26) to complete the proof.

Proof of Theorem 7. The proof starts by writing a more general version of Equation (B.12) in the
proof of Theorem 5:

√
𝑘

log(𝑘/(𝑛𝑝)) log
𝑞★𝑛 (1 − 𝑝 |𝝎)
𝑞(1 − 𝑝) −

√
𝑘 (�̂�𝑛 (𝝎) − 𝛾) =

√
𝑘

𝑚∑︁
𝑗=1

𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

+
√
𝑘

log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

𝜔 𝑗 log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
+

√
𝑘

log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

𝜔 𝑗 log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)
. (B.27)

We treat each of the three terms on the right-hand side separately.

(i) The structure of the proof will be used again in the proof of (ii), so we only emphasize the use of
the extra condition 𝜔 𝑗 ≥ 0 when it is necessary.
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Let 𝑌𝑖, 𝑗 , 𝑖, 𝑗 ≥ 1, be i.i.d. unit Pareto random variables. First, one can use the uniform second-order
inequality (B.18) to obtain, just as in the proof of Theorem 6 and with the notation therein,

√
𝑘

𝑚∑︁
𝑗=1

𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

𝑑
= S𝑛,1 + S𝑛,2 + S𝑛,3 (B.28)

with

S𝑛,1 = 𝛾
𝑚∑︁
𝑗=1

√
𝑘√︁
𝑘 𝑗
𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

} ©« 1√︁
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

[
log

𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗
− 1

]ª®¬ ,
S𝑛,2 =

𝑚∑︁
𝑗=1

√
𝑘√︁
𝑘 𝑗
𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

} √︁
𝑘 𝑗𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) ×

1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

1
𝜌

( [
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
,

and S𝑛,3 =
𝑚∑︁
𝑗=1

√
𝑘√︁
𝑘 𝑗
𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}
𝑅𝑛, 𝑗 .

Follow the steps of the control of 𝑆𝑛,1, 𝑆𝑛,2 and 𝑆𝑛,3 in the proof of Theorem 6 to find that

• S𝑛,1 has expectation 0 and variance

Var(S𝑛,1) = 𝛾2𝑘

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}2

= O ©«𝑘
𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
× sup

1≤ 𝑗≤𝑚

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����2ª®¬ .
This converges to 0, and therefore S𝑛,1

P−→ 0.
• S𝑛,2 is such that

E|S𝑛,2 | ≤
√
𝑘

1 − 𝜌

𝑚∑︁
𝑗=1

|𝜔 𝑗 |
���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))

log(𝑘/(𝑛𝑝)) − 1
����E|𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) |

= O
©« sup

1≤ 𝑗≤𝑚

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

���� × ©«𝑘
𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗

ª®¬
1/2

× ©«
𝑚∑︁
𝑗=1

{√︁
𝑘 𝑗𝐴(𝑛 𝑗/𝑘 𝑗 )

}2ª®¬
1/2ª®®¬→ 0.

Consequently S𝑛,2
P−→ 0.

• The quantity S𝑛,3 satisfies, for any fixed 𝜄 ∈ (0,1),

|S𝑛,3 | ≤ 𝜄 sup
1≤ 𝑗≤𝑚

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����√𝑘 𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴0 (𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) |
1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

(
𝑌𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)𝜌+ 𝜄
with arbitrarily high probability as 𝑛→∞, and hence S𝑛,3

P−→ 0 by bounding the expectation of the
random variable on the right-hand side, see the control of S𝑛,2 above.

Consequently

√
𝑘

𝑚∑︁
𝑗=1

𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

P−→ 0. (B.29)
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Second, use the fact that inf1≤ 𝑗≤𝑚 𝑛 𝑗/𝑘 𝑗 →∞ together with Lemma B.4 and (B.18) to find, for any
𝜄 ∈ (0, |𝜌 |), that with arbitrarily high probability as 𝑛→∞,

𝑚∑︁
𝑗=1

𝜔 𝑗 log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑑
= 𝛾

𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)
+
𝑚∑︁
𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )
1
𝜌

( [
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
+
𝑚∑︁
𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )R𝑛, 𝑗 (B.30)

where

|R𝑛, 𝑗 | ≤ 𝜄max
( [
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌+ 𝜄
,

[
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌− 𝜄)
.

Rényi’s representation (B.11) and straightforward calculations entail

E

(
log

(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

))
=

{ 𝑛 𝑗∑︁
𝑖=1

1
𝑖
− log𝑛 𝑗

}
−


𝑘 𝑗∑︁
𝑖=1

1
𝑖
− log 𝑘 𝑗

 = 𝑐Euler −

𝑘 𝑗∑︁
𝑖=1

1
𝑖
− log 𝑘 𝑗

 + o(1)

where 𝑐Euler = lim𝑁→∞ (∑𝑁
𝑖=1 1/𝑖− log𝑁) denotes the Euler-Mascheroni constant (here the assumption

inf1≤ 𝑗≤𝑚 𝑛 𝑗 → ∞ was used). Observe that the sequence (∑𝑁
𝑖=1 1/𝑖 − log𝑁) is (strictly) decreasing.

Therefore, letting 𝑘★ = lim sup𝑛→∞ sup1≤ 𝑗≤𝑚 𝑘 𝑗 <∞ and using the assumption that 𝜔 𝑗 ≥ 0,

lim sup
𝑛→∞

E
©«
𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)ª®¬ ≤ 𝑐Euler −
{
𝑘★∑︁
𝑖=1

1
𝑖
− log 𝑘★

}
< 0. (B.31)

Moreover, by Rényi’s representation (B.11) and straightforward calculations again,

Var ©«
𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)ª®¬ =
𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑛 𝑗∑︁
𝑖=𝑘 𝑗+1

1
𝑖2

≤
𝑚∑︁
𝑗=1

𝜔2
𝑗

∫ 𝑛 𝑗

𝑘 𝑗

𝑑𝑥

𝑥2 ≤
𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
.

As a consequence

Var ©«
𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)ª®¬ = O
(

1
𝑘

)
→ 0. (B.32)

Combine Equations (B.31) and (B.32) and the Chebyshev inequality to get

𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)
≤ 1

2

(
𝑐Euler −

{
𝑘★∑︁
𝑖=1

1
𝑖
− log 𝑘★

})
< 0

with arbitrarily high probability as 𝑛→∞. (B.33)

Now, since 𝜌 < 0,������ 𝑚∑︁𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )
1
𝜌

( [
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
+
𝑚∑︁
𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )R𝑛, 𝑗

������
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≤
(

1
|𝜌 | + 𝜄

) 𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴0 (𝑛 𝑗/𝑘 𝑗 ) |
(
1 +

[
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌+ 𝜄
+

[
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌− 𝜄)
.

Using (B.22) and the asymptotic equivalence between |𝐴0 | and |𝐴| together with the assumptions that
lim sup𝑛→∞ sup1≤ 𝑗≤𝑚 𝑘 𝑗 <∞ and inf1≤ 𝑗≤𝑚 𝑛 𝑗 →∞, we get

𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴0 (𝑛 𝑗/𝑘 𝑗 ) | = O
(

1
√
𝑘

)
.

Besides, by Lemma B.5 applied to 𝜑 : 𝑥 ↦→ 𝑥𝜌± 𝜄 and again the assumptions that inf1≤ 𝑗≤𝑚 𝑛 𝑗 →∞ and
lim sup𝑛→∞ sup1≤ 𝑗≤𝑚 𝑘 𝑗 <∞,

sup
1≤ 𝑗≤𝑚

E

( [
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌+ 𝜄
+

[
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌− 𝜄)
= O(1).

Consequently

√
𝑘

log(𝑘/(𝑛𝑝))

������ 𝑚∑︁𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )
1
𝜌

( [
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜌
− 1

)
+
𝑚∑︁
𝑗=1

𝜔 𝑗𝐴0 (𝑛 𝑗/𝑘 𝑗 )R𝑛, 𝑗

������ = oP (1). (B.34)

Third, apply (B.18) to get

sup
1≤ 𝑗≤𝑚

1
|𝐴0 (𝑛 𝑗/𝑘 𝑗 ) |

����log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)
+ 𝐴0 (𝑛 𝑗/𝑘 𝑗 )

1
𝜌

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝜌
− 1

)����
≤ 𝜄 sup

1≤ 𝑗≤𝑚
max

( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝜌+ 𝜄
,

[
𝑘 𝑗

𝑛 𝑗 𝑝

]𝜌− 𝜄)
(B.35)

for 𝑛 large enough (use once again that inf1≤ 𝑗≤𝑚 𝑛 𝑗/𝑘 𝑗 →∞). Meanwhile

𝑢𝑛 = sup
1≤ 𝑗≤𝑚

���� log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

����→ 0 ⇒∀ 𝑗 ∈ {1, . . . , 𝑚},
(
𝑘

𝑛𝑝

)1−𝑢𝑛
≤
𝑘 𝑗

𝑛 𝑗 𝑝
≤

(
𝑘

𝑛𝑝

)1+𝑢𝑛

for 𝑛 large enough, because 𝑘/(𝑛𝑝) →∞. Thus, using this convergence again and the assumption that
𝜌 < 0, we arrive at

sup
1≤ 𝑗≤𝑚

1
|𝐴0 (𝑛 𝑗/𝑘 𝑗 ) |

����log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)���� = O(1).

Conclude, by (B.22), that������
√
𝑘

log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

𝜔 𝑗 log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)������ = O ©«
√
𝑘

log(𝑘/(𝑛𝑝))

𝑚∑︁
𝑗=1

|𝜔 𝑗 | |𝐴0 (𝑛 𝑗/𝑘 𝑗 ) |
ª®¬ = o(1).

(B.36)
Combine (B.27), (B.29) and (B.36) and Theorem 6 to obtain

log
𝑞★𝑛 (1 − 𝑝 |𝝎)
𝑞(1 − 𝑝) =

𝑚∑︁
𝑗=1

𝜔 𝑗 log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
+ OP

(
log(𝑘/(𝑛𝑝))

√
𝑘

)
.
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Combine then (B.30), (B.33) and (B.34) to get the announced non-consistency result.

(ii) Recall the decomposition in (B.27). To prove the asymptotic normality, we show that the three
terms on the right-hand side are oP (1) separately.

The first term is controlled using (B.29), which is still valid.

