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Abstract

This paper investigates pooling strategies for tail index and extreme quantile
estimation from heavy-tailed data. To fully exploit the information contained in
several samples, we present general weighted pooled Hill estimators of the tail index
and weighted pooled Weissman estimators of extreme quantiles calculated through
a nonstandard geometric averaging scheme. We develop their large-sample asymp-
totic theory across a fixed number of samples, covering the general framework of
heterogeneous sample sizes with di↵erent and asymptotically dependent distribu-
tions. Our results include optimal choices of pooling weights based on asymptotic
variance and MSE minimization. In the important application of distributed infer-
ence, we prove that the variance-optimal distributed estimators are asymptotically
equivalent to the benchmark Hill and Weissman estimators based on the unfeasible
combination of subsamples, while the AMSE-optimal distributed estimators enjoy
a smaller AMSE than the benchmarks in the case of large bias. We consider addi-
tional scenarios where the number of subsamples grows with the total sample size
and e↵ective subsample sizes can be low. We extend our methodology to handle
serial dependence and the presence of covariates. Simulations confirm the statistical
inferential theory of our pooled estimators. Two applications to real weather and
insurance data are showcased.

MSC 2010 subject classifications: 62G32, 62G30, 62F10, 62F12
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1 Introduction

The contemporary problem of e�cient analysis of massive data has led to the develop-
ment of the divide-and-conquer approach, which consists in dividing data into multiple
samples that can be processed across several machines, before combining the results from
subsamples on a central machine by making use of pooling techniques. In statistics,
this strategy gives rise to distributed inference from many datasets, allowing to alleviate
the computational challenges and constraints in storage imposed by the availability of
extremely large datasets, or to handle data privacy issues as in banking and insurance.
Pioneering contributions in the distributed framework focused on the regression mean
and central parameters. In the last three years, distributed inferential procedures have
been also developed for quantile estimation, mainly in a regression setup. Prominent
among these contributions are Volgushev et al. (2019), Xu et al. (2020), and Wang and
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Ma (2021). The analyses therein concentrate on the statistical inference of ordinary con-
ditional quantiles at fixed tail probability levels. The estimation of extreme quantiles in a
distributed computing setting, when their order tends to 1 as the total sample size goes to
infinity, has not yet received any attention, however. More generally, distributed inference
for tail quantities from the perspective of extreme value theory is still in its infancy. To
the best of our knowledge, only tail index estimation has been recently explored in Chen
et al. (2021) by taking a simple average of subsample tail index estimators as the final
distributed estimator.

In this article we go further than Chen et al. (2021) by addressing several important
questions about and beyond distributed inference for the tail index, but also for extreme
quantiles of heavy-tailed data. Our approach is based on the use of a general terminology
and theory of pooling that encompasses distributed estimation from di↵erent samples
whose distributions have a common target parameter, given in our setup by the tail index
or an extreme quantile. Instead of naively averaging the subsample estimators, it is of
interest, both from a theoretical and a practical perspective, to construct a general class
of weighted pooled estimators and to establish a fully data-driven inferential procedure
integrating the optimal choice of weights. In particular, we develop the asymptotic theory
of the optimally pooled tail index and extreme quantile estimators, under weak technical
conditions, covering both scenarios where the number of available subsamples is bounded
or growing with the total sample size, as well as the general situation where the observed
data can be dependent within and/or across subsamples. The pooling approach itself has
a rich history dating back to Cochran (1937) for the estimation of the common mean
of several samples. It is also encountered in the econometrics of panel data since the
influential work of Theil (1954) and Zellner (1962). The idea of combining pooling and
extreme value techniques has originally been suggested by Kinsvater et al. (2016), Asadi
et al. (2018), and Vignotto et al. (2021) in climate science problems.

The first contribution of this paper is a joint asymptotic normality result for Hill esti-
mators (Hill, 1975) calculated from a fixed number m of samples with heavy-tailed data.
In particular, we allow for di↵erent sample sizes, e↵ective sample sizes, marginal distribu-
tions, and for dependence across samples. We apply this general result to design optimal
pooling strategies of subsample Hill estimators for tail index estimation. We consider
optimal weights that minimize either the asymptotic variance or the Asymptotic Mean
Squared Error (AMSE) of the pooled estimator. These developments rely on a very gen-
eral theory that we derive for a generic weighted pooled estimator built from m subsample
estimators for a common unknown parameter. This theory comes into play when the sub-
sample estimators are jointly asymptotically normal, and can be biased and correlated. To
the best of our knowledge, no such unrestricted approach has been fully investigated. We
also construct bias-reduced versions of the proposed pooled tail index estimators. Then
we discuss the fundamental extreme value problem of estimating extreme quantiles either
locally in each machine in the tail homogeneous setting of equal marginal tail indices,
where tail quantiles are possibly only asymptotically proportional across subsamples, or
globally by pooling subsample extreme quantile Weissman estimators (Weissman, 1978)
in the more restrictive tail homoskedastic setting of asymptotically equivalent marginal
tail quantiles. Our approach in both cases relies on a specific weighted geometric pooling
scheme, particularly relevant for extreme quantiles, as opposed to arithmetic averaging
naturally used for pooling ordinary quantiles (Knight and Bassett, 2003). Moreover,
we explore inferential aspects of pooling for extreme values by constructing likelihood
ratio-type tests for either tail homogeneity or tail homoskedasticity, as well as asymptotic
confidence intervals for the tail index and extreme quantiles.

We also specialize the discussion to distributed inference as an important application
of our general theory. In this particular case, due to computational costs or privacy re-
strictions, the data in sample number j can only be processed by the jth machine, with
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very restricted or no communication allowed between the m machines, before an end user
operating from a central machine conducts distributed inference from limited informa-
tion transmitted by each machine. It is also assumed that the data is independent and
identically distributed (i.i.d.) within and across machines. Under this setup, we examine
and compare the asymptotic theory of the distributed tail index and extreme quantile
estimators to the behavior of their respective benchmark Hill and Weissman estimators
based on the unfeasible direct combination of subsamples. We extend this theory further
by considering first the case when e↵ective sample sizes are highly unbalanced among
machines, and then the case of a growing number of machines m = m(n) with the total
sample size n. Finally, we tackle the problem of serial dependence within the data in
the presence of covariates, showing how appropriately filtering the observations allows to
recover the asymptotic theory from independent observations.

What first distinguishes our contribution relative to earlier literature, and in particular
to Chen et al. (2021) for tail index estimation, is that a detailed study is conducted for the
case of a fixed number m of subsamples with di↵erent sample sizes. These considerations
are motivated by practical concerns such as the financial application in Chen et al. (2021)
itself, which requires the rather small value m = 5, whereas their theory only considers
the case m = m(n) ! 1 as n ! 1, with equal subsample sizes. We allow for generic
and optimal choices of weights in the pooling scheme, we construct bias-reduced versions
of our pooled estimators, and we design inference procedures under very weak conditions.
We revisit the case m = m(n) ! 1 by providing a unified convergence result that handles
both bounded and unbounded e↵ective sample sizes in the marginal Hill estimators. In
particular, we carefully derive the correct expression of the asymptotic variance for the
distributed Hill estimator, which should be di↵erent from the expression provided by Chen
et al. (2021) in the case of unbalanced e↵ective sample sizes. Perhaps most importantly,
this is the first work to implement the idea of geometric weighted extreme quantile pooling;
our experience with simulated and real data indicates the superiority of the corresponding
estimators over the arithmetically pooled competitors that su↵er from substantially larger
bias and variance.

The paper is organized as follows. Section 2 develops our general pooling theory for tail
index and extreme quantile estimation, while Section 3 focuses on the special framework
of distributed inference. Section 4 extends our methodology to handle serial dependence
and the presence of covariates through filtering. Section 5 illustrates the usefulness of the
proposed extreme value pooling and distributed inference methods through a simulation
study and concrete applications to weather and insurance data. The supplement to this
article contains additional theoretical results and all the proofs, with further details on
our simulation study. Our methods and data have been incorporated into the open-source
R package ExtremeRisks.

2 Pooling extreme value estimators

2.1 Pooled Hill estimators of the tail index

LetX = (X1, . . . , Xm)> denote anm�dimensional random vector, andXi = (Xi,1, . . . , Xi,m)>

(i � 1) denote independent copies of X. We assume that the available data consists of the
Xi,j , for 1  j  m and 1  i  nj = nj(n), with n =

Pm
j=1

nj being the total number of
univariate data points available across all samples. We suppose that nj ! 1 as n ! 1.
Table 1 provides a simple representation of the available data when n1 < n2 < · · · < nm.

We focus on the general framework where the components Xj of the random vector
X have continuous, right heavy-tailed distribution functions Fj , with associated survival
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Vector X Available data

X1 X1,1 . . . Xn1,1

X2 X1,2 . . . Xn1,2 Xn1+1,2 . . . Xn2,2
...

Xm X1,m . . . Xn1,m Xn1+1,m . . . Xn2,m Xn2+1,m . . . Xnm,m

Table 1: Representation of the available data when n1 < n2 < · · · < nm. The
random vectors Xi = (Xi,1, . . . , Xi,m)> (i � 1) are independent copies of the vector
X = (X1, . . . , Xm)>.

functions F j = 1� Fj and tail quantile functions Uj : t 7! inf{x 2 R | 1/F j(x) � t} that
satisfy

C2(�,⇢,A) For any j 2 {1, . . . ,m}, the function Uj satisfies the second-order condition:

C2(�j , ⇢j , Aj) Uj is second-order regularly varying in a neighborhood of +1 with index
�j > 0, second-order parameter ⇢j  0 and an auxiliary function Aj having constant sign
and converging to 0 at infinity, that is,

8x > 0, lim
t!1

1

Aj(t)


Uj(tx)

Uj(t)
� x

�j

�
= x

�j
x
⇢j � 1

⇢j

where the right-hand side should be read as x�j log x when ⇢j = 0.

