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Abstract. In this work, we study the stability of a one-dimensional Timoshenko system with localized internal fractional kelvin-
Voigt damping in a bounded domain. First, we reformulate the system into an augmented model and using a general criteria
of Arendt-Batty we prove the strong stability. Next, we investigate three cases: the first one when the damping is localized in
the bending moment, the second case when the damping is localized in the shear stress, we prove that the energy of the system
decays polynomially with rate t−1 in both cases. In the third case, the fractional Kelvin-Voigt is acting on the shear stress and

the bending moment simultaneously. We show that the system is polynomially stable with decay rate of type t
−4
2−α . The method

is based on the frequency domain approach combined with multiplier technique.
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1. Introduction

We consider the Timoshenko beams subject to a feedback control combines the fractional and the Kelvin-
Voigt type. The fractional derivative here is of type Caputo and it is defined by:

(1.1) [Dα,ηω] (x, t) = ∂α,ηt ω(x, t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s) dω
ds

(x, s)ds,

where α ∈ (0, 1) is the order of the derivative, t is the time variable, η ≥ 0 and γ denotes the Gamma function.
Fractional calculus includes various extensions of the usual definition of derivative from integer to real order.
For mathematical description of the fractional derivative see [11]. Now, we mention some recent results treated
the stabilization of beams subject to fractional or Kelvin-Voigt damping. In [4] Contreras and Rivera considered
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the Timoshenko beam with localized Kelvin-Voigt dissipation distributed over two components: one of them
with constitutive law of the type C1 and the other with discontinuous law. The third component is simply
elastic, where the viscosity is not effective. They showed that the system is exponentially stable if and only if
the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous
component is in the middle, the solution decays polynomially. In [9] Oquendo and Roberto da Luz investigated
the asymptotic behavior of the solutions of a Timoshenko beam with a fractional damping. The damping
acts only in one of the equations and depends on a parameter θ ∈ [0, 1]. Timoshenko systems with frictional
or Kelvin-Voigt dampings are particular cases of this model. They proved that, for regular initial data, the
semigroup of this system decays polynomially with rates that depend on θ and some relations between the
structural parameters of the system. Moreover, they showed that the decay rates obtained are optimal and the
only possibility to obtain exponential decay is when θ = 0 and the wave propagation speeds of the equations
coincide. Zhao et al. [5] considered the following Timoshenko beam with Kelvin-Voigt damping:

(1.2)

{
ρ1utt − [k1 (ux + y)x +D1(uxt − yt)]x = 0, (x, t) ∈ (0, L)× R+,

ρ2ytt − (k2yx +D2yxt)x + k1 (ux + y)x +D1(uxt − yt) = 0, (x, t) ∈ (0, L)× R+.

They proved that the energy of the system (1.2) subjected to Dirichlet-Neumann boundary conditions is expo-
nentially stable when coefficient functions D1, D2 ∈ C1,1([0, L]) and satisfy D1 ≤ cD2 (c > 0). Next, Malacarne
and Rivera [7] considered the Timoshenko system (1.2) under Dirichlet-Neumann boundary conditions. They
showed that the system is analytic if and only if the damping is present in both the shear stress and the bending
moment. Otherwise, the solution decays polynomially no matter where the damping is effective and that rate is
optimal. Later, Tian and Zhang [12] considered the Timoshenko system under fully Dirichlet boundary condi-
tions with locally or globally distributed Kelvin-Voigt damping when coefficient functions D1, D2 ∈ C([0, L]).
When the Kelvin-Voigt is globally distributed, they showed that the corresponding semigroup is analytic. Then,
for their system with local Kelvin-Voigt damping, they analyzed the exponential and polynomial stability ac-
cording to the properties of coefficient functions D1, D2. Next, Ghader and Wehbe [13] studied the stabilization
of the following Timoshenko system with only one locally or globally distributed Kelvin-Voigt damping:

(1.3)

{
ρ1utt − k1 (ux + y)x = 0, (x, t) ∈ (0, L)× R+,

ρ2ytt − (k2yx +Dyxt)x + k1 (ux + y) = 0, (x, t) ∈ (0, L)× R+.

They established that the energy of the system (1.3) under fully Dirichlet or mixed boundary conditions decays
polynomially.
To the best of our knowledge, the stabilization of Timoshenko system with one or two fractional Kelvin-Voigt
damping has never been looked into yet. In particular, in the case, where only the first equation (equation of
shear force) is effectively damped. In the present paper, we investigate the stability of the following Timoshenko
system with fractional Kelvin-Voigt damping:

(1.4)

{
ρ1utt − [k1 (ux + y) +D1(x)∂α,ηt (ux + y)]x = 0, (x, t) ∈ (0, L)× R+,

ρ2ytt − [k2yx +D2(x)∂α,ηt yx]x + k1 (ux + y) +D1(x)∂α,ηt (ux + y) = 0, (x, t) ∈ (0, L)× R+,

subject to the following initial condidtions:

(1.5)
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L).

and the following boundary conditions:

(1.6) u(0, t) = y(0, t) = u(L, t) = y(L, t) = 0, t ∈ R+,

or

(1.7) u(0, t) = yx(0, t) = u(L, t) = yx(L, t) = 0, t ∈ R+.

The coefficients ρ1, ρ2, k1, and k2 are positive constants, η is non-negative and α in (0, 1). We assume that
there exists 0 ≤ a1 < b1 ≤ L, 0 ≤ a2 < b2 ≤ L and two positive constants d1 and d2, such that

D1(x) =

{
d1, x ∈ (a1, b1),

0, x ∈ (0, a1) ∪ (b1, L),
and D2(x) =

{
d2, x ∈ (a2, b2),

0, x ∈ (0, a2) ∪ (b2, L).
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We shall study the direct stability when D1 6= 0 and D2 6= 0. As well as the indirect stability when D1 = 0 or
D2 = 0. In other words, we shall study the stability of system (1.4)-(1.5) with boundary conditions (1.6) or (1.7)
by distinguishing between three cases. In the first one, we consider a fully damped system i.e. the two equations
are effectively damped. However, in the other two cases, we assume that the system is partially damped i.e.
only one of these equations is effectively damped. To this end, we introduce the following assumptions on the
damping coefficients Dj(x); j = 1, 2 :

(A1) D1 6= 0 and D2 6= 0,

or

(A2) D1 = 0 and D2 6= 0,

or

(A3) D1 6= 0 and D2 = 0.

The remaining of this paper is organized as follows: In subsection 2.1, we reformulate problem (1.4) into an
augmented model and we prove the well-posedness of the problem by semigroup approach. In subsection 2.2,
we show that our system is strongly stable in the sense that its energy converges to zero as t goes to infinity
provided that any one of assumptions (A1), (A2) or (A3) holds. For this aim, a general criteria of Arendt-Batty
is used. Moreover, using a frequency domain approach combining with a specific multiplier method, in section
3 (respectively in section 4), we prove that the energy of our system decays polynomially to zero like as t−1
when the fractional Kelvin-Voigt damping is acting only on the bending moment equation (respectively only
on the shear force equation). Finally, in the last section 5, we study the polynomial stability of our system
when the fractional Kelvin-Voigt damping is present in both shear stress and bending moment equations. We
establish a polynomial energy decay rate of type t

−4
2−α .

2. Well-Posedness and Strong Stability

2.1. Augmented model and well-posedness. For well-posedness of System (1.4)-(1.5) to either boundary
conditions (1.6) or (1.7), we recall Theorem 2 stated in [8].

Theorem 2.1. Let α ∈ (0, 1), η ≥ 0 and µ(ξ) = |ξ| 2α−1
2 be the function defined almost everywhere on R. The

relationship between the input V and the output O of the following system

ωt(x, ξ, t) +
(
ξ2 + η

)
ω(x, ξ, t)− µ(ξ)V (x, t) = 0, (x, ξ, t) ∈ (0, L)× R× R+,(2.1)

ω(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,(2.2)

O(x, t)− κ(α)

∫
R
µ(ξ)ω(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+,(2.3)

is given by

(2.4) O = I1−α,ηV,

where

[Iα,ηV ](x, t) =

∫ t

0

(t− τ)α−1e−η(t−τ)

Γ(α)
V (x, τ)dτ and κ(α) =

sin(απ)

π
.