The control of the second term starts by recalling Equation (B.30). Use first Rényi’s representa-
tion (B.11) to get

log(1 + 1/𝑛 𝑗 ) − log(1 + 1/𝑘 𝑗 ) =
∫ 𝑛 𝑗+1

𝑘 𝑗+1

𝑑𝑥

𝑥
− log(𝑛 𝑗/𝑘 𝑗 ) ≤ E

(
log

(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

))
=

𝑛 𝑗∑︁
𝑖=𝑘 𝑗+1

1
𝑖
− log(𝑛 𝑗/𝑘 𝑗 ) ≤

∫ 𝑛 𝑗

𝑘 𝑗

𝑑𝑥

𝑥
− log(𝑛 𝑗/𝑘 𝑗 ) = 0.

Combine this double inequality with the elementary inequality log(1 + 𝑥) ≤ 𝑥 (valid for 𝑥 > 0) and the
Cauchy-Schwarz inequality to find, for 𝑛 large enough,

√
𝑘

������E ©«
𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)ª®¬
������ = O ©«

√
𝑘

𝑚∑︁
𝑗=1

|𝜔 𝑗 |
𝑘 𝑗

ª®¬ = O
©«

𝑚∑︁
𝑗=1

1
𝑘 𝑗


1/2ª®®¬ = o(1). (B.37)

Recall finally Equation (B.32) and use the Chebyshev inequality to obtain

𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)
= OP (1/

√
𝑘). (B.38)

Equation (B.34) is still valid. This concludes the proof that the second term in the right-hand side of
Equation (B.27) is oP (1).
Finally, Equation (B.35) is valid under the assumption that sup1≤ 𝑗≤𝑚 𝑘 𝑗/𝑛 𝑗 → 0, and then (B.36) is
still valid, thus showing that the third term is a o(1). Conclude that

√
𝑘

log(𝑘/(𝑛𝑝)) log
𝑞★𝑛 (1 − 𝑝 |𝝎)
𝑞(1 − 𝑝) =

√
𝑘 (�̂�𝑛 (𝝎) − 𝛾) + oP (1).

Use now Theorem 6 in conjunction with the convergence 𝑥𝜌Γ(𝑥 − 𝜌 + 1)/Γ(𝑥 + 1) → 1 (as 𝑥→∞) and
the fact that

√
𝑘
∑𝑚
𝑗=1 |𝜔 𝑗 | |𝐴(𝑛 𝑗/𝑘 𝑗 ) | = O(1) to complete the proof of the asymptotic normality result.

For a proof of the consistency statement under the weaker condition inf1≤ 𝑗≤𝑚 𝑘 𝑗 →∞, write the fol-
lowing simpler version of (B.27):

log
𝑞★𝑛 (1 − 𝑝 |𝝎)
𝑞(1 − 𝑝) = log(𝑘/(𝑛𝑝)) ©«(�̂�𝑛 (𝝎) − 𝛾) +

𝑚∑︁
𝑗=1

𝜔 𝑗

{
log(𝑘 𝑗/(𝑛 𝑗 𝑝))
log(𝑘/(𝑛𝑝)) − 1

}
(�̂� 𝑗 (𝑘 𝑗 ) − 𝛾)

ª®¬
+
𝑚∑︁
𝑗=1

𝜔 𝑗 log
𝑋𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
+
𝑚∑︁
𝑗=1

𝜔 𝑗 log
( [
𝑘 𝑗

𝑛 𝑗 𝑝

]𝛾 𝑞(1 − 𝑘 𝑗/𝑛 𝑗 )
𝑞(1 − 𝑝)

)
.
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The first term is a OP (log(𝑘/(𝑛𝑝))/
√
𝑘) = oP (1), by Theorem 6 and Equation (B.29). The third term

is a O(∑𝑚
𝑗=1 |𝜔 𝑗 | |𝐴0 (𝑛 𝑗/𝑘 𝑗 ) |) = o(1), by Equation (B.36). The second term is controlled by noting,

according to Equation (B.37), that������E ©«
𝑚∑︁
𝑗=1

𝜔 𝑗 log
(
𝑘 𝑗

𝑛 𝑗
𝑌𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

)ª®¬
������ = O

©«
1
√
𝑘


𝑚∑︁
𝑗=1

1
𝑘 𝑗


1/2ª®®¬ = O

(
1

inf1≤ 𝑗≤𝑚 𝑘 𝑗

)
= o(1).

Equations (B.30), (B.34) and (B.38) then ensure the desired convergence in probability to 0, which
completes the proof.

Proof of Theorem 8. Define

𝛾 𝑗 (𝑘 𝑗 ) =
1
𝑘 𝑗

𝑘 𝑗∑︁
𝑖=1

log(𝜀𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗 ) − log(𝜀𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 ) and 𝛾𝑛 (𝝎) =
𝑚∑︁
𝑗=1

𝜔 𝑗𝛾 𝑗 (𝑘 𝑗 ).

These are the pseudo-estimator counterparts of �̂� 𝑗 (𝑘 𝑗 ) and �̂�𝑛 (𝝎), where the unobserved errors replace
the residuals. Apply Lemma A.3 in [11] to get

max
1≤ 𝑗≤𝑚

√︁
𝑘 𝑗 sup

0<𝑠≤1

�������log
©«
�̂�
(𝑛 𝑗 )
𝑛 𝑗−⌊𝑘 𝑗 𝑠⌋:𝑛 𝑗 , 𝑗

𝜀𝑛 𝑗−⌊𝑘 𝑗 𝑠⌋:𝑛 𝑗 , 𝑗

ª®®¬
������� = oP (1). (B.39)

This immediately entails
√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾 𝑗 (𝑘 𝑗 )) = oP (1) for any 𝑗 ∈ {1, . . . , 𝑚}. As a consequence√

𝑘 (�̂�𝑛 (𝝎) − 𝛾𝑛 (𝝎)) = oP (1), and the desired result now follows from Theorem 1.

Proof of Theorem 9. Let 𝑞 𝑗 be the quantile function of 𝜀 𝑗 . Set

𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 ,𝝎) =
(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾𝑛 (𝝎)
�̂�
(𝑛 𝑗 )
𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 and 𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 ,𝝎) =

(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾𝑛 (𝝎)
𝜀𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗 .

[In the latter quantity, the notation of the proof of Theorem 8 was used.] Then following (B.39),
the equation

√
𝑘 (�̂�𝑛 (𝝎) − 𝛾𝑛 (𝝎)) = oP (1) (see the proof of Theorem 8 again) and the fact that

log(𝑘 𝑗/(𝑛 𝑗 𝑝)) = log(𝑘/(𝑛𝑝)) (1 + o(1)) for any 𝑗 , we obtain

max
1≤ 𝑗≤𝑚

√
𝑘

log(𝑘/(𝑛𝑝))

�����log
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 , �̂�𝑛)

𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 , �̂�𝑛)

����� = oP (1).

Applying the first convergence in Theorem 2 to 𝑞★𝑗 (1 − 𝑝 |𝑘 𝑗 , �̂�𝑛) and using again
√
𝑘 (�̂�𝑛 (𝝎) −

𝛾𝑛 (𝝎)) = oP (1) and the delta-method then yields, for any 𝑗 ∈ {1, . . . , 𝑚},
√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 , �̂�𝑛)
𝑞 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (�̂�𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N
(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
.

The convergence of 𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝑘 𝑗 , �̂�𝑛) now follows from the identity
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𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |𝑘 𝑗 , �̂�𝑛)

𝑞𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗 (1 − 𝑝) − 1 =
�̂� 𝑗 (𝒛 𝑗 ) − 𝑔 𝑗 (𝒛 𝑗 )

𝑔 𝑗 (𝒛 𝑗 ) + 𝜎𝑗 (𝒛 𝑗 )𝑞 𝑗 (1 − 𝑝)

+
�̂�𝑗 (𝒛 𝑗 ) − 𝜎𝑗 (𝒛 𝑗 )

𝑔 𝑗 (𝒛 𝑗 ) + 𝜎𝑗 (𝒛 𝑗 )𝑞 𝑗 (1 − 𝑝) 𝑞 𝑗 (1 − 𝑝) +
�̂�𝑗 (𝒛 𝑗 )

𝑔 𝑗 (𝒛 𝑗 )/𝑞 𝑗 (1 − 𝑝) + 𝜎𝑗 (𝒛 𝑗 )

(
𝑞★
𝑗
(1 − 𝑝 |𝑘 𝑗 , �̂�𝑛)
𝑞 𝑗 (1 − 𝑝) − 1

)
,

the assumptions on �̂� 𝑗 and �̂�𝑗 , and the fact that 𝑞 𝑗 (1− 𝑝) →∞ as 𝑝 ↓ 0 by the heavy-tailed assumption
on the 𝜀 𝑗 .

Note then

𝑞★𝑛 (1 − 𝑝 |𝝎) =
𝑚∏
𝑗=1

[(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾 𝑗 (𝑘 𝑗 )
�̂�
(𝑛 𝑗 )
𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜔 𝑗

and q𝑞★𝑛 (1 − 𝑝 |𝝎) =
𝑚∏
𝑗=1

[(
𝑘 𝑗

𝑛 𝑗 𝑝

)𝛾 𝑗 (𝑘 𝑗 )
𝜀𝑛 𝑗−𝑘 𝑗 :𝑛 𝑗 , 𝑗

]𝜔 𝑗

.

By (B.39) again and since
√︁
𝑘 𝑗 (�̂� 𝑗 (𝑘 𝑗 ) − 𝛾 𝑗 (𝑘 𝑗 )) = oP (1) for any 𝑗 ∈ {1, . . . , 𝑚},

√
𝑘

log(𝑘/(𝑛𝑝))

����log
𝑞★𝑛 (1 − 𝑝 |�̂�𝑛)
q𝑞★𝑛 (1 − 𝑝 |�̂�𝑛)

���� = oP (1).

Applying the second convergence in Theorem 2 to q𝑞★𝑛 (1− 𝑝 |�̂�𝑛) and using again
√
𝑘 (�̂�𝑛 (𝝎) −𝛾𝑛 (𝝎)) =

oP (1) and the delta-method then yields, for any 𝑗 ∈ {1, . . . , 𝑚},
√
𝑘

log(𝑘/(𝑛𝑝))

(
𝑞★𝑛 (1 − 𝑝 |�̂�𝑛)
𝑞 𝑗 (1 − 𝑝) − 1

)
=
√
𝑘 (�̂�𝑛 (𝝎) − 𝛾) + oP (1)

𝑑−→N
(
𝝎⊤𝑩𝒄 ,𝝎

⊤V𝒄𝝎
)
.