In this condition |Aj | is regularly varying with index ⇢j (by Theorems 2.3.3 and 2.3.9 in
de Haan and Ferreira, 2006), meaning that the larger |⇢j | is, the smaller the error in the
approximation of the right tail of Uj by a purely Pareto tail will be. All usual heavy-tailed
distributions satisfy these conditions, see Table 2.1 in p.59 of Beirlant et al. (2004) for a
detailed list of examples.

To incorporate the dependence between samples into the inference procedure, we as-
sume an appropriate pairwise tail dependence structure based on the functions Cj,`(u, v) =
P(F j(Xj)  u, F `(X`)  v) (u, v 2 [0, 1]) that are essentially the bivariate survival cop-
ulae of X, namely:

J (R) For any (j, `) with j 6= `, there is a function Rj,` on [0,1]2 \ {(1,1)} such that

8(xj , x`) 2 [0,1]2 \ {(1,1)}, lim
s!1

sCj,`(xj/s, x`/s) = Rj,`(xj , x`).

This condition imposes the existence of a limiting dependence structure in the joint right
tail of Xj and X`, given by the tail copula Rj,` (see Schmidt and Stadtmüller (2006)).
It can be viewed as a minimal assumption when it comes to assessing the dependence
structure between extreme value estimators.

After ordering the data in the jth sample as X1:nj ,j  X2:nj ,j  · · ·  Xnj :nj ,j , we

introduce the marginal Hill estimators b�j(kj) = k
�1

j

Pkj

i=1
log(Xnj�i+1:nj ,j/Xnj�kj :nj ,j)

which involve the top (kj +1) highest order statistics in each sample, for kj = kj(n) � 1.
The integer kj is the e↵ective sample size in sample j, and we set k =

Pm
j=1

kj to
be the total e↵ective sample size in the vector of estimators b�n = b�n(k1, . . . , km) =
(b�1(k1), . . . , b�m(km))>. Our ultimate interest is in the case � = �1 where the �j are
equal to a common � estimated by

b�n(!) = b�n(!1, . . . ,!m) =
mX

j=1

!jb�j(kj) = !>b�n, with !>1 = 1.

4



The asymptotic distribution of any element within this class of estimators is stated in the
following theorem, along with the joint asymptotic normality of b�j(kj), for j 2 {1, . . . ,m}.

Theorem 1. Assume that conditions C2(�,⇢,A) and J (R) hold. Suppose, without loss
of generality, that n1  n2  · · ·  nm, and then that kj = kj(n) ! 1 with kj/nj ! 0,
n1/nj ! bj 2 (0, 1], k1/kj ! cj 2 (0,1) (with c1 = 1 and bm  bm�1  · · ·  b1 = 1)
and

p
kjAj(nj/kj) ! �j 2 R for any j 2 {1, . . . ,m}, as n ! 1. Let the weight vector

! = (!1, . . . ,!m)> be such that !>1 = 1 and define a vector B and symmetric matrix
V by

B =

✓
�1

1� ⇢1
, . . . ,

�m

1� ⇢m

◆>
and Vj,` =

8
><

>:

�
2

j if j = `,

�j�`

r
cj

c`
Rj,`(c`/cj , b`/bj) if j < `.

Then (
p
k1(b�1(k1) � �1), . . . ,

p
km(b�m(km) � �m))>

d
�! N (B,V), where

d
�! hereafter

denotes weak convergence as n ! 1. In particular, if � = �1, then
p

k(b�n(!)� �)
d

�! N
�
!>Bc,!

>Vc!
�
,

with Bc =

vuut
mX

i=1

c
�1

i

✓
p
c1

�1

1� ⇢1
, . . . ,

p
cm

�m

1� ⇢m

◆>

and [Vc]j,` =

 
mX

i=1

c
�1

i

!8<

:
�
2
cj if j = `,

�
2
cjRj,`(c`/cj , b`/bj) if j < `.

The matrix V is positive definite if and only if Vc is so, and hence we have the following
results on optimal weight choices:

1. (Variance-optimal weights) There is a unique solution to the minimization problem of
!>Vc! subject to the constraint !>1 = 1, which is

!(Var) =
V�1

c 1

1>V�1
c 1

, and then
p

k

⇣
b�n(!(Var))� �

⌘
d

�! N

✓
1>V�1

c Bc

1>V�1
c 1

,
1

1>V�1
c 1

◆
.

2. (AMSE-optimal weights) There is a unique solution to the minimization problem of
AMSE(!) = k

�1[(!>Bc)2 + !>Vc!] subject to the constraint !>1 = 1, which is

!(AMSE) =
(1 +B>

c V�1

c Bc)V�1

c 1� (1>V�1

c Bc)V�1

c Bc

(1 +B>
c V�1

c Bc)(1>V�1
c 1)� (1>V�1

c Bc)2
.

The optimal value of AMSE(!) is

AMSE(!(AMSE)) =
1

k
⇥

1 +B>
c V�1

c Bc

(1 +B>
c V�1

c Bc)(1>V�1
c 1)� (1>V�1

c Bc)2
.

Finally, if b!>
n 1 = 1 with b!n

P
�! !, then the composite estimator b�n(b!n) is

p
k�asymptotically

equivalent to b�n(!) in the sense that
p
k(b�n(b!n)� b�n(!)) = oP(1).

The proof requires applying a very general pooling result (Theorem A.1, that we
state and prove in Section A) in conjunction with the assumption that the sample sizes
nj are asymptotically proportional (possibly unbalanced) and so are the e↵ective sam-
ple sizes kj . This ensures that none of the b�j(kj) imposes its limiting distribution to
the others. Section A provides further interpretation and properties of weighted pooled
estimators, including the connection between asymptotic variance-optimal weights and
pseudo-maximum likelihood estimation, regularization of bias-optimal weights, sensitiv-
ity to uncertainty in weight estimation, and gains in asymptotic variance.
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Remark 1 (Bias components across samples). The structure of the asymptotic bias
component Bc is constrained by the second-order parameters ⇢j : for all its components
to be non-zero, the ⇢j should be equal, because of the proportionality assumption on the
kj ’s and the nj ’s with the fact that the functions |Aj | are regularly varying with index
⇢j . More specifically, if ⇢⇤ = max1jm ⇢j , then the jth component of Bc is 0 whenever
⇢j < ⇢

⇤. In the important special context of distributed inference (see Section 3), where
all marginal distributions are the same, an asymptotic bias component will be present in
every marginal.

2.2 Optimal choices of weights

The idea now is to use the pooled estimator b�n(!) in conjunction with the optimal
choices of the weight vector !. Since the resulting optimal values of weights depend
on the asymptotic bias and variance components in view of Theorem 1, they should be
estimated first. One convenient way of estimating the bias component, which hinges on
�j and ⇢j , is by assuming Aj(t) = ��jt

⇢j for some constant �j . Most commonly used
heavy-tailed models satisfy this mild proportionality condition between Aj(t) and t

⇢j , see

Table 1 in Girard et al. (2021b). Under this assumption, consistent estimators b�j and
b⇢j of �j and ⇢j are available and implemented in open-source software, for example in
the R function mop from the package evt0 (see Section C.1 for a detailed presentation

of these estimators). This yields an estimator of �j = limn!1
p
kjAj(nj/kj) as b�j =p

kj⇥b�n(!)b�j(nj/kj)b⇢j . Here the choice of ! in the � estimator is arbitrary; for example,
without any prior knowledge of the asymptotic dependence structure between the Xj , the
naive weights ! = (1/m, . . . , 1/m)> seem reasonable.

Now, to estimate the covariance matrix, let nj,` = min(nj , n`) and kj,` = kj if nj < n`

and k` otherwise, and consider the estimator of the tail copula function Rj,` defined as

bRj,`(u, v) = bRj,`(u, v; kj,`) =
1

kj,`

nj,`X

i=1

⇢
nj,` + 1� rnj,`,i,j

kj,`(nj,` + 1)/nj,`
 u,

nj,` + 1� rnj,`,i,`

kj,`(nj,` + 1)/nj,`
 v

�
.

[Here rnj,`,i,j (resp. rnj,`,i,`) stands for the rank ofXi,j (resp.Xi,`) among the observations
X1,j , X2,j , . . . , Xnj,`,j (resp. X1,`, X2,`, . . . , Xnj,`,`), namely, the first nj,` observations in
sample j (resp. `).] This is a modified version of the empirical upper tail copula in
Equation (13) of Schmidt and Stadtmüller (2006). Adapting Lemma 7 from Stupfler
(2019) shows that it is a locally uniformly consistent estimator of Rj,` on (0,1)2 under
our technical conditions. Combining these tools, we arrive at the estimators

bBc =
p

k

 
b�1/

p
k1

1� b⇢1
,

b�2/
p
k2

1� b⇢2
, . . . ,

b�m/
p
km

1� b⇢m

!>

and [bVc]j,` = k b�2

n(!)

8
>><

>>:

1

kj
if j = `,

1

kj

bRj,`(kj/k`, nj/n`) if j 6= `.

According to Theorem 1, the vectors of variance-optimal weights and AMSE-optimal
weights can then be estimated by

b!(Var)

n =
bV�1

c 1

1> bV�1
c 1

and b!(AMSE)

n =
(1 + bB>

c
bV�1

c
bBc)bV�1

c 1� (1> bV�1

c
bBc)bV�1

c
bBc

(1 + bB>
c
bV�1

c
bBc)(1> bV�1

c 1)� (1> bV�1
c
bBc)2

.