�

Proof.
Step1. Assume that η = 0. From (2.1)-(2.2), we deduce that

(2.5) ω(x, ξ, t) =

∫ t

0

µ(ξ)e−ξ
2(t−τ)V (x, τ)dτ.

Hence by using (2.3), we have

O(x, t) = κ(α)

∫ t

0

(∫
R
|ξ|2α−1e−ξ

2(t−τ)dξ

)
V (x, τ)dτ =

sin(απ)

π

∫ t

0

(
2

∫ ∞
0

|ξ|2α−1e−ξ
2(t−τ)dξ

)
V (x, τ)dτ.
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It follows that

O(x, t) =
sin(απ)

π

∫ t

0

(t− τ)−αΓ(α)V (x, τ)dτ.

Using the fact that
sin(απ)

π
=

1

Γ(α)Γ(1− α)
in the above equation, we obtain (2.4) in the particular case η = 0.

Step2. Assume that η > 0. By using the following change of function

ω(x, ξ, t) = e−ηtψ(x, ξ, t)

in (2.1)-(2.3), we obtain

ψt(x, ξ, t) + ξ2ψ(x, ξ, t)− eηtV (x, t)µ(ξ) = 0, η ≥ 0, t > 0,(2.6)

ψ(x, ξ, 0) = 0,(2.7)

O(x, t)− κ(α)e−ηt
∫
R
µ(ξ)ψ(x, ξ, t)dξ = 0.(2.8)

Hence, by using Step1, (2.6)-(2.8) yield the desired result:

O(x, t) = e−ηt
∫ t

0

(t− τ)−α

Γ(1− α)
eητV (x, τ)dτ.

The proof is thus completed. �

Corollary 2.2. System (1.4)-(1.5) with boundary conditions (1.6) or (1.7) may be recast into the following
augmented model

ρ1utt −
(
k1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ, t)dξ

)
x

= 0, (x, t) ∈ (0, L)× R+,(2.9)

ρ2ytt −
(
k2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ, t)dξ

)
x

(2.10)

+k1 (ux + y) + κ(α)
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+

ω1
t (x, ξ, t) + (ξ2 + η)ω1(x, ξ, t)−

√
D1(x)(uxt + yt)µ(ξ) = 0, (x, ξ, t) ∈ (0, L)× R× R+,(2.11)

ω2
t (x, ξ, t) + (ξ2 + η)ω2(x, ξ, t)−

√
D2(x)ytxµ(ξ) = 0, (x, ξ, t) ∈ (0, L)× R× R+,(2.12)

System (2.9)-(2.12) is subject to the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),(2.13)

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),(2.14)

ω1(x, ξ, 0) = ω2(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,(2.15)

with fully Dirichlet boundary conditions

(2.16) u(0) = u(L) = y(0) = y(L) = 0,

or with Dirichlet-Neumann boundary conditions

(2.17) u(0) = u(L) = yx(0) = yx(L) = 0, ω2(0, ξ, t) = ω2(L, ξ, t) = 0.

Proof. Considering the inputs V1(x, t) =
√
D1(x)(uxt(x, t) + yt(x, t)) and V2(x, t) =

√
D2(x)yxt(x, t) respec-

tively in Theorem 2.1, then using (1.1), we get the following outputs

(2.18)
O1(x, t) =

√
D1(x)I1−α,η(utx + yt)(x, t) =

√
D1(x)

Γ(1− α)

∫ t

0

(t− τ)−αe−η(t−τ)∂τ (ux + y)(x, τ)dτ

=
√
D1(x)∂α,ηt (ux + y)(x, t),
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and

(2.19)
O2(x, t) =

√
D2(x)I1−α,ηytx(x, t) =

√
D2(x)

Γ(1− α)

∫ t

0

(t− τ)−αe−η(t−τ)∂τyx(x, τ)dτ

=
√
D1(x)∂α,ηt yx(x, t).

Consequently, we obtain the following two systems

(2.20)


ω1
t (x, ξ, t) +

(
ξ2 + η

)
ω1(x, ξ, t)− µ(ξ)

√
D1(x)(uxt + yt)(x, t) = 0, (x, ξ, t) ∈ (0, L)× R× R+,

ω1(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,√
D1(x)∂α,ηt (ux + y)(x, t)− κ(α)

∫
R
µ(ξ)ω1(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+,

and

(2.21)


ω2
t (x, ξ, t) +

(
ξ2 + η

)
ω2(x, ξ, t)− µ(ξ)

√
D2(x)yxt(x, t) = 0, (x, ξ, t) ∈ (0, L)× R× R+,

ω2(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,√
D2(x)∂α,ηt yx(x, t)− κ(α)

∫
R
µ(ξ)ω2(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+.

From sytem (2.20) and system (2.21), we deduce that system (1.4)-(1.5) to either boundary conditions (1.6) or
(1.7) can be recast into the augmented model (2.9)-(2.15) to either boundary conditions (2.16) or (2.17). The
proof is thus complete. �

Now, let (u, ut, y, yt, ω
1, ω2) be a regular solution for the system (2.9)-(2.15) to either the boundary conditions

(2.16) or (2.17), its associated energy is given by

E (t) =
1

2

∫ L

0

(
ρ1 |ut|2 + ρ2 |yt|2 + k1 |ux + y|2 + k2 |yx|2

)
dx+

κ(α)

2

∫ L

0

∫
R

(∣∣ω1
∣∣2 +

∣∣ω2
∣∣2) dξdx.

Lemma 2.3. System (2.9)-(2.15) subject to either the boundary conditions (2.16) or (2.17) is dissipative in
the sense that it is energy is non-increasing function with respect to t and satisfies

(2.22) E′ (t) = −κ(α)

∫ L

0

∫
R

(
ξ2 + η

) (∣∣ω1
∣∣2 +

∣∣ω2
∣∣2) dξdx ≤ 0.

Proof. Let
(
u, ut, y, yt, ω

1, ω2
)
be a regular solution of (2.9)-(2.15), thus multiplying (2.9) and (2.10) by ut

and yt, respectively, integrating over (0, L), adding the resulting equations, then using the boundary conditions
(2.16) or (2.17), we get

(2.23)

1

2

d

dt

∫ L

0

(
ρ1 |ut|2 + ρ2 |yt|2 + k1 |ux + y|2 + k2 |yx|2

)
dx

+<

(
κ(α)

∫ L

0

√
D1(x)(utx + yt)

∫
R
µ(ξ)ω1dξdx

)
+ <

(
κ(α)

∫ L

0

√
D2(x)ytx

∫
R
µ(ξ)ω2dξdx

)
= 0.

Next, multiplying (2.11) and (2.12) by κ(α)ω1 and κ(α)ω2, respectively, integrating in (0, L) × R, then using
the boundary condition (2.16) or (2.17), we get

(2.24)

κ(α)

2

d

dt

∫ L

0

∫
R
|ω1(x, ξ)|2dξdx+ κ(α)

∫ L

0

∫
R
(ξ2 + η)|ω1(x, ξ)|2dξdx

= <

(
κ(α)

∫ L

0

√
D1(x)(uxt + yt)

∫
R
µ(ξ)ω1(x, ξ)dξdx

)
,

and

(2.25)

κ(α)

2

d

dt

∫ L

0

∫
R
|ω2(x, ξ)|2dξdx+ κ(α)

∫ L

0

∫
R
(ξ2 + η)|ω2(x, ξ)|2dξdx

= <

(
κ(α)

∫ L

0

√
D2(x)ytx

∫
R
µ(ξ)ω2(x, ξ)dξdx

)
.
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Finally, by adding (2.24), (2.25) and (2.23), we obtain (2.22). Since α ∈ (0, 1), then κ(α) > 0, and therefore
E′ ≤ 0. The proof is thus complete. �

Now, let us define the energy spaces H1 and H2 by:

H1 =
(
H1

0 (0, L)× L2 (0, L)
)2 ×W2,

H2 = H1
0 (0, L)× L2 (0, L)×H1

∗ (0, L)× L2 (0, L)×W ×W∗,

where

W = L2 ((0, L)× R) ,

W∗ =
{
f ∈ L2 ((0, L)× R) | f(0, ξ) = f(L, ξ) = 0

}
,

and

H1
∗ (0, L) =

{
f ∈ H1(0, L) |

∫ L

0

fdx = 0

}
.