The convergence of 𝑞★
𝑋 𝑗 |𝒁 𝑗=𝒛 𝑗

(1 − 𝑝 |�̂�𝑛) follows by the same calculation used to handle 𝑞★
𝑗
(1 −

𝑝 |𝑘 𝑗 , �̂�𝑛).

Appendix C: Further results, expanded remarks and related
calculations

C.1. About the 𝜷 𝒋 and 𝝆 𝒋 estimators used in the estimation of bias terms

In the context of Section 2, assume that 𝐴 𝑗 (𝑡) = 𝛾𝛽 𝑗 𝑡𝜌 𝑗 ; all commonly used heavy-tailed models satisfy
this kind of proportionality assumption between 𝐴 𝑗 (𝑡) and 𝑡𝜌 𝑗 , see Table 1 in [12]. Define then

𝑀
(ℓ)
𝑗

(𝜅𝑛) =
1
𝜅𝑛

𝜅𝑛∑︁
𝑖=1

(
log 𝑋𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗 − log 𝑋𝑛 𝑗−𝜅𝑛:𝑛 𝑗 , 𝑗

)ℓ
, for ℓ = 1,2,3.

A reasonably well-performing estimator of 𝜌 𝑗 is

�̂�
(𝜏)
𝑗

(𝜅𝑛) = −

������3(𝑇
(𝜏)
𝑗

(𝜅𝑛) − 1)

𝑇
(𝜏)
𝑗

(𝜅𝑛) − 3

������ ,
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with 𝑇 (𝜏)
𝑗

(𝜅𝑛) =



(
𝑀

(1)
𝑗

(𝜅𝑛)
) 𝜏

−
(
𝑀

(2)
𝑗

(𝜅𝑛)/2
) 𝜏/2

(
𝑀

(2)
𝑗

(𝜅𝑛)/2
) 𝜏/2

−
(
𝑀

(3)
𝑗

(𝜅𝑛)/6
) 𝜏/3

if 𝜏 > 0,

log
(
𝑀

(1)
𝑗

(𝜅𝑛)
)
− 1

2 log
(
𝑀

(2)
𝑗

(𝜅𝑛)/2
)

1
2 log

(
𝑀

(2)
𝑗

(𝜅𝑛)/2
)
− 1

3 log
(
𝑀

(3)
𝑗

(𝜅𝑛)/6
) if 𝜏 = 0.

This estimator is implemented in the R function mop from the package evt0. In this package, 𝜅𝑛 =
𝜅𝑛, 𝑗 = ⌊𝑛0.999

𝑗
⌋, and a choice of 𝜏 is made based on a stability criterion for 𝜅 ↦→ �̂�

(𝜏)
𝑗

(𝜅) for large 𝜅
(see Section 3.2 in [13] for more details). According to Proposition 2.1 in [2], these choices ensure, if
𝜌 𝑗 > −249.75 (which will cover all practical applications), that ( �̂� (𝜏)

𝑗
(𝜅𝑛, 𝑗 ) − 𝜌 𝑗 ) log(𝑛 𝑗 ) = oP (1). An

estimator of 𝛽 𝑗 is then

𝛽 𝑗 (𝜅𝑛, 𝑗 ) =
(
𝜅𝑛, 𝑗

𝑛 𝑗

)𝜌 𝑗 𝑇 (1,0)
𝑗

(𝜅𝑛, 𝑗 )𝑇 (0,1)
𝑗

(𝜅𝑛, 𝑗 ) −𝑇 (1,1)
𝑗

(𝜅𝑛, 𝑗 )

𝑇
(1,0)
𝑗

(𝜅𝑛, 𝑗 )𝑇 (1,1)
𝑗

(𝜅𝑛, 𝑗 ) −𝑇 (2,1)
𝑗

(𝜅𝑛, 𝑗 )
,

with 𝑇 (ℓ,ℓ′)
𝑗

(𝜅𝑛, 𝑗 ) =
1
𝜅𝑛, 𝑗

𝜅𝑛, 𝑗∑︁
𝑖=1

(
𝑖

𝜅𝑛, 𝑗

)−ℓ𝜌 𝑗 [
𝑖 log

𝑋𝑛 𝑗−𝑖+1:𝑛 𝑗 , 𝑗

𝑋𝑛 𝑗−𝑖:𝑛 𝑗 , 𝑗

]ℓ′
, �̂� 𝑗 = �̂�

(𝜏)
𝑗

(𝜅𝑛, 𝑗 ).

This estimator is also available from the R function mop. The aforementioned choice of 𝜅𝑛, 𝑗 ensures
that 𝛽 𝑗 = 𝛽 𝑗 (𝜅𝑛, 𝑗 ) is consistent, see Proposition 2.2 in [2].

C.2. About Remark 1

In the case 𝑚 = 2 and 𝑏2 = lim𝑛→∞ 𝑛1/𝑛2 ≤ 1,

V𝒄 = 𝛾
2
(
1 + 1

𝑐2

) (
1 𝑅(𝑐2, 𝑏2)

𝑅(𝑐2, 𝑏2) 𝑐2

)
.

Then

V−1
𝒄

(
1
1

)
=

𝑐2

𝛾2 (𝑐2 + 1) (𝑐2 − 𝑅2 (𝑐2, 𝑏2))

(
𝑐2 − 𝑅(𝑐2, 𝑏2)
1 − 𝑅(𝑐2, 𝑏2)

)
.

Both elements of this vector are nonnegative because 𝑅(𝑐2, 𝑏2) ≤ min(𝑐2, 𝑏2) ≤ min(𝑐2,1). This ex-
tends the calculation leading to Corollary 4 in [25] in the case of equal subsample sizes. This calcu-
lation also shows that for 𝑐2 = 1, the weights are equal, which means that in fact 𝝎 (Var) = (1/2,1/2)⊤
irrespective of the value of the tail copula 𝑅.

We turn to the case 𝑚 = 3 and 𝑐2 = 𝑐3 = 1, and we further assume that 𝑏2 = 𝑏3 = 1 to simplify the
discussion. Set 𝑟12 = 𝑅1,2 (1,1), 𝑟13 = 𝑅1,3 (1,1) and 𝑟23 = 𝑅2,3 (1,1), so that the relevant asymptotic
covariance matrix is

V = 𝛾2 ©«
1 𝑟12 𝑟13
𝑟12 1 𝑟23
𝑟13 𝑟23 1

ª®¬ .
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By Sylvester’s criterion, V is positive definite if and only if 0 ≤ 𝑟12 < 1 and det(V) = 1 − 𝑟2
12 − 𝑟

2
13 −

𝑟2
23 +2𝑟12𝑟13𝑟23 > 0. If these were the only conditions on the 𝑟𝑖 𝑗 then (perhaps surprisingly) the asymp-

totic variance of the variance-optimal estimator, which is 3/(1⊤V−11), could be arbitrarily close to 0
depending on the values of the 𝑟𝑖 𝑗 ; consider for example the case 𝑟12 = 𝑟23 = 𝑟 ∈ [0,1/

√
2) and 𝑟13 = 0.

Then V is positive definite and

V−1 =
1

𝛾2 (1 − 2𝑟2)
©«

1 − 𝑟2 −𝑟 𝑟2

−𝑟 1 −𝑟
𝑟2 −𝑟 1 − 𝑟2

ª®¬⇒ 3
1⊤V−11

= 𝛾2 3(1 − 2𝑟2)
3 − 4𝑟

.

This gets arbitrarily close to 0 as 𝑟 ↑ 1/
√

2. The significance of this calculation is that, when 𝑚 ≥ 3,
pooling together sample means constructed on observations that have certain positive correlation struc-
tures can be (much) more effective than calculating the sample mean of a full sample of independent
data, even though the intuition would dictate that the positive correlation would always make the vari-
ance of the pooled estimator larger. That this intuition is incorrect follows from the identity

V−1 ©«
1
1
1

ª®¬ = 1
𝛾2 (1 − 2𝑟2)

©«
1 − 𝑟

1 − 2𝑟
1 − 𝑟

ª®¬
from which it is seen that the second weight will be negative when 𝑟 ∈ (0,1/2). In other words, in gen-
eral pooling problems, the variance-optimal estimator is in fact not a convex combination of individual
estimators, and thus one cannot rely on the intuition that positive correlations between estimators will
always increase the variance in the pooled estimator.

Recall, however, that the multivariate extreme value setup imposes further restrictions on the 𝑟𝑖 𝑗 .
Specifically, it is a consequence of results from [15] (see Theorem 3.14 therein) and [20] that, in di-
mension 𝑚, the 𝑟𝑖 𝑗 must satisfy

max(0, 𝑟𝑖 𝑗 + 𝑟 𝑗𝑘 − 1) ≤ 𝑟𝑖𝑘 ≤ 1 − |𝑟𝑖 𝑗 − 𝑟 𝑗𝑘 |, for 𝑗 ≠ 𝑖, 𝑘 .

These inequalities are sharp, in the sense that one can indeed find random vectors whose tail depen-
dence coefficients 𝑟𝑖 𝑗 satisfy the lower or upper bounds above, see Section 3 of [20]. As noted in [24],
in dimension 𝑚 = 3, these inequalities can also be rewritten as

𝑟12, 𝑟13, 𝑟23 ≥ 0, 𝑟12 + 𝑟13 − 𝑟23 ≤ 1, 𝑟12 + 𝑟23 − 𝑟13 ≤ 1, 𝑟13 + 𝑟23 − 𝑟12 ≤ 1. (C.40)

The last three inequalities are interpreted as triangle inequalities on the 1 − 𝑟𝑖 𝑗 . The set of all such
matrices can be identified with a convex stacked polytope P in R3 formed by gluing together two
tetrahedra along the unit simplex, see Figure 3.1 in p.62 of [24]. This set P is a proper subset of the
positive part [0,1]3 ∩ E of the Riemannian (quotient) manifold E called the elliptope (see [5], [16]
and [18]) representing the set of standard correlation matrices, and defined by the inequalities

0 ≤ 𝑟12, 𝑟13, 𝑟23 ≤ 1, 1 − 𝑟2
12 − 𝑟

2
13 − 𝑟

2
23 + 2𝑟12𝑟13𝑟23 ≥ 0.