Next, we provide the asymptotic properties of the composite pooled estimators based on
these estimated optimal values of weights.
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Corollary 1. Work under the conditions of Theorem 1 with � = �1, ⇢j < 0, and
Aj(t) = ��jt

⇢j for all j. Assume that the matrix V is positive definite (hence Vc is).

Assume further that, for all j 2 {1, . . . ,m}, b�j is a consistent estimator of �j and (b⇢j �
⇢j) log nj = oP(1). Then

p

k(b�n(b!(Var)

n )� �)
d

�! N

✓
1>V�1

c Bc

1>V�1
c 1

,
1

1>V�1
c 1

◆
, and

p

k(b�n(b!(AMSE)

n )� �)
d

�! N

⇣
(!(AMSE))>Bc, (!

(AMSE))>Vc!
(AMSE)

⌘
, where

((!(AMSE))>Bc)
2 + (!(AMSE))>Vc!

(AMSE) =
1 +B>

c V�1

c Bc

(1 +B>
c V�1

c Bc)(1>V�1
c 1)� (1>V�1

c Bc)2
.

Remark 2 (On the variance- and AMSE-optimal choices). This is the first work to im-
plement the idea of AMSE-optimal weights !(AMSE) which should be favored in practice
when the estimation bias is large enough, especially in the case of unequal sample frac-
tions kj/nj , as demonstrated below in Section 3.2 in the distributed inference framework.
The solution using variance-optimal weights !(Var) was actually suggested by Kinsvater
et al. (2016), but their analog of Theorem 1 requires much stronger technical conditions.
Besides, the use of their estimator for !(Var) lacks a theoretical justification similar to
Corollary 1. A di↵erent, variance-optimal convex combination (with nonnegative weights)
is advocated in Dematteo and Clémençon (2016), also under much stronger technical con-
ditions. Their solution does not coincide with ours in general (see Section C.2 for a simple
counterexample), although this is not so clear-cut in the specific case cj = 1 of identical
e↵ective sample sizes. In this situation, at least when m  3, the variance-optimal set
of weights we propose is in fact a convex combination. For m = 2, a direct calculation
provides !(Var) = (1/2, 1/2)> irrespective of V1 = V, corresponding to the naive aver-
age. For m = 3, the discussion is more complex and involves the identification of tail
correlation matrices with a convex polytope that is a proper subset of the elliptope, a
Riemannian quotient manifold representing the set of standard correlation matrices (see
Section C.2 for the technical details). As a consequence, pooling together m  3 Hill
estimators with equal e↵ective sample size can never outperform, in terms of asymptotic
variance, a Hill estimator built from a pooled sample of independent data of equivalent
total size. This would not necessarily be the case in general pooling problems, e.g., for
positively correlated sample means. What can happen in the case m > 3 remains unclear
as explained in Section C.2.

We conclude this section by discussing bias-reduced versions of the variance-optimal
and AMSE-optimal pooled estimators, defined as

�n(b!(Var)

n ) = b�n(b!(Var)

n )�
1
p
k
(b!(Var)

n )> bBc

and �n(b!(AMSE)

n ) = b�n(b!(AMSE)

n )�
1
p
k
(b!(AMSE)

n )> bBc.

Corollary 2. Under the conditions of Corollary 1,
p
k(�n(b!

(Var)

n )��)
d

�! N (0, 1/(1>V�1

c 1))
and

p

k(�n(b!(AMSE)

n )� �)

d
�! N

✓
0,

(1 +B>
c V�1

c Bc)2(1>V�1

c 1)� (2 +B>
c V�1

c Bc)(1>V�1

c Bc)2

[(1 +B>
c V�1

c Bc)(1>V�1
c 1)� (1>V�1

c Bc)2]2

◆
.

If the marginal distributions are equal across samples, then one can improve the
estimation of the weights by pooling the second-order parameter estimators themselves.
We shall explore this possibility in Section 3.2.
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2.3 Weighted geometric pooling of extreme quantile estimators

We turn to extreme quantile estimation for a very small exceedance probability p =
p(n) ! 0 as n ! 1. In each sample, we estimate qj(1�p) by the extrapolated Weissman
estimator of Weissman (1978):

bq?j (1� p|kj) =

✓
kj

njp

◆b�j(kj)

Xnj�kj :nj ,j ,

where kj satisfies kj/(njp) ! 1. The typical case is when np is bounded, reflecting
the challenging problem of estimating quantiles in the far tail where only a few or no
observations are available in the neighborhood of qj(1�p). When the samples are believed
or known to have the same tail index �, it is natural to harness the power of pooling by
substituting the weighted estimator b�n(!) in place of the individual estimator b�j(kj), to
get

bq?j (1� p|kj ,!) =

✓
kj

njp

◆b�n(!)

Xnj�kj :nj ,j .

This improves on the traditional Weissman estimator in each sample by borrowing statis-
tical strength across all samples. Going one step further, the marginal quantile estimators
themselves can be pooled to gain more insight when the datasets have the same extreme
quantiles, or equivalently, if one assumes that

(H) For any j, ` 2 {1, . . . ,m} with j 6= `, we have Uj(t)/U`(t) ! 1 as t ! 1.

The validity of this assumption can be tested, see Section 2.4 below. Under assumption
(H), the quantiles qj(1 � p) are all asymptotically equivalent and hence the estimators
bq?j (1 � p|kj) all estimate the same quantity. A straightforward way of combining these
individual extreme quantile estimators would be to take again a weighted sum, as q?n(1�
p|!) =

Pm
j=1

!jbq?j (1 � p|kj). This is most e�cient when estimating central quantiles,
see for example Knight and Bassett (2003). However, it is no longer the best possible
solution when it comes to pooling the Weissman estimators, because the use of geometric
weighted sums better suits the multiplicative and power structure of these extrapolated
estimators (see Sections 5.1.1 and D.1 for numerical evidence). The crucial point to note
here is that the log-Weissman quantile estimator can be rewritten as

log bq?j (1� p|kj) = log

✓
k

np

◆
b�j(kj) +


log

✓
kj

k

◆
� log

⇣
nj

n

⌘�
b�j(kj) + logXnj�kj :nj ,j .

In the first term, which dominates since k/(np) ! 1, the � estimator now appears on
the standard scale. This suggests the use of the estimator defined as log bq?n(1 � p|!) =Pm

j=1
!j log bq?j (1� p|kj) or, in other words,

bq?n(1� p|!) =
mY

j=1

[bq?j (1� p|kj)]
!j =

mY

j=1

"✓
kj

njp

◆b�j(kj)

Xnj�kj :nj ,j

#!j

.

This estimator is a weighted geometric (rather than arithmetic) mean of the bq?j (1� p|kj).
We conclude this discussion by deriving the asymptotic normality of bq?j (1� p|kj ,!) and
bq?n(1� p|!).

Theorem 2. Work under the conditions and with the notation of Theorem 1 with � = �1
and ⇢j < 0 for all j 2 {1, . . . ,m}. Pick p = p(n) ! 0 such that k/(np) ! 1 and
p
k/ log(k/(np)) ! 1. Let !, b!n be such that b!>

n 1 = 1 and b!n
P

�! !. Then, for any j,
p
k

log(kj/(njp))

✓bq?j (1� p|kj , b!n)

qj(1� p)
� 1

◆
=

p

k(b�n(!)��)+oP(1)
d

�! N
�
!>Bc,!

>Vc!
�
.

8



If moreover assumption (H) holds then, for any j,

p
k

log(k/(np))

✓
bq?n(1� p|b!n)

qj(1� p)
� 1

◆
=

p

k(b�n(!)� �) + oP(1)
d

�! N
�
!>Bc,!

>Vc!
�
.

An analogue of Theorem 2 is feasible for optimally-pooled extreme quantile estima-

tion where b!n 2 {b!(Var)

n , b!(AMSE)

n }, since the asymptotic distribution of bq?n(1 � p|b!n) is
governed by that of b�n(!). Similar results can also be established when b�n(!) is replaced

by the bias-reduced versions �n(b!
(Var)

n ) and �n(b!
(AMSE)

n ), so they are omitted.

2.4 Inference using pooled extreme value estimators

Unless there are strong reasons to believe in the equality of tail indices (as is the case in
the distributed inference setup of Section 3), it is crucial to justify this assumption by
performing a statistical test before applying our pooled estimators. To do so, we briefly
present here an approach motivated by testing for nested models. Suppose that Z is
an m�dimensional Gaussian random vector with mean µ and known positive definite
covariance matrix V , and consider the testing problem of M0 : µ1 = · · · = µm = µ versus
M1 : 9(j, `) with j 6= ` such that µj 6= µ`. The log-likelihood ratio deviance statistic
for testing the validity of model M0 based on Z is ⇤ = (Z � bµ1)>V�1(Z � bµ1), with
bµ = (1>V�1Z)/(1>V�11). In model M0, the statistic ⇤ has a chi-square distribution
with m� 1 degrees of freedom. In our context, under the assumptions of Theorem 1 and
if all the �j are 0 (see Remark 4 below for more discussion on this assumption), one has

p

k(b�n � �) = (
p

k(b�1(k1)� �1), . . . ,
p

k(b�m(km)� �m))>
d

�! N (0,Vc)

with [Vc]j,` =

 
mX

i=1

c
�1

i

!8<

:
�
2

j cj if j = `,

�j�`cjRj,`(c`/cj , b`/bj) if j < `.

This can be formulated by the approximation b�n
d
⇡ N (�, k�1Vc) of the distribution of

b�n by the N (�, k�1Vc) distribution. Given the estimator

[Vc]j,` = k

8
>><

>>:

b�2

j (kj)
1

kj
if j = `,

b�j(kj)b�`(k`)
1

kj

bRj,`(kj/k`, nj/n`) if j 6= `,

one can obtain a deviance statistic for testing H0 : � = �1 versus H1 : � 6= �1 as

⇤n = k(b�n � µn1)
>V

�1

c (b�n � µn1), with µn =
1>V

�1

c b�n

1>V
�1

c 1
= (!(Var)

n )>b�n = b�n(!(Var)

n ).