It is easy to check that the space H1
∗ is Hilbert spaces over C equipped with the norm

‖u‖2H1
∗(0,L)

= ‖ux‖2 ,

where ‖ · ‖ denotes the usual norm of L2 (0, L). Both energy spaces H1 and H2 are equipped with the inner
product defined by: 〈

U, Ũ
〉
Hj

=ρ1

∫ L

0

vṽdx+ ρ2

∫ L

0

zz̃dx+ k1

∫ L

0

(ux + y) (ũx + ỹ)dx

+ k2

∫ L

0

yxỹxdx+ κ(α)

∫ L

0

∫
R

(
ω1ω̃1 + ω2ω̃2

)
dξdx,

for all U =
(
u, v, y, z, ω1, ω2

)
and Ũ =

(
ũ, ṽ, ỹ, z̃, ω̃1, ω̃2

)
in Hj , j = 1, 2. We use ‖U‖Hj to denote the

corresponding norm. We now define the following unbounded linear operators Aj on Hj (j = 1, 2) by

D (A1) =



U = (u, v, y, z, ω1, ω2) ∈ H| v, z ∈ H1
0 (0, L),(

k1 (ux + y) + κ(α)
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

∈ L2(0, L),(
k2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

∈ L2(0, L),

−(ξ2 + η)ω1(x, ξ) +
√
D1(x)(vx + z)µ(ξ), |ξ|ω1 ∈ W,

−(ξ2 + η)ω2(x, ξ) +
√
D2(x)zxµ(ξ), |ξ|ω2 ∈ W


,

D (A2) =



U = (u, v, y, z, ω1, ω2) ∈ H| v ∈ H1
0 (0, L), z ∈ H1

∗ (0, L) ,(
k1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

∈ L2(0, L),(
k2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

∈ L2(0, L),

−(ξ2 + η)ω1(x, ξ) +
√
D1(x)(vx + z)µ(ξ), |ξ|ω1 ∈ W,

−(ξ2 + η)ω2(x, ξ) +
√
D2(x)zxµ(ξ), |ξ|ω2 ∈ W∗,

yx(0, t) = yx(L, t) = 0



,
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and for all U = (u, v, y, z, ω1, ω2) ∈ D (Aj), for j = 1, 2,

AjU> =



v

1

ρ1

(
κ1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

z

1

ρ2

(
κ2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

− κ1
ρ2

(ux + y)−κ(α)

ρ2

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

−(ξ2 + η)ω1(x, ξ) +
√
D1(x)(vx + z)µ(ξ)

−(ξ2 + η)ω2(x, ξ) +
√
D2(x)zxµ(ξ)



.

Remark 2.4. The condition |ξ|ωj ∈ W, (or in W∗), is imposed to make that∫
R

(ξ2 + η)|ωj(x, ξ)|2dξ ∈ L2(0, L) and
√
Dj(x)

∫
R
|ξ|

2α−1
2 ωj(x, ξ)dξ ∈ L2(0, L), (j = 1, 2).

Thus, the Timoshenko system (2.9)-(2.15) is transformed into a first order evolution equation on the Hilbert
space Hj

(2.26)

 Ut(x, t) = AjU(x, t),

U (x, 0) = U0(x),

where
U0 (x) = (u0(x), u1(x), y0(x), y1(x), 0, 0)

with j = 1, 2 corresponding to the boundary conditions (2.16) and (2.17), respectively.

Lemma 2.5. Let 0 < α < 1, η ≥ 0, then the following integrals are well-defined:

I(η, α) = κ(α)

∫
R

|ξ|2α−1

1 + ξ2 + η
dξ and Ĩi(fi, η, α) = κ(α)

∫
R

ξ
2α−1

2 fi
1 + ξ2 + η

dξdx, for i = 5 or i = 6.

Proof. First, I(η, α) can be written as

I(η, α) = 2
κ(α)

(1 + η)

∫ +∞

0

ξ2α−1

1 + ξ2

1+η

dξ.

Thus I(η, α) may be simplified by defining a new variable y = 1 + ξ2

1+η . Substituting ξ by (y− 1)
1
2 (1 + η)

1
2 , we

get

I(η, α) =
κ(α)

(1 + η)1−α

∫ +∞

1

1

y(y − 1)1−α
dy.

Using the fact that 0 < α < 1, it is easy to see that y−1(y− 1)α−1 ∈ L1(1,∞), therefore I(η, α) is well defined.
On the other hand, using the cauchy-schwarz inequality, we obtain

Ĩi(fi, η, α) ≤ 2κ(α)

(∫ +∞

0

|ξ|2α−1

1 + ξ2 + η
dξ

) 1
2
(∫

R
|fi|2dξ

) 1
2

≤
√

2κ(α)I(η, α)

(∫
R
|fi|2dξ

) 1
2

.

Since I(η, α) is well-defined and fi ∈ W (or f5 ∈ W and f6 ∈ W?), then Ĩi(fi, η, α) is well-defined. The proof
si thus complete. �

Proposition 2.6. The unbounded linear operator Aj is m-dissipative in the energy space Hj, j = 1, 2.
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Proof. First, for all U = (u, v, y, z, ω1, ω2) ∈ D (Aj), one has

< 〈AjU,U〉Hj = −κ(α)

∫ L

0

∫
R

(
ξ2 + η

) (∣∣ω1(x, ξ)
∣∣2 +

∣∣ω2(x, ξ)
∣∣2) dξdx ≤ 0,

which implies that Aj is dissipative. Here < is used to denote the real part of a complex number. We
next prove the maximality of Aj . Indeed, for F = (f1, f2, f3, f4, f5, f6) ∈ Hj , we prove the existence of
U = (u, v, y, z, ω1, ω2) ∈ D(Aj), unique solution of the equation

(I −Aj)U = F.

Equivalently, one must consider the system given by

u− v = f1,(2.27)

ρ1v −
(
κ1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= ρ1f2,(2.28)

y − z = f3,(2.29)

ρ2z −
(
κ2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

+ κ1(ux + y)(2.30)

+κ(α)
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ = ρ2f4,

(1 + ξ2 + η)ω1(x, ξ)−
√
D1(x)(vx + z)µ(ξ) = f5(x, ξ),(2.31)

(1 + ξ2 + η)ω2(x, ξ)−
√
D2(x)zxµ(ξ) = f6(x, ξ).(2.32)

From (2.27), (2.29), (2.31), (2.32) and the fact that η > 0, we get

(2.33) v = u− f1 and z = y − f3,

(2.34) ω1(x, ξ) =
f5(x, ξ)

1 + ξ2 + η
+

√
D1(x)µ(ξ)ux
1 + ξ2 + η

−
√
D1(x)µ(ξ)(f1)x

1 + ξ2 + η
+

√
D1(x)µ(ξ)y

1 + ξ2 + η
−
√
D1(x)µ(ξ)f3
1 + ξ2 + η

,

(2.35) ω2(x, ξ) =
f6(x, ξ)

1 + ξ2 + η
+

√
D2(x)µ(ξ)yx
1 + ξ2 + η

−
√
D2(x)µ(ξ)(f3)x

1 + ξ2 + η
.