As we show in the next result, the set P touches the boundary of E exclusively at points (𝑟12, 𝑟13, 𝑟23) of
the form (1, 𝑟, 𝑟), (𝑟,1, 𝑟) or (𝑟, 𝑟,1) for some 𝑟 ∈ [0,1]. In other words, any vector of tail dependence
coefficients that satisfies (C.40) and is not of the form (1, 𝑟, 𝑟), (𝑟,1, 𝑟) or (𝑟, 𝑟,1) realizes a positive
definite covariance matrix V. Let 𝑥 = 𝑟12, 𝑦 = 𝑟13 and 𝑧 = 𝑟23.
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Proposition C.1. Let

P = {(𝑥, 𝑦, 𝑧) ∈ [0,∞)3 | 𝑥 + 𝑦 − 𝑧 ≤ 1, 𝑦 + 𝑧 − 𝑥 ≤ 1, 𝑧 + 𝑥 − 𝑦 ≤ 1}

be the convex stacked polytope representing the set of admissible covariance matrices made of tail
dependence coefficients, and

E = {(𝑥, 𝑦, 𝑧) ∈ [−1,1]3 | 1 − 𝑥2 − 𝑦2 − 𝑧2 + 2𝑥𝑦𝑧 ≥ 0}

be the elliptope representing the set of admissible correlation matrices. Let also

intE = {(𝑥, 𝑦, 𝑧) ∈ [−1,1]3 | 1 − 𝑥2 − 𝑦2 − 𝑧2 + 2𝑥𝑦𝑧 > 0}

denote the interior of E, representing the set of positive definite correlation matrices, and 𝜕E = E \ intE
be the boundary of E. Then P ⊂ E, and the intersection P ∩ 𝜕E is exclusively made of the points of the
form (1, 𝑟, 𝑟), (𝑟,1, 𝑟) and (𝑟, 𝑟,1), for some 𝑟 ∈ [0,1].

Proof of Proposition C.1. Define a function 𝑑 by

𝑑 (𝑥, 𝑦, 𝑧) = 1 − 𝑥2 − 𝑦2 − 𝑧2 + 2𝑥𝑦𝑧.

We show that the minimum of 𝑑 over P is 0, which will prove the inclusion P ⊂ E; this will be
done by considering the behavior of 𝑑 on the boundary of P and then on its interior. We prove then
that 𝑑 (𝑥, 𝑦, 𝑧) = 0 on P if and only if (𝑥, 𝑦, 𝑧) is of the form (1, 𝑟, 𝑟), (𝑟,1, 𝑟) and (𝑟, 𝑟,1), for some
𝑟 ∈ [0,1], which will complete the proof. Let (𝑥, 𝑦, 𝑧) ∈ P. Consider first the case 𝑥 = 0. Then

𝑑 (0, 𝑦, 𝑧) = 1 − 𝑦2 − 𝑧2 = 1 − (𝑦 + 𝑧)2 + 2𝑦𝑧 ≥ 0

because 𝑦 + 𝑧 = 𝑦 + 𝑧− 𝑥 ≤ 1, and equality happens if and only if (𝑦, 𝑧) = (0,1) or (1,0). The function 𝑑
is similarly nonnegative on the planes defined by 𝑦 = 0 and 𝑧 = 0, with equality if and only if (𝑥, 𝑦, 𝑧) =
(1,0,0), (0,1,0) or (0,0,1). Consider then the case 𝑥 + 𝑦 − 𝑧 = 1, namely 𝑧 = 𝑥 + 𝑦 − 1. Then

𝑑 (𝑥, 𝑦, 𝑥 + 𝑦 − 1) = 1 − 𝑥2 − 𝑦2 − (𝑥 + 𝑦 − 1)2 + 2𝑥𝑦(𝑥 + 𝑦 − 1)

= −2𝑥2 (1 − 𝑦) + 2𝑥(𝑦2 − 2𝑦 + 1) − 2(𝑦2 − 𝑦)

= −2(1 − 𝑦) (𝑥2 − 𝑥(1 − 𝑦) − 𝑦)

= 2(1 − 𝑦) (1 − 𝑥) (𝑥 + 𝑦) ≥ 0.

Equality happens if and only if 𝑥 = 1, yielding 𝑦 = 𝑧 and therefore (𝑥, 𝑦, 𝑧) = (1, 𝑟, 𝑟) for some 𝑟 ∈ [0,1],
or 𝑦 = 1, yielding 𝑥 = 𝑧 and therefore (𝑥, 𝑦, 𝑧) = (𝑟,1, 𝑟) for some 𝑟 ∈ [0,1]. A similar conclusion
is reached on the planes defined by 𝑦 + 𝑧 − 𝑥 = 1 and 𝑧 + 𝑥 − 𝑦 = 1, with 𝑑 being zero if and only
if (𝑥, 𝑦, 𝑧) = (1, 𝑟, 𝑟), (𝑟,1, 𝑟) or (𝑟, 𝑟,1) for some 𝑟 ∈ [0,1]. We conclude that min𝜕P 𝑑 = 0, and we
finally examine the behavior of 𝑑 when (𝑥, 𝑦, 𝑧) belongs to the interior of P. The gradient of 𝑑 is

∇𝑑 (𝑥, 𝑦, 𝑧) = ©«
−2𝑥 + 2𝑦𝑧
−2𝑦 + 2𝑥𝑧
−2𝑧 + 2𝑥𝑦

ª®¬ .
Cancelling this gradient leads to the equations 𝑥 = 𝑦𝑧, 𝑦 = 𝑥𝑧 and 𝑧 = 𝑥𝑦. Since 𝑥, 𝑦, 𝑧 > 0, these three
equations are equivalent to 𝑥2 = 𝑦2 = 𝑧2 = 𝑥𝑦𝑧, and therefore 𝑥 = 𝑦 = 𝑧 ∈ (0,1). At such points,

𝑑 (𝑥, 𝑥, 𝑥) = 2𝑥3 − 3𝑥2 + 1 = 2(𝑥 − 1)2 (𝑥 + 1/2) > 0.
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Since min𝜕P 𝑑 = 0, obviously minP 𝑑 ≤ 0. If we had minP 𝑑 < 0, then 𝑑 would attain its minimum in
the interior of P, but as we have seen, 𝑑 is (strictly) positive at any of its critical points, which is an
obvious contradiction. Thus minP 𝑑 = 0, meaning that P ⊂ E, and we have seen that 𝑑 (𝑥, 𝑦, 𝑧) is 0 if
and only if (𝑥, 𝑦, 𝑧) = (1, 𝑟, 𝑟), (𝑟,1, 𝑟) or (𝑟, 𝑟,1) for some 𝑟 ∈ [0,1]. This completes the proof.

For such vectors of tail dependence coefficients inducing a positive definite tail correlation matrix,
we have

V−11 =
1

𝛾2 (1 − 𝑟2
12 − 𝑟

2
13 − 𝑟

2
23 + 2𝑟12𝑟13𝑟23)

©«
(1 − 𝑟23) (1 + 𝑟23 − 𝑟12 − 𝑟13)
(1 − 𝑟13) (1 + 𝑟13 − 𝑟12 − 𝑟23)
(1 − 𝑟12) (1 + 𝑟12 − 𝑟13 − 𝑟23)

ª®¬ .
By the set of inequalities (C.40), this vector has nonnegative entries, and the variance-optimal weight
vector is then again a convex combination. The fact that the asymptotic variance 3/(1⊤V−11) of the
variance-optimal pooled estimator is not less than 𝛾2 for 𝑚 = 3 is now obvious, because this pooled
estimator is a convex combination of estimators having individual variance 𝛾2 and nonnegative corre-
lations. We provide another, purely analytical proof based on the Lagrange multiplier method and the
fact that

3
1⊤V−11

= 𝛾2 3(1 − 𝑟2
12 − 𝑟

2
13 − 𝑟

2
23 + 2𝑟12𝑟13𝑟23)

3 − 𝑟2
12 − 𝑟

2
13 − 𝑟

2
23 + 2(𝑟12𝑟13 + 𝑟12𝑟23 + 𝑟13𝑟23 − 𝑟12 − 𝑟13 − 𝑟23)

.

Proposition C.2. Work with the notation of Proposition C.1. Then for any (𝑥, 𝑦, 𝑧) ∈ P \ (P ∩ 𝜕E),

3(1 − 𝑥2 − 𝑦2 − 𝑧2 + 2𝑥𝑦𝑧)
3 − 𝑥2 − 𝑦2 − 𝑧2 + 2(𝑥𝑦 + 𝑥𝑧 + 𝑦𝑧 − 𝑥 − 𝑦 − 𝑧)

≥ 1

with equality if and only if 𝑥 = 𝑦 = 𝑧 = 0.

Proof of Proposition C.2. The numerator in the ratio on the left-hand side of the announced inequality
is positive on S = P \ (P ∩ 𝜕E), and so is the ratio itself (because it is inversely proportional to the sum
of the elements of a positive definite symmetric matrix). It is thus straightforward to note that proving
the desired inequality is equivalent to showing that, on S,

𝑓 (𝑥, 𝑦, 𝑧) = −𝑥2 − 𝑦2 − 𝑧2 − 𝑥𝑦 − 𝑥𝑧 − 𝑦𝑧 + 𝑥 + 𝑦 + 𝑧 + 3𝑥𝑦𝑧 ≥ 0.

We equivalently show that minS 𝑓 = 0. As in the proof of Proposition C.1, we do so by minimizing first
𝑓 on the boundary of S, before looking for its potential extrema within the interior of S.

If 𝑥 = 0, the constraints become 𝑦, 𝑧 ≥ 0 and 𝑦 + 𝑧 ≤ 1, and the function 𝑓 becomes

𝑓 (0, 𝑦, 𝑧) = −𝑦2 − 𝑧2 − 𝑦𝑧 + 𝑦 + 𝑧 = 𝑦𝑧 − (𝑦 + 𝑧) (𝑦 + 𝑧 − 1).

Then obviously 𝑓 (0, 𝑦, 𝑧) ≥ 0 and 𝑓 attains this lower bound at 𝑦 = 𝑧 = 0 (the choices (𝑦, 𝑧) = (0,1) or
(1,0) are not admissible since the corresponding points belong to 𝜕E). Similarly in the cases 𝑦 = 0 and
𝑧 = 0.