Therefore the test statistic ⇤n compares the vector of estimates b�n with an estimate of
the variance-optimal pooled estimator on a scale adapted to the amount of dependence
existing between the extremes of the vector (X1, . . . , Xm)>. A somewhat di↵erent pro-
posal, not motivated by a likelihood ratio test in nested models, is outlined in Kinsvater
et al. (2016). We explain the main di↵erences in Section C.3.

Our testing procedure, of asymptotic size ↵, is to reject H0 if ⇤n > �
2

m�1,1�↵, where
�
2

m�1,1�↵ is the (1 � ↵)th quantile of the chi-square distribution with m � 1 degrees of
freedom. The next corollary establishes the consistency of this test and gives a symmetric
asymptotic confidence interval for the common tail index � under H0.

9



Corollary 3. Under the conditions of Corollary 1 and the assumption that �j = 0 for

all j, we have P(⇤n > �
2

m�1,1�↵) ! ↵ under H0, and ⇤n
P

�! +1 under H1. Moreover,

under H0, if b!>
n 1 = 1 with b!n

P
�! ! then, for any ↵ 2 (0, 1),

lim
n!1

P
✓
� 2


b�n(b!n)± z1�↵/2

q
(b!>

n
bVcb!n)/k

�◆
= 1� ↵

where z1�↵/2 is the (1 � ↵/2)th quantile of the standard Gaussian distribution. [In this

asymptotic confidence interval, bVc is calculated as described in Section 2.2.]

Remark 3 (With asymptotic independence across subsamples). An important subcase
in practice is when pairs of data points taken from two di↵erent subsamples are asymp-
totically independent. This covers, for example, the distributed inference situation which
will be discussed in Section 3. In this case, all tail copulae Rj,` are identically zero, so one
can estimate Vc with k diag(b�2

1
(k1)/k1, . . . , b�2

m(km)/km). The test statistic ⇤n becomes

⇤n =
mX

j=1

kj
(b�j(kj)� b�n(!(Var)

n ))2

b�2

j (kj)
.

This has the familiar look of a Pearson goodness-of-fit statistic, with the weight kj ad-
justing for the di↵erent rates of convergence of the b�j(kj). If all the kj are equal, then

⇤n =
k

m

mX

j=1

 
b�n(!(Var)

n )

b�j(kj)
� 1

!2

.

In this setup, our proposed statistic ⇤n bears some similarity with a test statistic studied
in Einmahl et al. (2020) in the context of testing for the validity of a multivariate regular
variation model that assumes equality of tail indices across marginal distributions.

Remark 4 (Inference and bias correction). Typically, assuming �j = 0 to omit the
asymptotic bias terms is sensible as long as the second-order parameters ⇢j remain rea-
sonably far away from 0. Based on finite-sample experiments with a total sample size
n = 1,000, marginal Burr distributions and 2  m  5 with both balanced and unbalanced
samples, the confidence interval provided seems to perform very well when |⇢j | > 3/4.
Estimating the bias terms then is in fact detrimental, because of increased variability of
the resulting interval estimator that is not accounted for in the estimated variance.

Remark 5 (Tail homogeneity and tail homoskedasticity). When all the parameters ⇢j

are negative, as in Corollary 3, one has t
��jUj(t) ! Cj 2 (0,1) as t ! 1, see the

equation below Equation (2.3.23) in de Haan and Ferreira (2006). Testing H0 : � = �1
versus H1 : � 6= �1 is then exactly equivalent to testing

H
0
0
: 8j, ` 2 {1, . . . ,m}, lim⌧"1 qj(⌧)/q`(⌧) 2 (0,1),

versus H
0
1
: 9j, ` 2 {1, . . . ,m} with j 6= ` and lim⌧"1 qj(⌧)/q`(⌧) 2 {0,1}.

The testing procedure based on the statistic ⇤n is therefore, under very mild conditions,
exactly a test for asymptotic proportionality of marginal extreme quantiles. It can thus be
used to detect tail homogeneity (equal tail indices and therefore asymptotically propor-
tional tail quantiles) as opposed to tail heterogeneity (one marginal distribution having a
heavier tail than the others). We discuss below the testing of the stronger property when
all limits are equal to 1 in H

0
0
, corresponding to the asymptotic equivalence of extreme

quantiles (H), and referred to as tail homoskedasticity.
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Testing for tail homoskedasticity can be done directly using the Weissman estimators
bq?j (1� p|kj). Set Zn(p) = log bq?

n(1� p) = (log bq?
1
(1� p|k1), . . . , log bq?m(1� p|km)) and

Ln(p) =
k

log2(k/(np))

 
Zn(p)�

1>V
�1

c Zn(p)

1>V
�1

c 1
1

!>

V
�1

c

 
Zn(p)�

1>V
�1

c Zn(p)

1>V
�1

c 1
1

!
.

A testing procedure of asymptotic size ↵ of (H) versus

(H0) : 9j, ` 2 {1, . . . ,m} with j 6= ` and lim
⌧"1

qj(⌧)/q`(⌧) 6= 1,

is to reject (H) if Ln(p) > �
2

m�1,1�↵. We establish this rigorously in our next result.

Corollary 4. Under the conditions of Corollary 3 and ⇢j < 0 for all j, if p = p(n) ! 0 is
such that k/(np) ! 1 and

p
k/ log(k/(np)) ! 1, then we have P(Ln(p) > �

2

m�1,1�↵) !

↵ under (H), and Ln(p)
P

�! +1 under (H0). Moreover, under (H), if b!>
n 1 = 1 with

b!n
P

�! ! then, for any ↵ 2 (0, 1) and j 2 {1, . . . ,m},

lim
n!1

P

0

@qj(1� p) 2

2

4bq?n(1� p|b!n) exp

0

@±z1�↵/2 log


k

np

�s
b!>
n
bVcb!n

k

1

A

3

5

1

A = 1� ↵.

The present test is more general than the one suggested in Section 3.3 of Padoan and
Stupfler (2021), for which fairly strong integrability assumptions on the Xj are unavoid-
able. The use of the log-scale is equivalent in theory to the relative scale employed in
Theorem 2, but it tends to provide more accurate asymptotic confidence intervals for
extreme quantiles, as indicated for instance by Drees (2003).

3 The framework of distributed inference

Our general pooling theory naturally applies to the context of distributed inference. A
restriction in this framework is that the n individual data points cannot be processed
by a standalone machine and very restricted or no communication is allowed between
the m machines. In particular, the end user operating from a central machine only has
access to limited information, such as the subsample estimates and associated nj and kj ,
which is not su�cient for estimating the tail dependence structure between the di↵erent
subsamples. We thus make the assumption that the data within and across machines are
independent, that is, the Xi,j are i.i.d. for 1  i  nj and 1  j  m, with a common
distribution satisfying the second-order condition C2(�, ⇢, A).

3.1 Distributed estimation of the tail index

With i.i.d. data, an obvious benchmark for the distributed estimator b�n(!) is the Hill
estimator based on the unfeasible combination (due to computational or storage di�-
culties) of subsamples {Xi, 1  i  n} = {Xi,j , 1  j  m, 1  i  nj} with ef-

fective sample size k =
Pm

j=1
kj , that is, b�(Hill)

n (k) = k
�1
Pk

i=1
log(Xn�i+1:n/Xn�k:n)

where X1:n  X2:n  · · ·  Xn:n are the order statistics of the random variables
Xi. Assume, as in Section 2.1, that the nj and the kj are asymptotically propor-
tional but possibly unbalanced, i.e. n1/nj ! bj 2 (0,1) and k1/kj ! cj 2 (0,1).
Then, since A is regularly varying with index ⇢, it is straightforward to show that the
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existence of �j = limn!1
p

kjA(nj/kj), for any j, is equivalent to the existence of

� = limn!1
p
kA(n/k), and that

�j = c
⇢�1/2
j b

�⇢
j �1 = c

⇢�1/2
j b

�⇢
j

0

@
mX

j=1

1

cj

1

A
⇢�1/20

@
mX

j=1

1

bj

1

A
�⇢

�.

Hence, we have the following corollary of Theorem 1.

Corollary 5. Assume that condition C2(�, ⇢, A) holds. Suppose that n1/nj ! bj 2 (0,1)
and k1/kj ! cj 2 (0,1) (with then b1, c1 = 1) for any j 2 {1, . . . ,m}, and then that
k ! 1 with k/n ! 0 and

p
kA(n/k) ! � 2 R, as n ! 1. Let ! = (!1, . . . ,!m)> be

such that !>1 = 1. Then

p

k(b�n(!)� �)
d

�! N

0

@ �

1� ⇢

mX

j=1

d
⇢
j!j , �

2

mX

j=1

1

cj

mX

j=1

cj!
2

j

1

A

where dj = (cj/bj)⇥(
Pm

i=1
c
�1

i )/(
Pm

i=1
b
�1

i ). If b!>
n 1 = 1 and b!n

P
�! ! then

p
k(b�n(b!n)�

b�n(!)) = oP(1) and so the above convergence remains valid for b�n(b!n).

With this result, we discuss next in full detail the performance of the variance- and

AMSE-optimal distributed estimators relative to the benchmark Hill estimator b�(Hill)

n (k),

which satisfies the weak convergence
p
k(b�(Hill)

n (k) � �)
d

�! N (�/(1 � ⇢), �2) under the
assumptions of Corollary 5 (see Theorem 3.2.5, p.74 in de Haan and Ferreira (2006)).