Inserting (2.33), (2.34) and (2.35) in (2.28) and in (2.30) respectively, we get

(2.36) ρ1u−
(
κ1 (ux + y) +D1uxI +D1yI −D1(f1)xI −D1f3I +

√
D1Ĩ5

)
x

= ρ1 (f1 + f2) ,

(2.37)
ρ2y −

(
κ2yx +D2yxI −D2(f3)xI +

√
D2Ĩ6

)
x

+κ1(ux + y)+D1uxI +D1yI = ρ2 (f3 + f4)

+D1(f1)xI +D1f3I −
√
D1Ĩ5,

with the following boundary conditions

(2.38) u(0) = u(L) = y(0) = y(L) = 0,

or

(2.39) u(0) = u(L) = yx(0) = yx(L) = 0

where I = I(η, α) and Ĩi = Ĩi(fi, η, α) for i = 5, 6, defined in Lemma 2.5. So, let (ϕ,ψ) ∈ Vj(0, L), where
V1(0, L) = H1

0 (0, L) ×H1
0 (0, L) and V2(0, L) = H1

0 (0, L) ×H1
∗ (0, L). Multiplying Equations (2.36) and (2.37)

by ϕ and ψ respectively, and integrating over (0, L), then we obtain the following variational Problem:
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(2.40)

∫ L

0

(
ρ1uϕ+ ρ2yψ + k1 (ux + y) (ϕx + ψ) + k2yxψx

)
dx+ I(η, α)

∫ L

0

D1(x)(ux + y)(ϕx + ψ)dx

+I(η, α)

∫ L

0

D2(x)yxψxdx =

∫ L

0

(
ρ1 (f1 + f2)ϕ+ ρ2 (f3 + f4)ψ

)
dx−

∫ L

0

√
D1(x)(ϕx + ψ)Ĩ5dx

+I(η, α)

∫ L

0

D1(x)(f1)x(ϕx + ψ)dx+I(η, α)

∫ L

0

D1(x)f3(ϕx + ψ)dx

−
∫ L

0

√
D2(x)ψxĨ6dx+ I(η, α)

∫ L

0

D2(x)(f3)xψxdx, ∀ (ϕ,ψ) ∈ Vj(0, L), j = 1, 2.

Using the fact that I(η, α) > 0, we get that the left hand side of (2.40) is a bilinear continuous coercive form
on Vj(0, L) × Vj(0, L), and the right hand side of (2.40) is a linear continuous form on Vj(0, L). Then, using
the Lax-Milligram theorem, we deduce that there exists (u, y) ∈ Vj(0, L) unique solution of the variational
Problem (2.40). So, defining

(2.41) v := u− f1 and z := y − f3,

(2.42) ω1(x, ξ) :=
f5(x, ξ)

1 + ξ2 + η
+

√
D1µ(ξ)ux

1 + ξ2 + η
−
√
D1µ(ξ)(f1)x
1 + ξ2 + η

+

√
D1(x)µ(ξ)y

1 + ξ2 + η
−
√
D1(x)µ(ξ)f3
1 + ξ2 + η

and

(2.43) ω2(x, ξ) :=
f6(x, ξ)

1 + ξ2 + η
+

√
D2µ(ξ)yx

1 + ξ2 + η
−
√
D2µ(ξ)(f3)x
1 + ξ2 + η

.

First, it is easy to see that (v, z) ∈ Vj(0, L), j = 1, 2. Next, using Equation (2.42), Lemma 2.5 and the fact
that η ≥ 0, α ∈ (0, 1), f5 ∈ W, we get∫ L

0

∫
R
|ω1(x, ξ)|2dξdx ≤ 5

∫ L

0

∫
R

|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx+ 5d1

∫
R

|ξ|2α−1

(1 + ξ2 + η)2
dξ

∫ L

0

(|ux|2 + |(f1)x|2+|y|2 + |f3|2)dx

≤ 5

∫ L

0

∫
R

|f5(x, ξ)|2

(1 + η)2
dξdx+ 5d1

∫
R

|ξ|2α−1

(1 + ξ2 + η)
dξ

∫ L

0

(|ux|2 + |(f1)x|2+|y|2 + |f3|2)dx

≤ 5

(1 + η)2

∫ L

0

∫
R
|f5(x, ξ)|2dξdx+

5d1
κ(α)

I(η, α)

∫ L

0

(|ux|2 + |(f1)x|2+|y|2 + |f3|2)dx <∞.

It follows that ω1(x, ξ) ∈ W. On the other hand, using equation (2.42), we get∫ L

0

∫
R
|ξω1(x, ξ)|2dξdx ≤ 5

∫ L

0

∫
R

ξ2|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx(2.44)

+ 10d1

∫ +∞

0

|ξ|2α+1

(1 + ξ2 + η)2
dξ

∫ L

0

(|ux|2 + |(f1)x|2+|y|2 + |f3|2)dx.

It is easy to see that
ξ2α+1

(1 + ξ2 + η)2
∼
0

ξ2α+1

(1 + η)2
and

ξ2α+1

(1 + ξ2 + η)2
∼
+∞

1

ξ3−2α
,

and

max
ξ∈R

ξ2

(1 + ξ2 + η)2
=

1

4(1 + η)
<

1

4
.

It follows from equation (2.44) and the fact that 0 < α < 1,∫ L

0

∫
R
|ξω1(x, ξ)|2dξdx ≤ 5

4

∫ L

0

∫
R
|f5(x, ξ)|2dξdx+ c

∫ L

0

(|ux|2 + |(f1)x|2+|y|2 + |f3|2)dx <∞.
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This implies that |ξ|ω1(x, ξ) ∈ W. Similarly, we prove that ω2(x, ξ), and |ξ|ω2(x, ξ) belong toW if the boundary
conditions (2.38) is considered or belong toW∗ if the boundary conditions (2.39) is considered. It follows, from
(2.42) and (2.43), that

−(ξ2 + η)ω1(x, ξ) +
√
D1(vx + z)µ(ξ) = ω1 − f5(x, ξ) ∈ W,

−(ξ2 + η)ω2(x, ξ) +
√
D2zxµ(ξ) = ω2 − f6(x, ξ) ∈ W (or in W?).

On the other hand, taking ϕ ∈ C∞c (0, L), ψ ≡ 0 in (2.40), integrating and using (2.41)-(2.43), we deduce that∫ L

0

[
ρ1v −

(
κ1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

]
ϕdx = ρ1

∫ L

0

f2ϕdx, ∀ϕ ∈ C∞c (0, L).

This implies that (
κ1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= ρ1(v − f2) ∈ L2(0, L).

Similarly, by taking ϕ ≡ 0 and ψ ∈ C∞c (0, L) in (2.40), integrating and using (2.41)-(2.43), we obtain equation
(2.30) and consequently (

k2yx + κ(α)
√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

∈ L2(0, L).

Therefore, U = (u, v, y, z, ω1, ω2) ∈ D(Aj) is solution of (I − Aj)U = F . To conclude, we need to show the
uniqueness of such a solution. So, let U = (u, v, y, z, ω1, ω2) ∈ D(Aj) be a solution of equation (I −Aj)U = F
with F = 0, then we directly deduce that U = 0. The proof is thus complete. �

Thanks to Lumer-Phillips theorem (see [10]), we deduce that Aj generates a C0-semigroup of contraction etAj
in Hj , j = 1, 2. Then the solution of the evolution Problem (2.26) admits the following representation

U(t) = etAjU0, t ≥ 0.

and therefore, Problem (2.26) is well-posed and we have the following result.

Theorem 2.7. For all U0 ∈ Hj , Problem (2.26) admits a unique weak solution

U ∈ C (R+;Hj) .

Moreover, if U0 ∈ D (Aj) , then Problem (2.26) admits a unique strong solution

U ∈ C (R+;D (Aj)) ∩ C1 (R+;Hj) .

�

Remark 2.8. All previous results still valid even when the Timoshenko System (1.4) is considered with only
one fractional Kelvin-Voigt damping i.e. D1 ≡ 0 or D2 ≡ 0.

Now, we are able to study the strong stability of system (1.4).

2.2. Strong stability. In this part, we study the strong stability of system (2.9)-(2.15) either in the boundary
conditions (2.16) or (2.17), in which we distinguish between three cases. In the first case, we consider a fully
dissipative system i.e. the two equations are effectively damped. However, in the other two cases, we assume
that the system is partially dissipative i.e. only one equation is effectively damped. For this aim, we use
a general criteria of Arendt-Batty [1] (see Theorem A.2 in the appendix) to show the strong stability of the
C0-semigroup etAj associated to the Timoshenko System (2.9)-(2.15). Our main result is the following theorem.