If 𝑥 + 𝑦 − 𝑧 = 1, the function 𝑓 becomes

𝑓 (𝑥, 𝑦, 𝑥 + 𝑦 − 1) = −𝑥2 − 𝑦2 − (𝑥 + 𝑦 − 1)2 + 2𝑥 + 2𝑦 − 1

− 𝑥𝑦 − 𝑥(𝑥 + 𝑦 − 1) − 𝑦(𝑥 + 𝑦 − 1) + 3𝑥𝑦(𝑥 + 𝑦 − 1)
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= −3𝑥2 (1 − 𝑦) + 𝑥(3𝑦2 − 8𝑦 + 5) − (3𝑦2 − 5𝑦 + 2)

= −3(1 − 𝑦) (𝑥2 + [𝑦 − 5/3]𝑥 − [𝑦 − 2/3])

= 3(1 − 𝑦) (1 − 𝑥) (𝑥 + 𝑦 − 2/3).

Note that 𝑥 + 𝑦 − 2/3 = 𝑧 + 1/3 > 0, and the cases 𝑥 = 1 or 𝑦 = 1 are inadmissible since (1,0,0) and
(0,1,0) belong to 𝜕E. Then 𝑓 (𝑥, 𝑦, 𝑥+ 𝑦−1) > 0, and similarly in the cases 𝑦+ 𝑧−𝑥 = 1 and 𝑧+𝑥− 𝑦 = 1.
This means that the minimum of 𝑓 on the boundary of S is exactly 0 (and attained at (0,0,0) only),
and in particular that minS 𝑓 ≤ 0.

We seek the potential extrema of 𝑓 in the interior of S, for which we calculate its critical points. The
gradient of 𝑓 is

∇ 𝑓 (𝑥, 𝑦, 𝑧) = ©«
−2𝑥 − 𝑦 − 𝑧 + 1 + 3𝑦𝑧
−2𝑦 − 𝑥 − 𝑧 + 1 + 3𝑥𝑧
−2𝑧 − 𝑥 − 𝑦 + 1 + 3𝑥𝑦

ª®¬ .
Cancelling this gradient leads to the three equations

(1 − 3𝑦)𝑧 = 1 − 2𝑥 − 𝑦,
(1 − 3𝑥)𝑧 = 1 − 2𝑦 − 𝑥,
2𝑧 + 𝑥 + 𝑦 − 1 − 3𝑥𝑦 = 0.

If 𝑦 = 1/3, then the first equation yields 𝑥 = 1/3 and the third one yields 𝑧 = 1/3, and (1/3,1/3,1/3)
is indeed an admissible solution of the gradient equations. At this point 𝑓 (1/3,1/3,1/3) = 4/9 > 0,
so (1/3,1/3,1/3) is not a minimum of 𝑓 on S. If instead 𝑦 ≠ 1/3, then the first equation yields 𝑧 =
(1 − 2𝑥 − 𝑦)/(1 − 3𝑦). Plugging this into the second equation results in

(1 − 3𝑥) (1 − 2𝑥 − 𝑦) = (1 − 3𝑦) (1 − 2𝑦 − 𝑥) ⇔ 3𝑦2 − 2𝑦 = 3𝑥2 − 2𝑥.

This equation (with unknown 𝑦) has solutions 𝑦 = 𝑥 and 𝑦 = (2 − 3𝑥)/3. The solution 𝑦 = 𝑥 leads to
𝑧 = (1 − 2𝑥 − 𝑦)/(1 − 3𝑦) = 1, and then the third equation leads to 3𝑥2 − 2𝑥 − 1 = 0, whose solutions
are 𝑥 = 1 and 𝑥 = −1/3. The latter is obviously not admissible, and neither is the former because it
produces the solution (1,1,1), which does not belong to S = P \ 𝜕E. The solution 𝑦 = (2− 3𝑥)/3 leads
to 𝑧 = (1 − 2𝑥 − 𝑦)/(1 − 3𝑦) = −1/3, which is not admissible. From this discussion it follows that 𝑓
does not attain its minimum in the interior of S, and so minS 𝑓 = 0, as announced, with the minimum
attained at (0,0,0) only.

A similar discussion does not appear to be feasible in dimension 𝑚 > 3, because the set of constraints
on the 𝑟𝑖 𝑗 becomes very complex; characterizations are given by [9], [10] and [24], although they do
not seem suited to the kind of calculations needed here. In particular, whether the variance-optimal
pooled estimator is still indeed a convex combination remains an open question for 𝑚 > 3.

C.3. About the difference between the test statistic 𝚲𝒏 of equal tail indices and
the test statistic of [17]

The key difference between the proposed test statistic Λ𝑛 and the proposal of [17] is in the estimation
of the variance component. Both have the form

Λ𝑛 = 𝑘 (�̂�𝑛 − q𝜇𝑛1)⊤qV−1
𝒄 (�̂�𝑛 − q𝜇𝑛1), with q𝜇𝑛 =

1⊤qV−1
𝒄 �̂�𝑛

1⊤qV−1
𝒄 1
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where qV𝒄 is an estimator of V𝒄 . We use the estimator

[V𝒄] 𝑗 ,ℓ = 𝑘


�̂�2
𝑗 (𝑘 𝑗 )

1
𝑘 𝑗

if 𝑗 = ℓ,

�̂� 𝑗 (𝑘 𝑗 )�̂�ℓ (𝑘ℓ )
1
𝑘 𝑗
𝑅 𝑗 ,ℓ (𝑘 𝑗/𝑘ℓ , 𝑛 𝑗/𝑛ℓ ) if 𝑗 ≠ ℓ,

i.e. we estimate the covariance matrix under the most general model where the 𝛾 𝑗 are possibly different.
This is natural because the log-likelihood ratio formulation requires an expression of the estimated
covariance matrix that is common to the null and alternative models if the resulting deviance is to have
a simple closed form. By contrast, from the description made in Section 3 of [17], the version used
therein appears to be

[V𝒄] (KFL)
𝑗 ,ℓ

= 𝑘 (�̂�𝑛 (�̂� (Var)
𝑛 ))2


1
𝑘 𝑗

if 𝑗 = ℓ,

1
𝑘 𝑗
𝑅 𝑗 ,ℓ (𝑘 𝑗/𝑘ℓ , 𝑛 𝑗/𝑛ℓ ) if 𝑗 ≠ ℓ.

The two tests are asymptotically equivalent under the null hypothesis. However, we recommend to at

least report their results alongside each other, because V
(KFL)
𝒄 is not consistent under the alternative

hypothesis, so that our proposed test can be expected to be more powerful in certain cases.

C.4. About Remark 8

Recall the notation 𝜇 (Hill) = 𝜆/(1 − 𝜌). If 𝜇 (Var) denotes the asymptotic bias of �̂�𝑛 (�̃� (Var)
𝑛 ) then

𝜇 (Hill)

𝜇 (Var) =
©«
𝑚∑︁
𝑗=1

1
𝑐 𝑗

ª®¬
1−𝜌 ©«

𝑚∑︁
𝑗=1

1
𝑏 𝑗

ª®¬
𝜌 /

𝑚∑︁
𝑗=1

(
1
𝑐 𝑗

)1−𝜌 (
1
𝑏 𝑗

)𝜌
.

If 𝜌 < 0, we use the Hölder inequality
∑𝑚
𝑗=1 𝑥 𝑗 𝑦 𝑗 ≤ (∑𝑚

𝑗=1 𝑥
𝑝

𝑗
)1/𝑝 (∑𝑚

𝑗=1 𝑦
𝑞

𝑗
)1/𝑞 , valid for any nonneg-

ative real numbers 𝑥1, 𝑦1, . . . , 𝑥𝑚, 𝑦𝑚 and 𝑝, 𝑞 ≥ 1 such that 1/𝑝 + 1/𝑞 = 1. Apply this inequality for
𝑥 𝑗 = 𝑏

𝜌/(1−𝜌)
𝑗

, 𝑦 𝑗 = 𝑐−1
𝑗
𝑏
−𝜌/(1−𝜌)
𝑗

, 𝑝 = −(1 − 𝜌)/𝜌 and 𝑞 = 1 − 𝜌 to get

𝑚∑︁
𝑗=1

1
𝑐 𝑗

≤ ©«
𝑚∑︁
𝑗=1

1
𝑏 𝑗

ª®¬
−𝜌/(1−𝜌) ©«

𝑚∑︁
𝑗=1

(
1
𝑐 𝑗

)1−𝜌 (
1
𝑏 𝑗

)𝜌ª®¬
1/(1−𝜌)

⇔ 𝜇 (Hill)

𝜇 (Var) ≤ 1.

Equality between the asymptotic bias terms holds if and only if, with the above notation, the vectors
(𝑥𝑝1 , . . . , 𝑥

𝑝
𝑚) and (𝑦𝑞1 , . . . , 𝑦

𝑞
𝑚) are linearly dependent, which is immediately seen to be equivalent to

𝑏 𝑗/𝑐 𝑗 = 𝐾 , a constant independent of 𝑗 , and therefore 𝑏 𝑗/𝑐 𝑗 = 𝑏1/𝑐1 = 1.

C.5. About the asymptotic variance in Theorem 6

We remark that the asymptotic variance 𝛾2 obtained in Theorem 2 of [3], with the naive weights 𝜔 𝑗 =
1/𝑚 for 𝑗 ∈ {1, . . . , 𝑚}, is not correct. In fact, the asymptotic variance is 𝑣𝛾2, where in general 𝑣 > 1,
see Theorem 6. This higher variance is not surprising because, in the case of unbalanced 𝑘 𝑗 , machines



Supplementary Material 41

with the lowest 𝑘 𝑗 tend to provide less information than those with the largest 𝑘 𝑗 , and therefore a loss
of information should be expected in comparison with the case where all the 𝑘 𝑗 are equal. This insight
can be checked by considering, for example, a simple situation where 𝑋 is purely Pareto distributed
with tail index 𝛾, the number 𝑚 of machines is even, and 𝑘 𝑗 = 1 for 𝑗 odd and 𝑘 𝑗 = 2 for 𝑗 even. In this
situation, each �̂� 𝑗 (𝑘 𝑗 ) is in fact simply an exponential random variable with mean 𝛾 and variance 𝛾2

for 𝑗 odd, and a mean of two independent such random variables when 𝑗 is even. Consequently

Var ©«
𝑚∑︁
𝑗=1

√
𝑘 (�̂�𝑛 (1/𝑚, . . . ,1/𝑚) − 𝛾)ª®¬ = 3𝑚/2

𝑚2

(
𝑚/2∑︁
𝑙=1

𝛾2 +
𝑚/2∑︁
𝑙=1

𝛾2

2

)
=

9𝛾2

8
.