3.2 Variance-optimal and AMSE-optimal combinations

It is immediate that the variance-optimal weights are !(Var)

j = (
Pm

i=1
c
�1

i )�1
c
�1

j for all j.

Estimating 1/ci by ki/k1 leads to the estimated weight vector e!(Var)

n = (k1/k, . . . , km/k).
The variance-optimal distributed estimator is therefore a very convenient convex combi-
nation that has a much simpler expression than in the general setup of Section 2, due
to the constraint of data independence across machines. Calculating this estimator only
requires reporting each individual kj and b�j(kj) to the central machine. Being a non-
random convex combination, this estimator is immune to the instability issues caused by
possible inaccurate estimation of optimal weights (see Remark A.3). The following result
gives its asymptotic distribution.

Corollary 6. Under the conditions and notation of Corollary 5,

p

k(b�n(e!(Var)

n )� �)
d

�! N

0

B@
�

1� ⇢

0

@
mX

j=1

1

cj

1

A
�10

@
mX

j=1

d
⇢
j

cj

1

A , �
2

1

CA .

Remark 6 (Asymptotic bias comparison). The unfeasible Hill estimator has asymptotic

bias µ(Hill) = �/(1�⇢). If � 6= 0 and µ
(Var) denotes the asymptotic bias of b�n(e!(Var)

n ), then
clearly µ

(Hill) = µ
(Var) when ⇢ = 0. Otherwise, the Hölder inequality for the conjugate

exponents p = �(1�⇢)/⇢ and q = 1�⇢ provides µ(Hill)
/µ

(Var)
 1. Equality holds if and

only if bj/cj = K, a constant independent of j (see Section C.4), i.e. bj/cj = b1/c1 = 1.
In other words, |µ(Hill)

|  |µ
(Var)

| with equality µ
(Hill) = µ

(Var) if and only if either ⇢ = 0
or k1/n1 = (kj/nj)(1+o(1)) for any j, meaning that the sample fraction in each machine
should be (asymptotically) the same for asymptotic bias equality to hold. See Section C.4
for further details.
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Corollary 6 and Remark 6 motivate the following result.

Theorem 3. Under the conditions of Corollary 6 with � 6= 0,
p
k(b�n(e!(Var)

n ) � �)
d

�!

N (�/(1� ⇢), �2) if and only if ⇢ = 0 or kj/nj = (k/n)(1 + o(1)) for any j 2 {1, . . . ,m}.

If moreover kj/nj = (k/n)(1 + O(1/
p
k)) for any j, we have in fact

p
k(b�n(e!(Var)

n ) �

b�(Hill)

n (k)) = oP(1).

This result states that adjusting the e↵ective sample sizes kj such that kj/nj is con-
stant across machines produces a variance-optimal distributed estimator that is asymp-
totically equivalent to the unfeasible Hill estimator built from the combined subsamples.
This is much stronger than only sharing the same asymptotic distribution, referred to
as the “oracle property” by Chen et al. (2021) for the naive distributed estimator in the
case m ! 1 (compare also with the results of Section 3.5). In the particular sector of
insurance, according to Supplement B in Chen et al. (2021), insurance companies may
be willing to communicate and might e↵ectively use the same sample fraction. Yet, it
is unlikely that such an adjustment can be performed in other sectors of activity, since
each machine will pick its own kj following an appropriate selection rule based only on
its subsample.

This di�culty with variance-optimal pooling motivates the focus on AMSE-optimal
pooling in the case of unequal sample fractions kj/nj . The following result compares the
resulting AMSE-optimal distributed estimator with the benchmark Hill estimator.

Theorem 4. Under the conditions and notation of Corollary 5, set

AMSE(Hill) =
1

k

✓
�
2

(1� ⇢)2
+ �

2

◆
and AMSE(!) =

1

k
((!>Bc)

2 + !>Vc!)

with Bc =
�

1� ⇢
(d⇢

1
, . . . , d

⇢
m)

>
and Vc = �

2

 
mX

i=1

c
�1

i

!
diag(c1, . . . , cm).

Assume that the bj/cj are not all equal to 1. Then AMSE(!(AMSE)) � AMSE(Hill) if and
only if |�|  �0, with

�0 = �(1� ⇢)

s
S2
⇢ � S

2

0

S0S2⇢ � S2
⇢

, and S↵ =
mX

j=1

d
↵
j /cj .

In the general situation where the marginal Hill estimators have unequal sample frac-
tions kj/nj , it is remarkable that the AMSE-optimal distributed estimator can actually
have a smaller AMSE than the benchmark Hill estimator itself under the necessary and
su�cient condition that the bias component |�| is su�ciently large, as will be illustrated
in Section 5.1.2. It should also be noted that Theorem 4 does not violate the minimax
optimality property of the (benchmark) Hill estimator proved in Drees (1998) since it only
states that the AMSE-optimal pooled estimator performs better than the Hill estimator
within a certain class of heavy-tailed distributions.

To estimate the AMSE-optimal weights in this distributed inference context, we as-
sume as in Section 2.2 that A(t) = ��t

⇢ and note that

� = lim
n!1

p

kA(n/k) = �� lim
n!1

p

k

⇣
n

k

⌘⇢
and dj = lim

n!1

njk

nkj
.

The estimators b�j and b⇢j , defined in Section 2.2, of the second-order parameters � ⌘ �j

and ⇢ ⌘ ⇢j are restricted to each machine j separately. We improve on these marginal

estimators by using here the pooled versions b�n(!) =
Pm

j=1
!j
b�j and b⇢n(!) =

Pm
j=1

!jb⇢j ,
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which in turn leads to the bias component estimator b� = b�(b!� , b!� , b!⇢) = b�n(b!�)b�n(b!�)⇥p
k(n/k)b⇢n(b!⇢), where b!� , b!� and b!⇢ are three possibly random sets of weights. An

obvious choice is !j = 1/m for all three estimators. A more refined choice is variance-

optimal weights kj/k for b!� and nj/n for both b!� and b!⇢ (recall that b�j and b⇢j use
almost all the available observations in each machine; see Section C.1). Set then

eBc =

vuut
mX

j=1

kj
b�n(b!�)b�n(b!�)

1� b⇢n(b!⇢)

 ✓
n1

k1

◆b⇢n(b!⇢)

, . . . ,

✓
nm

km

◆b⇢n(b!⇢)
!>

and eVc =

0

@
mX

j=1

kj

1

Ab�2

n(b!�) diag(1/k1, . . . , 1/km),

and define e!(AMSE)

n by replacing Bc and Vc in !(AMSE) with eBc and eVc. We obtain the
following result as an immediate consequence of Corollary 5.

Corollary 7. Work under the conditions of Corollary 5 with ⇢ < 0 and A(t) = ��t
⇢.

Assume that, for all j 2 {1, . . . ,m}, b�j is a consistent estimator of � and (b⇢j�⇢) log nj =
oP(1). Then

p

k(b�n(e!(AMSE)

n )� �)
d

�! N

0

@ �

1� ⇢

mX

j=1

d
⇢
j!

(AMSE)

j , �
2

mX

j=1

1

cj

mX

j=1

cj(!
(AMSE)

j )2

1

A .

A confidence interval based on this AMSE-optimal estimator (or on the variance-
optimal estimator) can then be constructed exactly as in Section 2.4, and so we omit the

details for the sake of brevity. This construction requires the knowledge of kj , nj , b�j , b⇢j
that each individual machine has to communicate to the central machine.

We conclude this section by making use of the distributed inference-specific bias com-
ponent estimator to define the following bias-reduced versions for both the variance- and
AMSE-optimal pooled estimators and derive their asymptotic distributions:

�n(e!(Var)

n ) = b�n(e!(Var)

n )�
1
p
k
(e!(Var)

n )> eBc

and �n(e!(AMSE)

n ) = b�n(e!(AMSE)

n )�
1
p
k
(e!(AMSE)

n )> eBc.

Corollary 8. Under the conditions of Corollary 7,
p
k(�n(e!

(Var)

n )��)
d

�! N (0, �2) and

p

k(�n(e!(AMSE)

n )� �)
d

�! N

0

@0, �2

mX

j=1

1

cj

mX

j=1

cj(!
(AMSE)

j )2

1

A .

3.3 Extreme quantile estimation

We are now ready to compare the weighted geometric distributed estimator of an extreme
quantile q(1 � p), as well as its variance- and AMSE-optimal versions, to the classical
unfeasible Weissman estimator obtained directly from the combined subsamples, each
defined as

bq?n(1�p|!) =
mY

j=1

"✓
kj

njp

◆b�j(kj)

Xnj�kj :nj ,j

#!j

, bq?,(Hill)

n (1�p|k) =

✓
k

np

◆b�(Hill)

n (k)

Xn�k:n.
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Corollary 9. Work under the conditions of Corollary 5 with ⇢ < 0. Pick p = p(n) ! 0
such that k/(np) ! 1 and

p
k/ log(k/(np)) ! 1. Let !, b!n be such that b!>

n 1 = 1 and

b!n
P

�! !. Then

p
k

log(k/(np))

✓
bq?n(1� p|b!n)

q(1� p)
� 1

◆
=

p

k(b�n(!)� �) + oP(1)

d
�! N

0

@ �

1� ⇢

mX

j=1

d
⇢
j!j , �

2

mX

j=1

1

cj

mX

j=1

cj!
2

j

1

A .

If moreover kj/nj = (k/n)(1 + O(1/
p
k)) for any j 2 {1, . . . ,m}, then bq?n(1 � p|e!(Var)

n )

is
p
k/ log(k/(np))�asymptotically equivalent to bq?,(Hill)

n (1 � p|k). Finally, if the bj/cj

are not all equal to 1, then under the conditions of Corollary 7, bq?n(1 � p|e!(AMSE)

n ) has

a smaller AMSE than bq?,(Hill)

n (1 � p|k) if and only if |�| > �0, with the notation of
Theorem 4.