Theorem 2.9. Assume that either (A1), (A2) or (A3) holds. Then, the C0−semigroup etAj is strongly stable
in the energy space Hj in the sense that,

lim
t→+∞

∥∥etAjU0

∥∥
Hj

= 0, ∀U0 ∈ Hj , j = 1, 2.
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For brevity, we will show the proof of Theorem 2.9 under assumption (A3) only, while the proof under assump-
tions (A1) and (A2) are left to the reader. System (2.9)-(2.12) becomes

ρ1utt −
(
k1 (ux + y) + κ(α)

√
D1(x)

∫
R
µ(ξ)ω1(x, ξ, t)dξ

)
x

= 0, (x, t) ∈ (0, L)× R+,(2.45)

ρ2ytt − k2yxx + k1 (ux + y) + κ(α)
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+,(2.46)

ω1
t (x, ξ, t) + (ξ2 + η)ω1(x, ξ, t)−

√
D1(x)(uxt + yt)µ(ξ) = 0, (x, ξ, t) ∈ (0, L)× R× R+,(2.47)

subject to the following initial conditions:

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),(2.48)

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),(2.49)

ω1(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,(2.50)

with fully Dirichlet boundary conditions

(2.51) u(0) = u(L) = y(0) = y(L) = 0,

or with Dirichlet-Neumann boundary conditions

(2.52) u(0) = u(L) = yx(0) = yx(L) = 0.

The argument for Theorem 2.9 relies on the subsequent lemmas.

Lemma 2.10. Assume that assumption (A3) holds. Then, we have

ker (iλI −Aj) = {0}, ∀λ ∈ R, j = 1, 2.

Proof. Let U =
(
u, v, y, z, ω1

)
∈ D (Aj) and λ ∈ R such that

AjU = iλU.

Equivalently, we have

v = iλu,(2.53) (
k1(ux + y) + κ(α)

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= iρ1λv,(2.54)

z = iλy,(2.55)

k2yxx − k1(ux + y)−κ(α)
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ = iρ2λz,(2.56)

−(ξ2 + η)ω1(x, ξ) +
√
D1(vx + z)µ(ξ) = iλω1(x, ξ).(2.57)

With the following boundary conditions

(2.58) u(0) = u(L) = y(0) = y(L) = 0, if j = 1

or

(2.59) u(0) = yx(0) = u(L) = yx(L) = 0, if j = 2.

First, a straightforward computation gives

0 = < 〈iλU, U〉Hj = < 〈AjU,U〉Hj = −κ(α)

∫ L

0

∫
R

(
ξ2 + η

) ∣∣ω1(x, ξ)
∣∣2 dξdx,

consequently, since we deduce that

(2.60) ω1(x, ξ) = 0 a.e. in (0, L)× R.

11
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Combining (2.60) with (2.53)-(2.57) and using the definition of the function D1(x), we get

λ(ux + y) = 0, over (a1, b1),(2.61)

k1(ux + y)x + ρ1λ
2u = 0, over (0, L),(2.62)

and

(2.63) k2yxx − k1(ux + y) + ρ2λ
2y = 0, over (0, L).

Here we will distinguish two cases.
Case1. If λ = 0:
From equations (2.53) and (2.55), we get

v = z = 0 on (0, L).

1. If j = 1, using equations (2.62), (2.63) and the boundary conditions in (2.58) we can write u and y as

(2.64) u = −a
6
x3 +

aL

4
x2 − aL2

12
x and y =

a

2
x2 − aL

2
x

where a is a constant number to be determined. Now using (2.64) in (2.63) we get a(k2 + k1
L2

12
) = 0.

Since k1, k2 > 0, we deduce that a = 0. Then we get u = y = 0. Hence, U = 0 over (0, L). In this case,
the proof is complete.

2. If j = 2, from (2.62), (2.63), the boundary conditions in (2.59) and the fact that y ∈ H1
∗ (0, L) (i.e.,

∫ L
0
ydx =

0), we get
u = y = 0, over (0, L),

therefore, U = 0, also in this case the proof is complete.
Case2. If λ 6= 0:
From equation (2.61), we get

(2.65) (ux + y) = 0 over (a1, b1).

By using (2.65), (2.62) and the boundary conditions (2.58) or (2.59), we get

(2.66) u = y = 0 over (a1, b1).

Combining equations (2.62), (2.63) and (2.66), we get the following system

(2.67)


k1(ux + y)x + ρ1λ

2u = 0, over (0, L),

k2yxx − k1(ux + y) + ρ2λ
2y = 0, over (0, L),

u = y = 0, over (a1, b1).

According to the unique continuation theorem we get U = 0 over (0, L). The proof is thus completed. �

Lemma 2.11. Assume that η = 0 and assumption (A3) holds. Then, the operator −Aj is not invertible, and
consequently, 0 ∈ σ(Aj), j = 1, 2.

Proof. Let F =
(
sin(πxL ), 0, 0, 0, 0

)
∈ Hj , and assume that there exists U = (u, v, y, z, ω1) ∈ D(Aj) such that

−AjU = F.

It follows that
v = − sin(

πx

L
) in (0, L) and ξ2ω1 +

π

L

√
D1 cos (

πx

L
)µ(ξ) = 0.

Hence, we deduce that ω1(x, ξ) = −π
L
ξ

2α−5
2

√
D1 cos(

πx

L
) /∈ W, which contradicts the fact that U ∈ D(Aj).

Consequently, the operator −Aj is not invertible, as claimed. The proof is thus complete. �
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Lemma 2.12. Let 0 < α < 1, η ≥ 0 and f5(x, ξ) ∈ W. Assume that (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R∗),
then the following integrals:

I1(λ, η, α) = iλκ(α)

∫
R

µ2(ξ)

iλ+ ξ2 + η
dξ, I2(λ, η, α) = κ(α)

∫
R

µ(ξ)2

iλ+ ξ2 + η
dξ

and

I3(f5, λ, η, α) = κ(α)

∫
R

µ(ξ)f5(x, ξ)

iλ+ ξ2 + η
dξ

are well defined.

Proof. The integrals I1 and I2 can be written in the following form

I1(λ, η, α) = λ2I4(λ, η, α) + iλI5(λ, η, α) and I2(λ, η, α) = −iλI4(λ, η, α) + I5(λ, η, α),

where

I4(λ, η, α) = κ(α)

∫
R

µ(ξ)2

λ2 + (ξ2 + η)2
dξ and I5(λ, η, α) = κ(α)

∫
R

µ(ξ)2(ξ2 + η)

λ2 + (ξ2 + η)2
dξ.

We need to prove that I4 and I5 are well defined. First, we have

I4(λ, η, α) = 2κ(α)

∫ +∞

0

ξ2α−1

λ2 + (ξ2 + η)2
dξ = 2κ(α)

∫ 1

0

ξ2α−1

λ2 + (ξ2 + η)2
dξ + 2κ(α)

∫ +∞

1

ξ2α−1

λ2 + (ξ2 + η)2
dξ.

Hence, in the both cases where (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R∗), we have

ξ2α−1

λ2 + (ξ2 + η)2
∼
0

ξ2α−1

λ2 + η2
and

ξ2α−1

λ2 + (ξ2 + η)2
∼
+∞

1

ξ5−2α
.

Since 0 < α < 1, then I4(λ, η, α) is well-defined. Next, we have

I5(λ, η, α) = 2κ(α)

∫ +∞

0

ξ2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
dξ = 2κ(α)

∫ 1

0

ξ2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
dξ + 2κ(α)

∫ +∞

1

ξ2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
dξ.

Similar to I4 in the both cases where (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R∗), we have

ξ2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
∼
0

ξ2α−1(ξ2 + η)

λ2 + η2
and

ξ2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
∼
+∞

1

ξ3−2α
.

Since 0 < α < 1, then I5(λ, η, α) is well-defined. For I3, using Cauchy-Schwarz inequality and the fact that
f5(x, ξ) ∈ W and that I4 <∞, we get

∫ L

0

|I3(f5, λ, η, α)|2 dx = κ(α)2
∫ L

0

∣∣∣∣∣
∫
R

ξ
2α−1

2 f5(x,ξ)

iλ+ ξ2 + η
dξ

∣∣∣∣∣
2

dx

≤ κ(α)2
(∫

R

ξ2α−1

λ2 + (ξ2 + η)2
dξ

)∫ L

0

∫
R
|f5(x, ξ)|2 dξdx <∞.