This matches our result since
∑𝑚
𝑗=1 𝑘 𝑗 = 3𝑚/2 and

∑𝑚
𝑗=1𝜔

2
𝑗
/𝑘 𝑗 = 3/4𝑚, so that 𝑣 = 9/8 indeed.

We illustrate further this phenomenon by providing a numerical illustration of the weak convergence
of the distributed tail index estimator, in the case 𝑚 → ∞, to the asymptotic distribution given in
Theorem 6. We do so using the following procedure:

• Let 𝑚 vary in {200; 2,000; 20,000; 200,000}, and set 𝑁 = 50,000. Let 𝑛𝑚 = (⌊log(𝑚/2)⌋)2.
• Simulate 𝑚 i.i.d. samples of 𝑛𝑚 data points from a Burr distribution with tail index 1 and second-

order parameter −1, i.e. the datasets are generated with the distribution function

𝐹 (𝑥) = 1 − (1 + 𝑥−𝜌/𝛾)1/𝜌, 𝑥 > 0, with 𝛾 = −𝜌 = 1.

Within the first (resp. last) 𝑚/2 samples, compute the Hill estimate �̂� 𝑗 (𝑘 𝑗 ) with 𝑘 𝑗 = 1 (resp. 𝑘 𝑗 =
6). Then, compute the naive distributed estimate based on these 𝑚 subsamples and record the total
effective sample size 𝑘 = (𝑚/2) × 1 + (𝑚/2) × 6 = 7𝑚/2. Repeat these steps 𝑁 times.

• Draw the histogram of these 𝑁 distributed estimates. Calculate the mean 𝛾 of the estimates and
superimpose to the histogram:
– The normal density curve with mean 𝛾 and variance 1/𝑘 ,
– The normal density curve with mean 𝛾 and variance 49/(24𝑘).
The asymptotic variance in the first of these normal density curves is the one announced in The-
orem 2 of [3]. The asymptotic variance in the second of these curves is the one provided by our
Theorem 6 because, with 𝜔 𝑗 = 1/𝑚,

𝑘

𝑚∑︁
𝑗=1

𝜔2
𝑗

𝑘 𝑗
=

(𝑚
2
× 1 + 𝑚

2
× 6

)
× 1
𝑚2

(
𝑚

2
× 1 + 𝑚

2
× 1

6

)
=

49
24
.

Results are given in Figure C.1. It is clear from this figure that Theorem 6 provides the correct asymp-
totic variance for the naive distributed estimator, in a setup where the assumptions of Theorem 6 are
satisfied, and that the asymptotic variance announced in Theorem 2 in [3] is in fact not correct. Note
that the histograms and density fits are not centered at the true value 𝛾 = 1. This is expected and due to
the bias incurred by using the Hill estimator, which is seen to decrease as 𝑚 increases.

Appendix D: Finite-sample study - Further details and results

D.1. Simulation experiments

D.1.1. General setup: Pooling for tail index and extreme value inference

We assume that the 𝑚−dimensional i.i.d. random vectors 𝑿𝑖 follow one of the four models listed below.
Two of these four models are based on Archimedean copulae, which we briefly recall. Further details
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Figure C.1: Empirical distribution of the naive distributed Hill estimator in the simulation setup de-
scribed in Section C.5. Top left: 𝑚 = 200, top right: 𝑚 = 2,000, bottom left: 𝑚 = 20,000, bottom right:
𝑚 = 200,000. The red vertical line represents the mean of the distributed Hill estimates, and the dashed
(resp. solid) line represents the normal density curve with mean 𝛾 (i.e. the empirical mean of the dis-
tributed Hill estimates) and variance 1/𝑘 (resp. 49/(24𝑘)).

can be found in [15]. Let 𝜑 : (0,1] → [0,∞) be a convex and strictly decreasing function with 𝜑(1) = 0
and 𝜑(𝑡) ↑∞ as 𝑡 ↓ 0. The Archimedean copula in dimension 𝑚 with generator 𝜑 is the 𝑚-dimensional
distribution function 𝐶 with uniform marginals defined by

𝐶 (𝒖) = 𝜑−1 (𝜑(𝑢1) + · · · + 𝜑(𝑢𝑚)), 𝒖 = (𝑢1, . . . , 𝑢𝑚) ∈ [0,1]𝑚.

The Archimedean families we consider are, first, the Clayton family, defined through the genera-
tor 𝜑(𝑢) = 𝜂−1 (𝑢−𝜂 − 1) for 𝜂 > 0. Here the components of 𝒖 become independent for 𝜂 → 0, and
completely dependent for 𝜂 → ∞. We also consider the Gumbel family, defined through the gen-
erator 𝜑(𝑢) = (− log(𝑢))𝜂 for 𝜂 ≥ 1, with 𝜂 = 1 representing the case of independent variables and
𝜂→∞ the case of perfectly dependent variables. Our experiments are based on the below models for
𝑿 = (𝑋1, . . . , 𝑋𝑚), with 2 ≤ 𝑚 ≤ 5 and in each case 𝑛 =

∑𝑚
𝑗=1 𝑛 𝑗 = 1,000.
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(a) [Gaussian-Student model] Let 𝑚 = 2, and assume that 𝑼 follows a 2−dimensional Gaussian copula
with correlation parameter 𝜌1,2 = 0.8. Take 𝑋 𝑗 = |𝐹−1

𝜈 (𝑈 𝑗 ) | where 𝐹𝜈 is the Student distribution func-
tion with 𝜈 = 1 degree of freedom. Then 𝑿 has (absolute value) Student marginal distributions with tail
index 1 and a Gaussian copula dependence structure. Here we set 𝑛1 = 50 and 𝑛2 = 950.

(b) [Multivariate Student model] Let 𝑚 = 3, and assume that 𝑿 = ( |𝑌1 |, |𝑌2 |, |𝑌3 |)⊤ where 𝒀 =

(𝑌1,𝑌2,𝑌3)⊤ follows a 3−dimensional zero-mean multivariate Student distribution with 𝜈 = 1 degree
of freedom and a scale matrix 𝝆 defined elementwise as (𝜌1,1 = 𝜌2,2 = 𝜌3,3 = 1, 𝜌1,2 = 0.8, 𝜌1,3 =

0.6, 𝜌2,3 = 0.4). Here we set 𝑛1 = 50, 𝑛2 = 450 and 𝑛3 = 500.

(c) [Clayton-Fréchet model] Let 𝑚 = 4, and assume that 𝑼 follows a 4−dimensional Clayton copula
with dependence parameter 𝜂 = 2. Take 𝑋 𝑗 = −1/log(𝑈 𝑗 ). Then 𝑿 has Fréchet marginal distributions
with tail index 1 and a Clayton copula dependence structure. Here we set 𝑛1 = 150, 𝑛2 = 200, 𝑛3 = 250
and 𝑛4 = 400.

(d) [Gumbel-Fréchet model] Let 𝑚 = 5, and assume that 𝑼 follows a 5−dimensional Gumbel copula
with dependence parameter 𝜂 = 2. Take 𝑋 𝑗 = −1/log(𝑈 𝑗 ). Then 𝑿 has Fréchet marginal distributions
with tail index 1 and a Gumbel copula dependence structure. Here we set 𝑛1 = 150, 𝑛2 = 150, 𝑛3 = 200,
𝑛4 = 200 and 𝑛5 = 300.

The univariate margins of the above multivariate distributions have the same tail index 𝛾 = 1. Further-
more, the elements of 𝑿 are asymptotically independent in models (a) and (c), in the sense that all
pairwise tail copulae are equal to zero, and asymptotically dependent in models (b) and (d).

We simulate 𝑁 = 1,000 samples of i.i.d. observations from the models (a)-(d). For each simulated
dataset, we estimate the tail index 𝛾 using our proposed pooled Hill estimators, and then the extreme
quantile at level 1 − 𝑝 = 1 − 1/𝑛 = 0.999 using pooled Weissman estimators. The pooling weights con-
sidered are naive weights (the standard mean across subsamples, denoted by Pool-NAIVE), variance-
optimal (Pool-AVAR) and AMSE-optimal weights (Pool-AMSE-NP) defined together right before
Corollary 1, and AMSE-optimal weights obtained by pooling second-order estimates (Pool-AMSE,
see the comment below Corollary 2). Regarding pooled Weissman estimators, we consider the geomet-
rically pooled estimator 𝑞★𝑛 (1 − 𝑝 |𝝎) with 𝝎 = �̂�𝑛 being the aforementioned naive, variance-optimal
and AMSE-optimal weights. We also consider the simple arithmetic mean of Weissman estimators,
namely 𝑞★𝑛 (1 − 𝑝 |1/𝑚, . . . ,1/𝑚) = 1

𝑚

∑𝑚
𝑗=1 𝑞

★
𝑗
(1 − 𝑝 |𝑘 𝑗 ) (denoted by Pool-NAIVE-A). These estima-

tors are compared to the benchmark Hill and Weissman estimators on the pooled sample, as appro-
priate. We repeat these estimation steps for 50 equally spaced values of the effective sample fraction
𝑘/𝑛 ≡ (𝑘 𝑗/𝑛 𝑗 ) × 100% ∈ (1%,50%) in each subsample (assumed to be the same for each 𝑗). We com-
pute empirical Mean Squared Errors (MSEs) for each tail index estimator, and empirical relative MSEs
of each log-quantile estimator. We also compute a Monte Carlo approximation of the actual coverage
probability of the asymptotic confidence interval with 95% nominal level relative to each estimator.
The asymptotic confidence intervals of the proposed pooled estimators are presented and studied in
Corollaries 3 and 4. For the Hill estimator, see Theorem 3.2.5, p.74 in [7] whereby we assume that the
asymptotic distribution is normal with mean 0 and variance 𝛾2/𝑘 . Note that this is a misspecification
of the actual asymptotic variance when asymptotic dependence between subsamples is present: to the
best of our knowledge there is no rigorous theoretical result available about the asymptotic normality
of the Hill estimator in this context. For the Weissman estimator, we reformulate Theorem 4.3.8, p.138
in [7] as

√
𝑘

log(𝑘/(𝑛𝑝)) log
𝑞
★, (Hill)
𝑛 (1 − 𝑝 |𝑘)
𝑞(1 − 𝑝)

𝑑−→N(0, 𝛾2)

from which we construct the asymptotic confidence interval for 𝑞(1 − 𝑝) in the obvious way. [We
assume here again that the asymptotic bias is 0, and likewise, using the above convergence results
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in a misspecification of the asymptotic variance when asymptotic dependence between subsamples is
present.] Results are given in Figures D.2–D.5.