3.4 Extension to the case of at least one, but not all, very low kj

It may happen that the ratio max1jm kj/min1jm kj is quite large, owing to uncer-
tainty in data-driven selection rules. One may then want to simply discard the marginal
estimates with a very low kj from the pooling procedure, but these estimates will have
very low bias if all machines have comparable sample sizes, and hence it is more sensible to
incorporate them into the distributed estimators of the tail index and extreme quantiles.
From an asymptotic point of view, we obtain the following result for the variance-optimal
distributed estimators in this situation of extremely unbalanced e↵ective sample sizes.

Theorem 5. Assume that condition C2(�, ⇢, A) holds. Suppose that there is ` 2 {1, . . . ,m�

1} such that on the one hand, for any j 2 {1, . . . , `}, kj ! 1 with kj/nj ! 0, n1/nj !

bj 2 (0,1) and k1/kj ! cj 2 (0,1) (with then b1, c1 = 1), and
p

kjA(nj/kj) !

�j 2 R; and on the other hand, for any j 2 {` + 1, . . . ,m}, kj = kj(n) is a nonde-
creasing sequence with kj/nj ! 0, k1/kj ! 1 and

p
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If moreover ⇢ < 0 and p = p(n) ! 0 is such that k/(np) ! 1 and
p
k/ log(k/(np)) ! 1,
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The variance-optimal distributed estimators therefore possess, under suitable con-
ditions, the same asymptotic properties as if they were calculated without incorporat-
ing the machines using a very low kj into the pooling procedure. Note that the first
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part of condition (1) automatically holds if in addition n1/nj ! bj 2 (0,1) for any
j 2 {`+ 1, . . . ,m}, and the second part of the condition on A(1/p) is obviously satisfied
if, for any j 2 {`+ 1, . . . ,m}, kj is bounded. Bias reduction can be similarly carried out
by focusing only on the machines having a large kj , so we omit the details for the sake of
brevity.

3.5 The case of a large number of machines

Our results above do not consider the case when all the kj are low, possibly even bounded,
whose treatment is substantially di↵erent. When all the kj = kj(n) are bounded in
n, consistency of the distributed estimators necessarily requires a growing number of
machines with n, namely m = m(n) ! 1. Otherwise, when m is fixed, the pooled
estimators will contain only a bounded number of summands. In this context, we require
the following fundamental assumption.

(A) m = m(n) ! 1 and the nj = nj(n) satisfy inf1jm nj/ logm ! 1 as n ! 1.

This condition means that the amount of data stored in each machine grows with n,
although the number of machines itself may grow at a much faster rate than the nj .
While the condition m ! 1 ensures consistency, the condition inf1jm nj/ logm ! 1

is required to establish a precise control of the statistical errors arising in each machine.
The proof is in this regard fundamentally di↵erent from the proofs of our theorems in
the case of a fixed m. Another important di↵erence is that the weight vector ! 2 Rm

now implicitly varies with n, so restrictions are needed to define a class of admissible
weights. For example, the pooled estimator corresponding to the weight (1, 0, 0, . . .) is
simply b�1(k1), which is not consistent when k1 is bounded. We thus introduce a balanced
allocation condition on ! = !(n).

(W) The weight vector ! = !(n) 2 Rm satisfies
Pm

j=1
!j = 1 as well as

lim sup
n!1

k

mX

j=1

!
2

j

kj
< 1 and 9� > 0,

Pm
j=1

k
��/2
j (!2

j /kj)
1+�/2

(
Pm

j=1
!
2

j /kj)
1+�/2

! 0 as n ! 1.

This condition forbids ! from having constant components (with respect to n), meaning
that the weight should be roughly evenly spread out across machines. It also prevents
|!j | from taking very large values despite summing up to 1, which corresponds to a
stabilization condition. Any weight vector satisfying m(n) sup

1jm |!j(n)|  !0 < 1,
for all n, will automatically fulfill (W). This encompasses the naive pooled estimator
of �, studied in Chen et al. (2021). The distributed estimator b�n(!) has the following
asymptotic properties.

Theorem 6. Under the conditions (A), (W) and C2(�, ⇢, A), if sup1jm kj/nj ! 0 and
p
k sup

1jm |A(nj/kj)| = O(1), then
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Here � denotes Euler’s Gamma function. If also k
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!
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j /kj ! v 2 [1,1), then
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[Note that necessarily k
Pm

j=1
!
2

j /kj � 1 by the Cauchy-Schwarz inequality.]
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Remark 7 (Comparison with previous results for fixed m). It is interesting to note that
the asymptotic variance in Theorem 6 in fact matches the asymptotic variance in the case
of a fixed m in Corollary 5, where the asymptotic variance is �2 multiplied by

mX

j=1

1

cj

mX

j=1

cj!
2

j = lim
n!1

mX

j=1

kj

k1

mX

j=1

k1

kj
!
2

j = lim
n!1

k

mX

j=1

!
2

j

kj

because cj = limn!1 k1/kj . In the case m ! 1, the right-hand side is nothing but v.
By contrast, the asymptotic bias term is substantially di↵erent.

Remark 8 (Comparison with Chen et al. (2021)). Theorem 6 revisits and generalizes
Theorems 1, 2 and 3 of Chen et al. (2021) in di↵erent directions: we deal with generic
weighted distributed estimation instead of a naive pooling, we unravel not only the case
of unbounded but also bounded (possibly unbalanced) kj in a single unified result, we
handle the more realistic case of unbalanced sample sizes nj , all of this under the natural
weaker version (A) of Condition A in Chen et al. (2021). We also remark that the
asymptotic variance �

2 obtained in Theorem 2 of Chen et al. (2021), with the naive
weights !j = 1/m for j 2 {1, . . . ,m}, is not correct. We fix the problem by proving
that the asymptotic variance is in fact v�

2, where in general v > 1. See Figure C.1 in
Section C.5 for a numerical illustration. This higher variance is not surprising because, in
the case of unbalanced kj , machines with the lowest kj tend to provide less information
than those with the largest kj , and therefore a loss of information should be expected
in comparison with the case where all the kj are equal. This insight can be checked by
considering, for example, a simple situation where X is purely Pareto distributed with
tail index �, the number m of machines is even, and kj = 1 for j odd and kj = 2 for j

even. In this situation, each b�j(kj) is in fact simply a sum of kj independent exponential
random variables with mean � and variance �

2, and hence
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This matches our result since
Pm

j=1
kj = 3m/2 and

Pm
j=1

!
2

j /kj = 3/4m, so that v = 9/8.
As such, the distributed Hill estimator with !j = 1/m typically does not achieve the so-
called “oracle property” claimed in Chen et al. (2021) even if

p
k sup

1jm |A(nj/kj)| ! 0
or ⇢ = 0. In their terminology, this property holds when the distributed Hill estimator
has the same rate of convergence and asymptotic distribution as the infeasible benchmark
Hill estimator.

Remark 8 motivates the following corollary on the estimator with !j = b!(Var)

j = kj/k,
which clearly satisfies condition (W).

Corollary 10. Under conditions (A) and C2(�, ⇢, A), if sup1jm kj/nj ! 0 and
p
k sup

1jm |A(nj/kj)| =
O(1), then
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Therefore, as in the case of bounded m, the distributed estimator with ! = b!(Var)

n is
asymptotically variance-optimal. It is this weighted estimator which possesses the “oracle
property”.

We now turn to the asymptotic behavior of the geometrically weighted extreme quan-
tile estimator bq?n(1 � p|!). Perhaps surprisingly, this distributed estimator is in fact
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generally not consistent when the kj are bounded, i.e. lim supn!1 sup
1jm kj(n) < 1.

The rationale is that, while the bias of the individual shape parameter estimators b�j(kj) is
small, and so averaging them out as b�n(!) creates a consistent estimator as the number of
machines increases, the individual scale parameter estimators Xnj�kj :nj ,j are fundamen-
tally biased estimators of q(1� kj/nj) when kj is fixed. As such, the Weissman extrapo-
lation of Xnj�kj :nj ,j to the far tail in conjunction with b�n(!) can no longer be correctly
applied. The workaround to ensure consistency of Xnj�kj :nj ,j is to choose kj ! 1 with
kj/nj ! 0. With these growing kj , the distributed extreme quantile estimator is, as
expected, consistent and asymptotically normal. These insights are summarized in the
following result.

Theorem 7. Work under the conditions of Theorem 6 with ⇢ < 0. Pick p = p(n) ! 0
such that k/(np) ! 1 and

p
k/ log(k/(np)) ! 1, and assume that
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� 1

����! 0 as n ! 1.

(i) If the kj = kj(n) are bounded, i.e. lim supn!1 sup
1jm kj(n) < 1, and !j � 0 for

any j, then bq?n(1� p|!)/q(1� p) does not converge to 1 in probability.

(ii) If the kj = kj(n) are such that inf1jm kj ! 1 and k
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j /kj ! v 2 [1,1),
then

p
k

log(k/(np))

0

@bq
?
n(1� p|!)

q(1� p)
� 1�

1

1� ⇢

mX

j=1

!jA(nj/kj)

1

A

=
p

k

0

@b�n(!)� � �
1

1� ⇢

mX

j=1

!jA(nj/kj)

1

A+ oP(1)
d

�! N (0, v�2).

Given that the kj are uniformly bounded, the assumption k/(np) ! 1 is exactly
m/(np) ! 1, which is guaranteed to hold in the typical case np ! c 2 [0,1) of in-
terest in extreme value analysis. The extra assumption on the kj and nj compared
to Theorem 6 ensures that the e↵ective sample fractions kj/nj are not too dissimilar
across machines; it is satisfied if, for instance, 0 < lim infn!1(n/k) inf1jm kj/nj 

lim supn!1(n/k) sup
1jm kj/nj < 1. A weaker version of this condition already ap-

pears in Theorem 5.