The proof is thus complete. �

Lemma 2.13. Assume that assumption (A3) holds and assume that either (η, λ) ∈ R∗+ × R or η = 0 and
λ ∈ R∗. Then, iλI −Aj is surjective, j = 1, 2.

Proof. Let F = (f1, f2, f3, f4, f5) ∈ Hj , we must prove that there exists U = (u, v, y, z, ω1) ∈ D(Aj) such that

(iλU −Aj)U = F.

13
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Equivalently, we have

iλu− v = f1,(2.68)

iλy − z = f3,(2.69)

λ2u+
1

ρ1

(
k1(ux + y) + κ(α)

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= −f2 − iλf1,(2.70)

λ2y +
1

ρ2
k2yxx −

k1
ρ2

(ux + y)−κ(α)

ρ2

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ = −f4 − iλf3,(2.71)

ω1(x, ξ) =
f5(x, ξ)

iλ+ ξ2 + η
+

√
D1µ(ξ)iλux
iλ+ ξ2 + η

−
√
D1µ(ξ)(f1)x
iλ+ ξ2 + η

+

√
D1(x)µ(ξ)iλy

iλ+ ξ2 + η
−
√
D1(x)µ(ξ)f3
iλ+ ξ2 + η

.(2.72)

System (2.68)-(2.72) considered with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann
boundary conditions (2.52). Now, inserting (2.72) in (2.70) and in (2.71), respectively, we get

ρ1λ
2u+

(
κ1 (ux + y) +D1 (ux + y) I1 −D1((f1)x + f3)I2 +

√
D1I3

)
x

= F1,(2.73)

ρ2λ
2y + κ2yxx − κ1(ux + y)−D1 (ux + y) I1 = F2,(2.74)

where
F1 = −ρ1(f2 + iλf1),

F2 = −ρ2(f4 + iλf3)−D1((f1)x + f3)I2(λ, η, α) +
√
D1I3(λ, η, α),

and I1 := I1(λ, η, α), I2 := I2(λ, η, α) and I3 := I3(f5, λ, η, α) are defined in Lemma 2.12. System (2.73)-
(2.74) considered with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary con-
ditions (2.52). Using Lemma 2.12, we get I1(λ, η, α), I2(λ, η, α) and I3(f5, λ, η, α) are well-defined, and
<(I1(λ, η, α)) > 0.

Now, we distinguish two cases:

Case 1. η > 0 and λ = 0, then system (2.73)-(2.74) becomes
−
(
κ1 (ux + y) + κ(α)

√
D1

∫
R
µ(ξ)

(
f5(x, ξ)

ξ2 + η
−
√
D1µ(ξ)((f1)x + f3)

ξ2 + η

)
dξ

)
x

= ρ1f2,

−κ2yxx + κ1(ux + y) = ρ2f4−κ(α)
√
D1

∫
R
µ(ξ)

(
f5(x, ξ)

ξ2 + η
−
√
D1µ(ξ)((f1)x + f3)

ξ2 + η

)
dξ

with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary conditions (2.52).
By applying Lax-Milligram theorem and using Lemma 2.12 it is easy to see that the above system has a unique
strong solution (u, y) ∈ Vj(0, L), j = 1, 2. In this case the proof is complete.

Case 2. η ≥ 0 and λ ∈ R∗, then system (2.73)-(2.74) becomes

(2.75)

 ρ1λ
2u+ (κ1 (ux + y) +D1(ux + y)I1 (λ, η, α))x = G1,

ρ2λ
2y + κ2yxx − κ1(ux + y)−D1(ux + y)I1 (λ, η, α) = G2,

such that
G1 = −ρ1 (f2 + iλf1) +

(
D1((f1)x + f3)I2(λ, η, α)−

√
D1I3(f5, λ, η, α)

)
x
,

G2 = −ρ2(f4 + iλf3)−D1((f1)x + f3)I2(λ, η, α) +
√
D1I3(f5λ, η, α)

with fully Dirichlet boundary conditions (2.51) or with Dirichlet-Neumann boundary conditions (2.52). Now
define the linear unbounded operators L1 : V1(0, L) = H1

0 (0, L) × H1
0 (0, L) → H−1(0, L) × H−1(0, L) and

L2 : V2(0, L) = H1
0 (0, L)×H1

? (0, L)→ H−1(0, L)×
(
H1
? (0, L)

)′ by
Lj(u, y) =

(
− 1

ρ1
(k1(ux + y) +D1(ux + y)I1(λ, η, α))x ,−

k2
ρ2
yxx +

k1
ρ2

(ux + y)+
1

ρ2
D1(ux + y)I1(λ, η, α)

)
.

14
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Let U = (u, y) and F = (G1, G2), then we transform System (2.75) with fully Dirichlet boundary conditions
(2.51) or with Dirichlet-Neumann boundary conditions (2.52). into the following form:

(2.76)
(
λ2I − Lj

)
U = F .

Since L1 is an isomorphism from H1
0 (0, L) ×H1

0 (0, L) onto H−1(0, L) ×H−1(0, L) and L2 is an isomorphism
from H1

0 (0, L)×H1
? (0, L) onto H−1(0, L)×

(
H1
? (0, L)

)′ and I is a compact operator from H1
0 (0, L)×H1

0 (0, L)

onto H−1(0, L)×H−1(0, L) and from H1
0 (0, L)×H1

? (0, L) onto H−1(0, L)×
(
H1
? (0, L)

)′), then, using Fredholm’s
Alternative theorem, problem (2.76) admits a unique solution in H−1(0, L)×H−1(0, L) (when j = 1), and in
H1

0 (0, L) × H1
? (0, L) (when j = 2) if and only if λ2I − Lj is injective. For that purpose, let Uh = (uh, yh) ∈

ker
(
λ2I − Lj

)
. Then, if we set

vh = iλuh, zh = iλyh, and ω1
h =

iλ
√
D1µ(ξ)

iλ+ ξ2 + η
(ux + y),

we deduce that Uh =
(
uh, vh, yh, zh, ω

1
h

)
∈ D(Aj) is solution of

(iλ−Aj)Uh = 0, j = 1, 2.

It follows from Lemma 2.10, that uh = vh = yh = zh = ω1
h = 0. This implies that equation (2.76) admits a

unique solution (u, y) in H−1(0, L) ×H−1(0, L) (when j = 1), and in H1
0 (0, L) ×H1

? (0, L) (when j = 2) and,
we have

(κ1 (ux + y) +D1(ux + y)I1 (λ, η, α))x ∈ L
2(0, L),

κ2yxx − κ1(ux + y)−D1(ux + y)I1 (λ, η, α) ∈ L2(0, L).

Now, define v := iλu− f1, z := iλy − f3 and

(2.77) ω1(x, ξ) =
f5(x, ξ)

iλ+ ξ2 + η
+

√
D1(x)µ(ξ)

iλ+ ξ2 + η
(vx + z).

It is easy to see that ω1(x, ξ) and |ξ|ω1(x, ξ) ∈ W. This implies that U = (u, v, y, z, ω1) ∈ D(Aj) is the unique
solution of equation (iλI −Aj)U = F , j = 1, 2, and the proof is thus complete. �

We are now in a position to conclude the proof of Theorem 2.9.

Proof of Theorem 2.9. Using Lemma 2.10, we directly deduce that Aj has non pure imaginary eigenvalues.
According to Lemmas 2.10, 2.11 and 2.13 and with the help of the closed graph theorem of Banach, we deduce
that σ(A)∩ iR = {φ} if η > 0 and σ(A)∩ iR = {0} if η = 0. Thus, we get the conclusion by applying Theorem
A.2 of Arendt and Batty. �

In the following sections, we aim to establish the polynomial stability of System (2.9)-(2.15) in three cases: In
the first one, the damping is effective only in the bending moment. However, in the second one, the damping
is effective only in the shear stress. Finally, in the third case, the damping is present in both the shear stress
and the bending moment. For this purpose, we will use a frequency domain approach method, namely we will
use Theorem A.3.