To assess the performance of the proposed likelihood ratio-based test statistics, we alter models
(a)–(d) as follows:

(a’) Generate 𝑼 and 𝑋2 as in model (a), and take 𝑋1 = |𝐹−1
1/𝛾1

(𝑈1) |.

(b’) Generate (𝑌1,𝑌2,𝑌3) and 𝑋2, 𝑋3 as in model (b), and take 𝑋1 = |𝑌1 |𝛾1 .

(c’) Generate 𝑼 and 𝑋2, 𝑋3, 𝑋4 as in model (c), and take 𝑋1 = (− log(𝑈1))−𝛾1 .

(d’) Generate 𝑼 and 𝑋2, 𝑋3, 𝑋4, 𝑋5 as in model (d), and take 𝑋1 = (− log(𝑈1))−𝛾1 .

In each of these models we let 𝛾1, the tail index of the first marginal distribution, vary between
0.2 and 5, and we carry out the tail homogeneity test based on the test statistic Λ𝑛 at the nom-
inal type I error rate 5%. We represent in Figure D.6 the rejection rate of the test as a function
of 𝛾1. In Figure D.7, we represent these same rejection rates, only with balanced sample sizes in
each model, that is, (𝑛1, 𝑛2) = (500,500) in model (a’), (𝑛1, 𝑛2, 𝑛3) = (333,333,334) in model (b’),
(𝑛1, 𝑛2, 𝑛3, 𝑛4) = (250,250,250,250) in model (c’) and (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) = (200,200,200,200,200)
in model (d’). We omit the numerical calculation of the rejection rate of the tail homoskedasticity test
based on the test statistic 𝐿𝑛 (𝑝) at level 1 − 𝑝 = 0.999, for which the conclusions are qualitatively the
same.

Finally, to get an idea about the performance of the estimators and their related confidence intervals
when the total sample size 𝑛 is small, we repeated our experiments with subsample sizes equal to 40%
of their values in models (a)–(d), resulting in a lower total sample size 𝑛 =

∑𝑚
𝑗=1 𝑛 𝑗 = 400. Results are

provided in Figures D.8–D.11.

D.1.2. Distributed inference of extreme values

In this section we assume that the data are independent within and across samples, i.e. we work in the
distributed inference context. We first consider the dimensions 𝑚 = 5,10,20 and the following models:

(e) [Burr model] Let 𝑚 = 5 and the 𝑋 𝑗 be independent having a Burr distribution, that is, with common
distribution function 𝐹 (𝑥) = 1 − (1 + 𝑥−𝜌/𝛾)1/𝜌, 𝑥 > 0, where 𝛾 = 1 and 𝜌 = −1. Here we set 𝑛1 = 150,
𝑛2 = 150, 𝑛3 = 200, 𝑛4 = 200 and 𝑛5 = 300.

(f) [Student model] Let 𝑚 = 10 and the 𝑋 𝑗 = |𝑌 𝑗 | be independent with the 𝑌 𝑗 having a Student distri-
bution with 𝜈 = 1 degree of freedom. Here we set 𝑛 𝑗 = 50 for each 𝑗 ∈ {1,2, . . . ,9} and 𝑛10 = 550.

(g) [Fréchet model] Let 𝑚 = 20 and the 𝑋 𝑗 be independent having a common Fréchet distribution with
tail index 1. Here we set 𝑛 𝑗 = 50 for each 𝑗 ∈ {1,2, . . . ,20}.

We compare the same estimators as in Section D.1.1, with the same setup, although the pooling weights
are calculated assuming independence between subsamples. In other words, we use the expression of
variance-optimal weights and AMSE-optimal weights with pooled second-order parameter estimates
in Section 3.2, and the expression of AMSE-optimal weights in Section 2.2 with the constraint that the
𝑅 𝑗 ,ℓ are all 0 when 𝑗 ≠ ℓ. Results are provided in Figures D.12–D.14.

We further examine the advantage of using AMSE-optimal weights in the following illustrative case
in dimension 2:

(h) [Burr model, unbalanced sample sizes, equal effective sample sizes] Let 𝑚 = 2 and 𝑋1, 𝑋2 be
independent having a Burr distribution with parameters 𝛾 = 1 and 𝜌 = −1. We choose (𝑛1, 𝑛2) ∈
{(200,800), (100,900), (50,950)}, and 𝑘1 = 𝑘2.
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Figure D.2: Simulation results, general pooling setting, Gaussian-Student model (a). Top row: tail index
estimation; bottom row: extreme quantile estimation at level 1 − 𝑝 = 0.999. Left panels: MSE of the
point estimators; middle panels: non-coverage probability of the asymptotic confidence intervals, where
the red horizontal dotted line represents the 5% nominal non-coverage probability; right panels: average
length of the 95% confidence intervals multiplied by

√
𝑘 . All results are represented as functions of the

sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In the bottom left panels, the MSEs represented are the
relative MSEs of the quantile estimates put beforehand on the log-scale; in the bottom right panels, the
lengths reported are those of the confidence interval for log 𝑞(1 − 𝑝).

Again 𝑁 = 1,000 samples of i.i.d. copies from this model are simulated and the same competing tail
index estimators are compared with the same points of comparison (we omit the details about extreme
quantile estimators, where the conclusion is identical). Results are presented in Figure D.15.

We finally assess the benefit of using, in the context of extreme quantile estimation, the assumption
(H) of tail homoskedasticity when it is valid, i.e. we compare the geometrically pooled extreme quan-
tile estimator with variance-optimal weights to the subsample Weissman estimator in which the tail in-
dex estimator is taken to be the variance-optimal pooled version, that is, the estimator 𝑞★1 (1− 𝑝 |𝑘1, �̂�𝑛)
where �̂�𝑛 denotes variance-optimal weights. We do so in the following models:

(Q-a) [Burr model, dimension 𝑚 = 2, 𝜌 = −1] Let 𝑚 = 2 and 𝑋1, 𝑋2 be independent with common Burr
distribution having parameters 𝛾 = 1 and 𝜌 = −1. Here we take 𝑛1 = 900,500,100 and 𝑛2 = 𝑛 − 𝑛1 =

100,500,900.

(Q-b) [Burr model, dimension 𝑚 = 2, 𝜌 = −1/2] As in the previous model, with 𝜌 = −1/2.
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Figure D.3: As in Figure D.2, in the Multivariate Student model (b).

(Q-c) [Burr model, dimension 𝑚 = 5] As in model (e), but we take 𝑛1 = 800,500,100 and 𝑛2 = 𝑛3 =

𝑛4 = 𝑛5 = (𝑛 − 𝑛1)/4 = 50,125,225.

Results are represented in Figure D.16. In this series of graphs, the brown curve labeled Pool-AVAR-
Shape represents the subsample Weissman estimator 𝑞★1 (1 − 𝑝 |𝑘1, �̂�𝑛).

D.1.3. Pooling estimators using residuals from location-scale models

We examine the performance of the proposed pooled tail index estimators in conjunction with filtering
in location-scale models, in the following two examples:

(AR-1-a) [Gaussian-Student innovations] Let𝑚 = 2, and assume that𝑼 follows a 2−dimensional Gaus-
sian copula with correlation parameter 𝜌1,2 = 0.8. Take 𝜀 𝑗 = 𝐹−1

𝜈 (𝑈 𝑗 ) where 𝐹𝜈 is the Student distri-
bution function with 𝜈 = 1 degree of freedom. The observations (𝑋𝑡 ,1, 𝑋𝑡 ,2) are taken from the pair of
AR(1) processes defined recursively as (𝑋𝑡+1,1, 𝑋𝑡+1,2) = 𝜙(𝑋𝑡 ,1, 𝑋𝑡 ,2) +

√︁
1 − 𝜙2 (𝜀𝑡+1,1, 𝜀𝑡+1,2), where

the (𝜀𝑡 ,1, 𝜀𝑡 ,2) are i.i.d. replications of (𝜀1, 𝜀2) and 𝜙 = 0.5. In this model we consider the two situations
(𝑛1, 𝑛2) = (500,500) where sample sizes are balanced and (𝑛1, 𝑛2) = (250,750).
(AR-1-b) [Multivariate Student innovations] Let 𝑚 = 3, and assume that 𝜺 = (𝜀1, 𝜀2, 𝜀3)⊤ follows a
3−dimensional zero-mean multivariate Student distribution with 𝜈 = 1 degree of freedom and a scale
matrix 𝝆 defined elementwise as (𝜌1,1 = 𝜌2,2 = 𝜌3,3 = 1, 𝜌1,2 = 0.8, 𝜌1,3 = 0.6, 𝜌2,3 = 0.4). The ob-
servations are taken from the trivariate AR(1) process (𝑋𝑡+1,1, 𝑋𝑡+1,2, 𝑋𝑡+1,3) = 𝜙(𝑋𝑡 ,1, 𝑋𝑡 ,2, 𝑋𝑡 ,3) +√︁

1 − 𝜙2 (𝜀𝑡+1,1, 𝜀𝑡+1,2, 𝜀𝑡+1,3), where the (𝜀𝑡 ,1, 𝜀𝑡 ,2, 𝜀𝑡 ,3) are i.i.d. replications of (𝜀1, 𝜀2, 𝜀3) and
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Figure D.4: As in Figure D.2, in the Clayton-Fréchet model (c).

𝜙 = 0.5. In this model we consider the two situations (𝑛1, 𝑛2, 𝑛3) = (333,333,334) where sample sizes
are balanced and (𝑛1, 𝑛2, 𝑛3) = (200,400,400).

In both cases we first filter each time series (𝑋𝑡 , 𝑗 ) using the correct AR(1) model and a Student maxi-
mum likelihood estimator of 𝜙, computed using the function ugarchfit of the R package rugarch.
This yields subsamples of residuals �̂�𝑡 , 𝑗 , to which we apply the tail index estimators of Section D.1.1.
Since standard tail index estimation methods have higher asymptotic variance in linear autoregressive
models [see e.g. 8], it is interesting here to evaluate the orders of magnitude of the variance, bias, and
MSE of the resulting pooled estimates constructed on filtered data, as a way to see whether they roughly
behave as if they were using independent and identically distributed data in the first place. Results are
displayed in Figures D.17 and D.18.