4 Filtering to handle dependence and covariates

In practice, the data are often recorded with relevant covariates, or are stationary but
weakly dependent in a way that can be modeled by a standard time series. Besides, when
the Xj share the same tail index, they typically have also asymptotically proportional
extreme quantiles (see Remark 5). This suggests that (X1, . . . , Xm) can be modeled in
many situations by a general location-scale model

Xj = gj(Zj) + �j(Zj)"j , 1  j  m, (2)

where the unobserved noise vector " = ("1, . . . , "m) has marginal tail quantile functions
Uj satisfying the conditions C2(�1,⇢,A) and (H), and its bivariate survival copulae Cj,`

satisfy J (R). The functions gj and �j > 0 are unknown measurable functions of Zj 2 Rlj ,
for some lj � 1. The covariatesZj can be fully observed (in traditional regression settings)
or partially or not at all observed (in a time series model which includes past unobserved
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innovations or volatility terms). The noise variable "j is assumed to be independent of
Zj .

Let then the pairs (Xi,j ,Zi,j), 1  i  nj , be part of a strictly stationary sequence
such that Xi,j = gj(Zi,j) + �j(Zi,j)"i,j for 1  j  m and 1  i  nj . The "i =
("i,1, . . . , "i,m) are assumed to be independent copies of " as above. A reasonable idea
to eliminate the heteroskedasticity and dependence in the data (Xi,j) is to first esti-
mate the location and scale components gj and �j of the model (under suitable iden-

tifiability and regularity conditions), and then filter the data to obtain residuals b"(nj)

i,j
close to the unobserved errors "i,j . This results in j residual-based Hill estimators

b�j(kj) = k
�1

j

Pkj

i=1
log(b"(nj)

nj�i+1:nj ,j
/b"(nj)

nj�kj :nj ,j
). These can be combined in a pooled ver-

sion b�n(!) =
Pm

j=1
!jb�j(kj) whose asymptotic normality can be proved under a high-level

condition on the discrepancy between b"(nj)

i,j and "i,j .

Theorem 8. Assume that " = ("1, . . . , "m) satisfies assumptions C2(�1,⇢,A) and J (R).
Under the conditions of Theorem 1 on kj, nj and !, if

max
1jm

p
kj max

1inj

|b"(nj)

i,j � "i,j |

1 + |"i,j |

P
�! 0,

then
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k(b�n(!) � �)

d
�! N (!>Bc,!>Vc!) with Bc and Vc defined analogously as in

Theorem 1. If b!>
n 1 = 1 with b!n

P
�! !, then

p
k(b�n(b!n)�b�n(!)) = oP(1). In particular,

b�n(b!n) has the same
p
k�asymptotic behavior as b�n(!).

Remark 9 (On the importance of filtering without pooling residuals). One might argue
that pooling directly the residuals themselves in a sample and applying the traditional Hill
estimator may be more e�cient. However, if the model is misspecified, heteroskedasticity
could still remain in the residuals, and those with the largest scale might swamp the other
residuals in the pooled sample, resulting thus in a large loss of estimation accuracy. Pool-
ing the residual-based Hill estimates instead provides more protection against departures
from the assumed location-scale model. Related points in the standard (non-pooling)
context are discussed in Remarks 2 and 3 in Girard et al. (2021a).

The condition on the discrepancy between b"(nj)

i,j and "i,j in Theorem 8 is typically
satisfied as soon as the location and scale components gj and �j are estimated at a faster
rate than

p
kj . This can easily be checked theoretically in a variety of regression models,

see Girard et al. (2021a) for examples. The presence of the denominator 1 + |"i,j | in the
condition makes it also possible to handle heteroskedasticity.

The ultimate interest in conditional extreme value modeling under (2) is to estimate
extreme (1� p)th quantiles of Xj given Zj = zj , defined as qXj |Zj=zj

(1� p) = gj(zj) +
�j(zj)qj(1� p) by location equivariance and positive homogeneity of quantiles, where qj

is the quantile function of "j . Given consistent estimators bgj(zj) of gj(zj) and b�j(zj)

of �j(zj), and using the Weissman estimator of qj(1�p) from the residuals b"(nj)

i,j , one can
then estimate qXj |Zj=zj

(1� p) by

bq?Xj |Zj=zj
(1� p|kj ,!) = bgj(zj) + b�j(zj)

✓
kj

njp

◆b�n(!)

b"(nj)

nj�kj :nj ,j
.

When " satisfies the condition (H) described in Section 2.3, all associated quantiles qj(1�
p) become asymptotically equivalent and can then be estimated by a geometrically pooled
estimator, which leads to the following location-scale estimator of qXj |Zj=zj

(1� p):

eq?Xj |Zj=zj
(1� p|!) = bgj(zj) + b�j(zj)

mY
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.
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Our final asymptotic result establishes the asymptotic normality of these two estimators.

Theorem 9. Work under the conditions of Theorem 8 with ⇢j < 0 for all j 2 {1, . . . ,m}.
Pick p = p(n) ! 0 such that k/(np) ! 1 and

p
k/ log(k/(np)) ! 1. Let !, b!n be such

that b!>
n 1 = 1 and b!n

P
�! !. Finally, assume that the estimators bgj(zj) and b�j(zj)
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5 Finite-sample study

5.1 Simulation experiments

We investigate the finite-sample performance of our proposed inferential methodology,
first in the general pooling framework for heavy-tailed distributions (Section 2) and then
in the distributed inference framework (Section 3). To save space we only report a brief
description of our simulated models and conclusions. A detailed description of our setup
and a complete set of numerical results can be found in Section D.1.

5.1.1 General setup: Pooling for tail index and extreme quantile inference

Dimensions m 2 {2, 3, 4, 5} were considered, with balanced, weakly unbalanced and
strongly unbalanced sample sizes. Our statistical models had either unit Fréchet or abso-
lute Student-t (i.e. the absolute value of a Student-t) marginal distributions with 1 degree
of freedom. The dependence structure between margins was given by four copulae: the
Clayton and Gumbel (Archimedean) copulae, and the Gaussian and Student copulae. The
Clayton and Gaussian copulae are cases of asymptotic independence, while the Gumbel
and Student copulae are cases of asymptotic dependence. All marginal distributions had
equal tail indices �j = 1. We arrived at similar results for di↵erent tail index values.

Our first experiment, for a total sample size of n = 1,000 across all subsamples,
compares four pooled tail index estimators (naive, variance-optimal, AMSE-optimal, and
AMSE-optimal with pooled second-order estimates as in the comment below Corollary 2)
with the benchmark Hill estimator applied to the pooled dataset on each of the aforemen-
tioned models. We also compare the related four geometrically pooled extreme quantile
estimators bq?n(1 � p|b!n) at level 1 � p = 0.999 with the naive arithmetic mean of the
Weissman estimators bq?j (1 � p|kj) in each subsample and the benchmark Weissman es-
timator applied to the pooled dataset. We compute Monte Carlo approximations of
the Mean Squared Error (MSE) and of the actual coverage probability for the asymp-
totic confidence intervals with 95% nominal level arising from our asymptotic theory,
see Corollaries 3 and 4 for our proposed estimators; for the Hill (resp. Weissman) es-
timator, we assume that the asymptotic distribution is normal with mean 0 and vari-
ance �

2
/k (resp. �2

⇥ log2(k/(np))), see Theorem 3.2.5, p.74 in de Haan and Ferreira
(2006) (resp. Theorem 4.3.8, p.138 therein). The MSE and coverage probability are re-
ported along with the average length of the confidence intervals relative to each estimation
method in Figures D.2–D.5. The variance-optimal and AMSE-optimal estimators out-
perform by far the naive pooling estimator on the basis of the MSE, when there is strong
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unbalance between sample sizes. Di↵erences in performance get larger as the unbalance
increases. Also, as expected from our theory, they perform comparably to the Hill es-
timator on pooled data. At the inferential level, confidence intervals deduced using the
variance-optimal and AMSE-optimal estimators are typically substantially narrower than
those provided using naive pooling. When there is asymptotic independence between
subsamples, the pooling methods and the benchmarks on pooled data both provide con-
fidence intervals having correct coverage. This is no longer the case when substantial
dependence is present, with the 95% confidence intervals constructed using the bench-
mark Hill estimator having actual coverage that can be as low as 75%. Conclusions about
extreme quantile estimation are similar, with the added value that geometrically pooled
estimators outperform by far the naive arithmetic mean of Weissman estimators.

5.1.2 Distributed inference of extreme values

In our second experiment, we assume that the marginal distributions are i.i.d. Fréchet,
absolute Student-t or Burr distributed, with tail index � = 1. We consider dimensions
m 2 {5, 10, 20} in balanced and highly unbalanced setups. We compare again the tail
index and extreme quantile estimators described in Section 5.1.1. The results, reported in
Figures D.6–D.8, indicate that our proposed variance-optimal and AMSE-optimal meth-
ods (with pooled second-order estimates) perform comparably to the unfeasible Hill and
Weissman estimators applied to the pooled dataset and outperform the naive distributed
estimators, with shorter confidence intervals having correct coverage, and lower MSE.
Geometric pooling is clearly beneficial as far as extreme quantile estimation is concerned.
The gain of using our proposed distributed estimators increases as the unbalance be-
tween sample sizes increases. The AMSE-optimal distributed estimator is also overall the
best when sample fractions are substantially di↵erent, as Figure D.9 shows in a simple
illustrative case when m = 2.

5.2 Data analysis

We discuss two concrete applications of our methodology to insurance and rainfall data.