3. Polynomial stability when the damping is effective in the bending moment.

In this section, we study the polynomial stability of System (2.9)-(2.15) either in the boundary conditions (2.16)
or (2.17) in the case η > 0, when the fractional Kelvin-Voigt damping is acting only on the bending moment
equation, i.e assumption (A2) holds. In this case, System (2.9)-(2.12) becomes

ρ1utt − k1 (ux + y)x = 0, (x, t) ∈ (0, L)× R+,(3.1)

ρ2ytt −
(
k2yx + κ(α)

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ, t)dξ

)
x

+ k1 (ux + y) = 0, (x, t) ∈ (0, L)× R+,(3.2)

ω2
t (x, ξ, t) + (ξ2 + η)ω2(x, ξ, t)−

√
D2(x)ytxµ(ξ) = 0, (x, ξ, t) ∈ (0, L)× R× R+,(3.3)

15
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subject to the following initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),(3.4)

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),(3.5)

ω2(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,(3.6)

with fully Dirichlet boundary conditions

(3.7) u(0) = u(L) = y(0) = y(L) = 0,

or with Dirichlet-Neumann boundary conditions

(3.8) u(0) = u(L) = yx(0) = yx(L) = 0, ω2(0, ξ, t) = ω2(L, ξ, t) = 0.

Our main result in this section is the following theorem.

Theorem 3.1. Assume that η > 0 and assumption (A2) holds. Then, for j = 1, 2, there exists c > 0 such
that, for every U0 ∈ D (Aj), the following energy estimation holds:

(3.9) E (t) ≤ c

t
‖U0‖2D(Aj) , t > 0.

According to Theorem A.3 and by taking ` = 2, the polynomial energy decay (3.9) holds if the following
conditions

(H1) iR ⊂ ρ(Aj)

and

(H2) sup
λ∈R
‖(iλI −Aj)−1‖L(Hj) = O

(
|λ|2

)
,

are satisfied. Since condition (H1) is already proved in Theorem 2.9 in the case η > 0. We will prove condition
(H2) by an argument of contradiction. For this purpose, suppose that (H2) is false, then there exists{

(λn, Un := (un, vn, yn, zn, ω
2
n)>)

}
⊂ R×D(Aj)

with

(3.10) |λn| → +∞ and ‖Un‖Hj = ‖(un, vn, yn, zn, ω2
n)‖Hj = 1

such that

(3.11) λ2n (iλnI −Aj)Un = Fn := (f1,n, f2,n, f3,n, f4,n, f5,n)> → 0 in Hj .

For simplicity, we drop the index n. Equivalently, from (3.11), we have

iλu− v = λ−2f1 in H1
0 (0, L),(3.12)

iλv − k1
ρ1

(ux + y)x = λ−2f2 in L2(0, L),(3.13)

iλy − z = λ−2f3 in Oj(0, L),(3.14)

iλz − k2
ρ2

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(3.15)

+
k1
ρ2

(ux + y) = λ−2f4 in L2(0, L),

(
iλ+ ξ2 + η

)
ω2 − iλ

√
D2yxµ(ξ) = λ−2

(
f5 −

√
D2(f3)xµ(ξ)

)
in Wj ,(3.16)

where

Oj(0, L) =

{
H1

0 (0, L), if j = 1,

H1
∗ (0, L), if j = 2.

and Wj =

{
W, if j = 1,

W∗, if j = 2.
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By inserting (3.12) in (3.13) and (3.14) in (3.15), we deduce that

λ2u+
k1
ρ1

(ux + y)x = −
(
λ−2f2 + iλ−1f1

)
,(3.17)

λ2y +
k2
ρ2

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

− k1
ρ2

(ux + y) = −
(
λ−2f4 + iλ−1f3

)
.(3.18)

From the above system, ‖U‖Hj = 1 and ‖F‖Hj = o(1), we remark that

(3.19)


‖u‖ = O

(
|λ|−1

)
, ‖y‖ = O

(
|λ|−1

)
, ‖uxx‖ = O (|λ|) ,∥∥∥∥(yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

∥∥∥∥ = O (|λ|) .

Our main goal is to find a contradiction with (3.10) such as ‖Un‖Hj = o(1). For clarity, we divide the proof
into several Lemmas.

Lemma 3.2. Let α ∈ (0, 1), η > 0 and λ ∈ R, then

A1 := A1(λ, η, α) =

∫
R

|ξ|α+ 1
2

(|λ|+ ξ2 + η)2
dξ = c1(|λ|+ η)

α
2−

5
4 ,

A2 := A2(λ, η) =

(∫
R

1

(|λ|+ ξ2 + η)2
dξ

) 1
2

=

√
π

2

1

(|λ|+ η)
3
4

and

A3 := A3(λ, η) =

(∫
R

ξ2

(|λ|+ ξ2 + η)4
dξ

) 1
2

=

√
π

4

1

(|λ|+ η)
5
4

,

where c1 =

∫ ∞
1

(y − 1)
α
2−

1
4

y2
dy.

Proof. A1 can be written as

A1(λ, η, α) =
2

(λ+ η)2

∫ +∞

0

ξα+
1
2

(1 + ξ2

λ+η )2
dξ.

Next, performing the change of variable y = 1 + ξ2

λ+η and substituting ξ by (y − 1)
1
2 (λ+ η)

1
2 , we get

A1(λ, η, α) = (λ+ η)
α
2−

5
4

∫ +∞

1

(y − 1)
α
2−

1
4

y2
dy.

Using the fact that α ∈]0, 1[, it is easy to see that y−2(y − 1)
α
2−

1
4 ∈ L1(1,+∞). Hence, the last integral in the

above equation is well defined. Now, A2 can be written as

(A2(λ, η))2 =
2

(λ+ η)2

∫ ∞
0

1

(1 + ( ξ√
λ+η

)2)2
dξ =

2

(λ+ η) 3
2

∫ ∞
0

1

(1 + s2)2
=

2

(λ+ η) 3
2

× π

4
.

Therefore, A2 =
√

π
2

1

(λ+η)
3
4
. Finally, A3 can be written as

(A3(λ, η))2 =
2

(λ+ η)4

∫ ∞
0

ξ2

(1 + ( ξ√
λ+η

)2)4
dξ =

2

(λ+ η)
5
2

× π

32
.

Then A3(λ, η) =
√
π
4

1

(λ+η)
5
4
. The proof has been completed. �

Lemma 3.3. Assume that η > 0 and assumption (A2) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω2) ∈
D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.20)
∫ L

0

∫
R

(ξ2 + η)
∣∣ω2(x, ξ)

∣∣2 dξdx = o
(
λ−2

)
.
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Proof. Taking the inner product of F with U in Hj , then using the fact that U is uniformly bounded in Hj ,
we get

κ(α)

∫ L

0

∫
R

(ξ2 + η)
∣∣ω2(x, ξ)

∣∣2 dξdx = −<
(
〈AjU,U〉Hj

)
= <

(
〈 iλU −AjU,U〉Hj

)
= o

(
λ−2

)
.

�

Lemma 3.4. Assume that η > 0 and assumption (A2) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω2) ∈
D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:∫ b2

a2

|yx|2 dx = o
(
λ−(3+α)

)
.(3.21)

Proof. From (3.16), we get

|λ|
√
D2(x)|ξ|

2α−1
2 |yx| ≤ (|λ|+ ξ2 + η)|ω2(x, ξ)|+ |λ|−2|f5(x, ξ)|+ |λ|−2

√
D2(x)|ξ|

2α−1
2 |(f3)x|.

Multiplying the above inequality by (λ + ξ2 + η)−2 |ξ|, integrating over R with respect to the variable ξ, we
obtain

(3.22)
|λ|
√
D2|yx|

∫
R

|ξ| 2α+1
2

(λ+ ξ2 + η)2
dξ ≤

∫
R

|ξω2(x, ξ)|
(λ+ ξ2 + η)

dξ + |λ|−2
∫
R

|ξf5(x, ξ)|
(λ+ ξ2 + η)2

dξ

+ |λ|−2
√
D2|(f3)x|

∫
R

|ξ| 2α+1
2

(λ+ ξ2 + η)2
dξ.