Finally, and specifically to assess the price of misspecification, we keep this exact same methodology
in the following two extra scenarios:

(AR-2-a) [Gaussian-Student innovations] As in model (AR-1-a), but (𝑋𝑡 ,1, 𝑋𝑡 ,2) are taken from the
pair of AR(2) processes (𝑋𝑡+1,1, 𝑋𝑡+1,2) = 𝜙1 (𝑋𝑡 ,1, 𝑋𝑡 ,2) + 𝜙2 (𝑋𝑡−1,1, 𝑋𝑡−1,2) + (𝜀𝑡+1,1, 𝜀𝑡+1,2), where
the (𝜀𝑡 ,1, 𝜀𝑡 ,2) are i.i.d. replications of (𝜀1, 𝜀2) and (𝜙1, 𝜙2) = (0.6,−0.28).
(AR-2-b) [Multivariate Student innovations] As in model (AR-1-b), but (𝑋𝑡 ,1, 𝑋𝑡 ,2, 𝑋𝑡 ,3) satisfy
(𝑋𝑡+1,1, 𝑋𝑡+1,2, 𝑋𝑡+1,3) = 𝜙1 (𝑋𝑡 ,1, 𝑋𝑡 ,2, 𝑋𝑡 ,3) + 𝜙2 (𝑋𝑡−1,1, 𝑋𝑡−1,2, 𝑋𝑡−1,3) + (𝜀𝑡+1,1, 𝜀𝑡+1,2, 𝜀𝑡+1,3) (that
is, the data form a trivariate AR(2) sequence), where the (𝜀𝑡 ,1, 𝜀𝑡 ,2, 𝜀𝑡 ,3) are i.i.d. replications of
(𝜀1, 𝜀2, 𝜀3) and (𝜙1, 𝜙2) = (0.6,−0.28).
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Figure D.5: As in Figure D.2, in the Gumbel-Fréchet model (d).

Both of the last two models have an AR(2) structure, but are estimated as AR(1), meaning that the
dynamics of the process are misspecified. In particular, the estimator of 𝜙1 thus obtained and used at
the filtering step in order to produce residuals is not consistent. Results are displayed in Figures D.19
and D.20.
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Figure D.6: Simulation results, general pooling setting, rejection rate of the test of tail homogeneity
based on Λ𝑛 with nominal type I error equal to 5%. Top left panel: Gaussian-Student model (a’), top
right panel: Multivariate Student model (b’), bottom left panel: Clayton-Fréchet model (c’), bottom
right panel: Gumbel-Fréchet model (d’), where the value of the tail index 𝛾1 in the first marginal is
allowed to vary in the interval [0.2,5]. The red horizontal dashed line represents the 5% nominal
rejection rate under the null hypothesis, and the green vertical dashed line represents the value 𝛾1 = 1
under which the null hypothesis of tail homogeneity is satisfied. All results are represented as functions
of 1/𝛾1, with the common effective sample fraction 𝑘 𝑗/𝑛 𝑗 used in each marginal indicated with a color
code in the bottom right corner of each panel.
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Figure D.7: As in Figure D.6, with equal subsample sizes in each model, namely (𝑛1, 𝑛2) = (500,500)
in model (a’), (𝑛1, 𝑛2, 𝑛3) = (333,333,334) in model (b’), (𝑛1, 𝑛2, 𝑛3, 𝑛4) = (250,250,250,250) in
model (c’) and (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) = (200,200,200,200,200) in model (d’).
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Figure D.8: As in Figure D.2, in the Gaussian-Student model (a), with (𝑛1, 𝑛2) = (20,380).
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Figure D.9: As in Figure D.2, in the Multivariate Student model (b), with (𝑛1, 𝑛2, 𝑛3) = (20,180,200).
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Figure D.10: As in Figure D.2, in the Clayton-Fréchet model (c), with (𝑛1, 𝑛2, 𝑛3, 𝑛4) =

(60,80,100,160).
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Figure D.11: As in Figure D.2, in the Gumbel-Fréchet model (d), with (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5) =

(60,60,80,80,120).
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Figure D.12: Simulation results, distributed inference context, Burr model (e). Top row: tail index
estimation; bottom row: extreme quantile estimation at level 1 − 𝑝 = 0.999. Left panels: MSE of the
point estimators; middle panels: non-coverage probability of the asymptotic confidence intervals, where
the red horizontal dotted line represents the 5% nominal non-coverage probability; right panels: average
length of the 95% confidence intervals multiplied by

√
𝑘 . All results are represented as functions of the

sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In the bottom left panels, the MSEs represented are the
relative MSEs of the quantile estimates put beforehand on the log-scale; in the bottom right panels, the
lengths reported are those of the confidence interval for log 𝑞(1 − 𝑝).
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Figure D.13: As in Figure D.12, in the Student model (f).
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Figure D.14: As in Figure D.12, in the Fréchet model (g).
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Figure D.15: Simulation results, distributed inference context, Burr model (h). Left panels: MSE of
the tail index point estimators, middle panels: non-coverage probability of the asymptotic confidence
intervals, right panels: average length of the 95% confidence intervals multiplied by

√
𝑘 . In the middle

panels, the red horizontal dotted line represents the 5% nominal non-coverage probability. Top row:
(𝑛1, 𝑛2) = (200,800), middle row: (𝑛1, 𝑛2) = (100,900), bottom row: (𝑛1, 𝑛2) = (50,950). All results
are represented as functions of the effective sample size 𝑘1 = 𝑘2.
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Figure D.16: Simulation results, distributed inference context, extreme quantile estimation at level
1− 𝑝 = 0.999 in the Burr models (Q-a), (Q-b), (Q-c). Top row, model (Q-a), from left to right: 𝑛1 = 900,
𝑛1 = 500, 𝑛1 = 100; middle row, model (Q-b), from left to right: 𝑛1 = 900, 𝑛1 = 500, 𝑛1 = 100; bottom
row, model (Q-c), from left to right: 𝑛1 = 800, 𝑛1 = 500, 𝑛1 = 100. All results are represented as func-
tions of the sample fraction 𝑘/𝑛 = 𝑘 𝑗/𝑛 𝑗 (identical for each 𝑗). In each panel, the MSEs represented
are the relative MSEs of the quantile estimates put beforehand on the log-scale.
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Figure D.17: Simulation results, pooled estimators using residuals, Gaussian-Student innovations model
(AR-1-a). All panels relate to tail index estimation. Left panels: squared bias, middle panels: variance,
right panels: MSE. All results are represented as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗 (identical for
each 𝑗). Top row: (𝑛1, 𝑛2) = (250,750), bottom row: balanced sample sizes.



Supplementary Material 61

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −Bias^2

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −Variance

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −MSE

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −Bias^2

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −Variance

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

5 10 15 20 25
0.00

0.01

0.02

0.03

0.04

0.05

0.06

AR(1)−Student− γn −MSE

Effective sample fraction x 100%

Benchmark Hill
Pool−NAIVE
Pool−AMSE
Pool−AMSE−NP
Pool−AVAR

Figure D.18: Simulation results, pooled estimators using residuals, Multivariate-Student innovations
model (AR-1-b). All panels relate to tail index estimation. Left panels: squared bias, middle panels:
variance, right panels: MSE. All results are represented as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗
(identical for each 𝑗). Top row: (𝑛1, 𝑛2) = (200,400,400), bottom row: balanced sample sizes.
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Figure D.19: As in Figure D.17, in the Gaussian-Student innovations model (AR-2-a) with misspecified
AR(1) dynamics.
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Figure D.20: As in Figure D.18, in the Multivariate-Student innovations model (AR-2-b) with misspec-
ified AR(1) dynamics.
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Figure D.21: Car insurance data: Histograms of total claim amounts.

D.2. Data analysis

We give here extra results related to our two real data analyses.

D.2.1. Distributed inference for car insurance data

Figure D.21 shows the frequency of total claim amounts for each state (the five first panels, from
left to right and top to bottom) and for the data set of pooled claims (bottom right panel). Figure D.22
represents the individual Hill estimates of the tail index and Weissman estimates of the extreme quantile
at level 0.9999 in each state.

D.2.2. Pooling for regional inference on extreme rainfall

Figure D.23 gives histograms of the data we use in the 8 stations. Figure D.24 provides plots of the indi-
vidual Hill estimates at each station, along with 95% confidence intervals. Table D.1 gives a summary
of the exploratory extreme value analysis at each station.
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Figure D.22: Car insurance data: Hill estimates �̂� 𝑗 (𝑘 𝑗 ) (left) and Weissman estimates 𝑞★
𝑗
(0.9999|𝑘 𝑗 )

(right) for each state, as functions of the sample fraction 𝑘 𝑗/𝑛 𝑗 , assumed to be identical in each sub-
sample.

ID County Data type 𝑛 𝑗 𝑘 𝑗 �̂� 𝑗 [95% CI]

110 Santa Rosa Raw 226 38 0.344 [0.234, 0.452]
140 Jackson Raw 225 33 0.330 [0.220, 0.449]
170 Suwanee Raw 225 31 0.329 [0.212, 0.442]
180 Baker Residuals 225 15 0.494 [0.244, 0.744]
240 Putnam Residuals 244 14 0.438 [0.209, 0.668]
290 Volusia Residuals 278 29 0.442 [0.281, 0.604]
302 Lake Residuals 281 15 0.514 [0.254, 0.774]
340 Osceola Residuals 221 14 0.518 [0.247, 0.789]

Table D.1. Florida rainfall data: Information gathered at each individual station. The estimates and confidence
intervals reported in the last column correspond to the selected 𝑘 𝑗 values indicated by the vertical blue lines in
Figure D.24.
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Figure D.23: Florida rainfall data: Histograms of the raw data for the three stations in the top panel (red
cluster), and of the residuals obtained from the fitted SARMA models of the five remaining stations
(green cluster).
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Figure D.24: Florida rainfall data: Individual tail index estimators. For each station 𝑗 , we represent the
Hill estimate �̂� 𝑗 (𝑘 𝑗 ) (solid blue) and its associated asymptotic 95% confidence interval (solid gray), as
functions of the effective sample size 𝑘 = 𝑘 𝑗 . The corresponding Hill point estimate is represented by
the horizontal dashed blue line.
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