5.2.1 Distributed inference for car insurance data

The first dataset comprises total claim amounts for car insurance companies in the five
US states of Iowa (n1 = 2,601), Kansas (n2 = 798), Missouri (n3 = 3,150), Nebraska
(n4 = 1,703), and Oklahoma (n5 = 882) between January and February 2011, for a total
sample size of n = 9,134. The choice of this dataset follows the same setup as in Chen et al.
(2021) who assume that each company cannot share its data, making the calculation of
Hill and Weissman estimates from pooled data inapplicable, but each company is willing
to share its statistical analysis to enhance its appraisal of tail risk. Unlike Chen et al.
(2021), however, our distributed inference method can handle the di↵erent subsample sizes
nj and hence the full dataset, and allows to estimate extreme quantiles. Their analysis
requires first a subsampling step to guarantee the same subsample sizes. We compare
our results using the full data with those obtained from their method after subsampling
at random 700 observations in each state, as described in Supplement B of Chen et al.
(2021). As a benchmark, we use the hypothetical Hill and Weissman estimates, obtained
directly from the combined n data points. Results are given in Figure 1.

We first check the equality of tail indices by testing for tail homogeneity across the 5
states on full data and the subsampled data in each state, using the theory developed
in Section 2.4 under the constraint of independence between subsamples (see Remark 3).
From the p-values corresponding to our test statistic ⇤n in Figure 1(A), we can com-
fortably conclude the equality of individual tail indices at the three significance levels
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0.10, 0.05 and 0.01. It is remarkable that the p-values plot remains quite stable when mov-
ing from the full 5 samples of total size 9,134 to the subsamples of total size 5⇥700 = 3,500.
This indicates that the asymptotic chi-square regime is attained reasonably quickly.

Figure 1(B) compares our variance-optimal distributed estimator b�n(b!(Var)

n ), based
on the full data, with the naive distributed estimator b�n(1/m, . . . , 1/m) of Chen et al.

(2021), which relies on the subsampled data, and with the benchmark Hill estimator b�(Hill)

n

along with their respective asymptotic 95% confidence intervals. In contrast to the naive
estimates and their associated confidence intervals, our optimal weighted estimates and
their confidence intervals are, respectively, almost identical to the Hill estimates and their
corresponding confidence intervals, as is to be expected from Theorem 3. Our variance-
optimal confidence intervals are found to be around 40% shorter than those of Chen et al.
(2021). We arrive at a similar conclusion, in Figure 1(C), when restricting the analysis to
the branches in Kansas and Missouri, whose subsample sizes 798 and 3,150 are strongly
imbalanced, and using the full data from these states for both the variance-optimal and
naive distributed estimates. Here, the variance-optimal confidence intervals are found to
be roughly 20% shorter than those relative to the naive estimator.

The test theory of extreme quantile equivalence developed in Corollary 4 is im-
plemented for the two extreme quantile levels 1 � p = 0.999 ⇡ 1 � 1/maxj nj and
1 � p = 0.9999 ⇡ 1 � 1/n, resulting in the p-values from the test statistic Ln(p) dis-
played in Figure 1(D) for both full and subsampled data. The test overall allows to
accept the assumption of tail homoskedasticity across states, with p-values getting higher
as p decreases. The rationale behind this behavior in this distributed setting is that, as
extreme quantile levels increase, the shape of the approximating Pareto distribution gets
more important relative to its scale. As such, because mere di↵erences in scale can no
longer be detected in the far tail as p # 0, the test actually becomes less powerful against
the sub-alternative of proportional quantiles. Finally, the resulting variance-optimal dis-
tributed estimates and confidence intervals for extreme quantiles are found to be virtually
indistinguishable from the ideal Weissman analogs, whereas they appreciably outperform
the naive distributed competitors, as can be seen from Figure 1(E) and (F) for p = 0.0001.

5.2.2 Pooling for regional inference on extreme rainfall

We explore regional inference on tail index and extreme quantiles of monthly rainfall in
the state of Florida. An accurate assessment of these tail quantities is crucial for e↵ective
flood protection at minimal ecological damage and economic cost. Rainfall measurements
are collected daily by the Florida Automated Weather Network at 49 gauge stations, over
di↵erent periods between December 1997 and May 20211. We focus on the eight stations
indicated with pin markers in the map in the top panel of Figure 2, whose aggregated
monthly rainfall exhibit heavy-tailed distributions. The upper tail heaviness for each
sample was ascertained in an exploratory analysis using moment and generalized Hill
estimators (see e.g. Beirlant et al. (2004)). Individual sample sizes nj are rather short
however, ranging from 172 to 281. The standard extreme value practice of individual
extreme value inference will thus be subject to large uncertainty because of the limited
amount of data at each site. By contrast, our optimal weighted pooling approach allows
to reduce the uncertainty by borrowing tail information from homogeneous stations.

Our exploratory analysis shows first that the eight monthly time series are all station-
ary according to the classical KPSS and ADF tests. A first distinctive property is that
the data for each station in the cluster of red pinned stations near the northern border
of Florida are, in contrast to those in the green cluster close to the east coast, not auto-

1See https://fawn.ifas.ufl.edu/data/fawnpub/.
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Figure 1: Car insurance data. In (A) and (D), ⇤n,SUB and Ln,SUB(p) denote the test
statistics ⇤n and Ln(p) calculated from the subsampled data of total size 5⇥700 = 3,500.
In (B) and (C), Pool-AVAR and Pool-NAIVE respectively denote the variance-optimal
pooled estimator and the naive pooled estimator of the tail index. In (E) and (F),
Pool-AVAR and Pool-NAIVE respectively denote the variance-optimal pooled quantile
estimator bq?n(1�p|b!(Var)) and its unweighted analog. Pool-AVAR-SUB and Pool-NAIVE-
SUB stand for these estimators calculated on the subsampled data. All estimates are
represented as functions of the sample fraction kj/nj , assumed to be identical for each j.

correlated according to the Ljung-Box test. The five time series (Xt) in the green cluster
of stations stretching along the east coast can be nicely fitted by simple seasonal ARMA
models �12(B12)�(B)Xt = c+⇥12(B12)⇥(B)"t, where "t stands for a white noise process
and c denotes a constant, with �(B), ⇥(B), �12(B12) and ⇥12(B12) being respectively
polynomials of degree p, q 2 {0, 1, 2} in the lag operator B and p12, q12 2 {1, 2} in B

12.

Following our theory in Section 4, the obtained residuals (b"(nj)

t,j , 1  t  nj), for each
station j = 1, . . . , 5, are the basic tool for estimating tail indices. Figures D.12 and D.13
in Supplement D.2.2 show the histograms and Hill plots obtained for the eight stations.
A second distinctive property is that the three stations in the red cluster have very simi-
lar Hill estimates between 0.32 and 0.34, while the five stations in the green cluster also
have similar Hill estimates between 0.43 and 0.51, that are rather di↵erent from those
in the red cluster. Table 2 in Supplement D.2.2 gives a summary of the extreme value
information that can be gathered from each station.

This motivates testing for equal tail indices in the separate red and green clusters of
stations. First, that the eight stations do not have the same tail index is confirmed by
the tail homogeneity test in Figure 2(A), where the plot of p-values from the test statis-
tic ⇤n becomes clearly very stable below the three significance levels 0.10, 0.05 and 0.01.
By contrast, we can comfortably conclude the equality of tail indices in both red and
green clusters from the tail homogeneity tests in Figure 2(B) and (C). This justifies the
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in-group tail homogeneity between the stations in each cluster besides their geographical
proximity. Even more strongly, the tail homoskedasticity test implemented in Figure 2(D)
and (E), for the two extreme quantile levels 1� p ⇡ 1� 1/maxj nj and 1� p ⇡ 1� 1/n,
allows to accept the assumption of extreme quantile equivalence across stations in each
cluster. Therefore, the Hill and Weissman estimators of the common tail index � and
extreme quantiles q(1 � p), respectively, could be directly calculated from the combined
data in each cluster. However, it should be clear that the key question of inference based
on these ideal estimators remains open in this particular application. Indeed, combining
subsamples in each cluster of stations results in a single sample of asymptotically depen-
dent (rainfall) data for which the asymptotic theory of both Hill and Weissman estimators
is still unavailable in the extreme value literature. Our regional pooled estimators come
with a satisfactory solution, reducing substantially the huge uncertainty inherent to local
inference at each site, as can be seen from Figure 2(F)-(I). For the red cluster, Figure 2(F)
shows that both naive and variance-optimal pooled estimators of � are very close to the
benchmark Hill estimator, while the asymptotic 95% variance-optimal confidence intervals
are quite stable and remarkably narrower relative to the Hill-based confidence intervals
obtained individually from each subsample. We arrive at the same conclusion for the
green cluster in Figure 2(G), where both pooling-type confidence intervals appear to be
much tighter than the individual Hill-based confidence interval obtained from the largest
subsample. Likewise, when estimating the extreme quantile of order 1� p ⇡ 1� 1/n, the
individual Weissman-based confidence interval obtained from the largest subsample in
Figure 2(H) and (I), for raw data in the red cluster and for residuals in the green cluster,
tends to be unstable and twice as wide as our pooling confidence intervals, owing to the
reduction of uncertainty in the latter. It is also worth noticing that the variance-optimal
pooled estimator is closer to the benchmark Weissman estimator than the naive pooled
competitor.
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(B) Tail homogeneity test: Red cluster
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(C) Tail homogeneity test: Green cluster
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(D) Tail homoskedasticity test: Red cluster
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(E) Tail homoskedasticity test: Green cluster
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(F) Tail index estimates: Red cluster
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(G) Tail index estimates: Green cluster
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Figure 2: Florida rainfall data. Map of Florida along with its gauge stations and infer-
ential results (notation as in Figure 1).
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