Next, applying the Cauchy-Schwarz inequality to (3.22), we obtain

(3.23) A1

√
D2|λyx| ≤ A2

(∫
R
|ξω2(x, ξ)|2dξ

) 1
2

+ |λ|−2A3

(∫
R
|f5(x, ξ)|2dξ

) 1
2

+ |λ|−2A1

√
D2|(f3)x|,

where A1, A2 and A3 are defined in Lemma 3.2. Using Young’s inequality and the definition of the function
D2(x) in (3.23), we arrive at

d2

∫ b2

a2

|λ|2|yx|2dx ≤ 3
A2

2

A2
1

∫ L

0

∫
R
|ξω2(x, ξ)|2dξdx+ 3|λ|−4A

2
3

A2
1

∫ L

0

∫
R
|f5(x, ξ)|2dξdx+ 3|λ|−4d2

∫ b2

a2

|(f3)x|2dx.

It follows from Lemma 3.2 that

d2

∫ b2

a2

|λ|2|yx|2dx ≤
1

c1(|λ|+ η)α−1
o(1)

λ2
+

1

c1(|λ|+ η)α
o(1)

λ4
+
o(1)

λ4
.

Since α ∈ (0, 1), we have min (1 + α, 4 + α, 4) = 1 + α. Hence from the above equation, we get∫ b2

a2

|λ|2|yx|2dx =
o(1)

λ1+α
,

and so, ∫ b2

a2

|yx|2dx =
o(1)

λ3+α
.

The proof is thus completed. �

Lemma 3.5. Assume that η > 0 and assumption (A2) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω2) ∈
D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:∫ b2

a2

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx = o(λ−2).

Proof. Using the fact that |P +Q|2 ≤ 2P 2 + 2Q2, we obtain∫ b2

a2

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx ≤ 2

∫ b2

a2

|yx|2 dx+ 2d2
κ(α)2

k22

∫ b2

a2

(∫
R

µ(ξ)
√
ξ2 + η√

ξ2 + η
ω2(x, ξ)dξ

)2

dx

≤ 2

∫ b2

a2

|yx|2 dx+ c2

∫ b2

a2

∫
R
(ξ2 + η)|ω2(x, ξ)|2dξdx,

18
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where c2 = 2d2
κ(α)2

k22
A4(α, η) and A4(α, η) =

∫
R

|ξ|2α−1

|ξ|2 + η
dξ. We have

|ξ|2α−1

|ξ|2 + η
∼
0

|ξ|2α−1

η
and

|ξ|2α−1

|ξ|2 + η
∼
+∞

1

|ξ|3−2α
,

since 0 < α < 1 and η > 0, then A4 is well defined. Using (3.20) and (3.21), we get our desired result. �

Lemma 3.6. Assume that η > 0 and assumption (A2) holds. Let ε < b2−a2
4 . Then, for j = 1, 2, the solution

(u, v, y, z, ω2) ∈ D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.24)
∫ b2−ε

a2+ε

|λy|2dx =
O(1)

λ2
.

Proof. We define the function θ ∈ C∞0 (0, L) such that 0 ≤ θ(x) ≤ 1, for all x ∈ (0, L) and

(3.25) θ(x) =

{
1 if x ∈ (a2 + ε, b2 − ε),
0 if x ∈ (0, L) \ (a2, b2).

First, multiplying equation (3.18) by θy, integrating over (0, L), then using the fact that λy, y are uniformly
bounded in L2(0, L), ‖f4‖ = o(1) and ‖f3‖ = o(1), we obtain

(3.26)
∫ L

0

θ|λy|2dx+
k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θy) dx− k1
ρ2

∫ L

0

θ(ux + y)ydx = o(λ−2).

Using integration by parts and the definition of θ(x), we get

k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θy) dx = −k2
ρ2

∫ L

0

θ

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
yxdx

−k2
ρ2

∫ L

0

θ′
(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
ydx.

Now, using (3.21), Lemma 3.5, the definition of D2(x) and the fact that λy is bounded in L2(0, L), we get

(3.27)
k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θy) dx =
o(1)

λ
5+α
2

+
o(1)

λ2
.

On the other hand, using Young’s inequality, we get

k1
ρ2
|ux + y| |θ||y| ≤ k21

2ερ22
θ
|ux + y|2

λ2
+
εθ

2
|λy|2.

Consequently, we obtain

(3.28)
k1
ρ2

∫ L

0

|θ||ux + y||y|dx ≤ k21
2ερ22

∫ L

0

θ
|ux + y|2

λ2
dx+

ε

2

∫ L

0

θ|λy|2dx.

Inserting (3.27) and (3.28) in (3.26) and using the fact that ux + y is uniformly bounded in L2(0, L), we arrive
at

(3.29) (1− ε

2
)

∫ L

0

θ|λy|2dx ≤ o(1)

λ
5+α
2

+
o(1)

λ2
+
O(1)

λ2
.

Then, for ε small enough, we have

(3.30) 0 <

∫ L

0

θ|λy|2dx ≤ O(1)

λ2
.

From the above estimation and the definition of θ(x), we obtain (3.24). �

Lemma 3.7. Assume that η > 0 and assumption (A2) holds. Let 0 < ε < b2−a2
4 . Then, for j = 1, 2, the

solution (u, v, y, z, ω2) ∈ D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.31)
∫ b2−ε

a2+ε

|ux|2dx = o(1).
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Proof. First, multiplying (3.18) by −θux, integration by parts, using the fact that λu is bounded in L2(0, L),
and ‖f4‖ = o(1), ‖f3‖ = o(1), ‖(f3)x‖ = o(1), we obtain

−
∫ L

0

θλ2yuxdx−
k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θux) dx+
k1
ρ2

∫ L

0

θ(ux + y)uxdx = o(λ−2).

Consequently, we obtain

(3.32)

k1
ρ2

∫ L

0

θ|ux|2dx = −k1
ρ2

∫ L

0

θyuxdx+

∫ L

0

θλ2yuxdx

+
k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θux) dx+
o(1)

λ2
.

Now, using the integration by parts, the fact that λu is uniformly bounded in L2(0, L), (3.24) and (3.21), we
obtain

(3.33)
∫ L

0

θλ2yuxdx = −
∫ L

0

θλyxλudx−
∫ L

0

θ′λyλudx =
o(1)

λ
1+α
2

+
O(1)

λ
.

Using integration by parts, the fact that
‖uxx‖
λ

= O(1), ux is uniformly bounded in L2(0, L) and Lemma (3.5),
we find

(3.34)

k2
ρ2

∫ L

0

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

(θux) dx =

−k2
ρ2

∫ L

0

θλ

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
1

λ
uxxdx

−k2
ρ2

∫ L

0

θ′
(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
uxdx

= o(1) +
o(1)

λ
.

Next, using (3.24) and the fact that ux is bounded, we see that

(3.35)
k1
ρ2

∫ L

0

θyuxdx =
O(1)

λ2
.

Now, inserting (3.33), (3.34) and (3.35) in (3.32), it leads to

(3.36)
k1
ρ2

∫ L

0

θ|ux|2dx = o(1).

From the above estimation and the definition of θ(x), we obtain (3.31). �

Lemma 3.8. Assume that η > 0 and assumption (A2) holds. Let ε < b2−a2
4 . Then, for j = 1, 2, the solution

(u, v, y, z, ω2) ∈ D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.37)
∫ b2−ε

a2+ε

|λu|2dx = o(1).

Proof. First, multiplying equation (3.17) by θu, integrating over (0, L), using the fact that λu and u are
uniformely bounded in L2(0, L), and the fact that ‖f1‖ = o(1), ‖f2‖ = o(1), we remark that

(3.38)
∫ L

0

θ|λu|2dx+
k1
ρ1

∫ L

0

(ux + y)x(θu)dx = o(λ−2).

Using integration by parts, we obtain

k1
ρ1

∫ L

0

(ux + y)x(θu)dx = −k1
ρ1

∫ L

0

θ(ux + y)uxdx−
k1
ρ1

∫ L

0

θ′(ux + y)udx,
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inserting the above equation in (3.38), we get

(3.39)

∫ L

0

θ|λu|2dx =
k1
ρ1

∫ L

0

θ(ux + y)uxdx+
k1
ρ1

∫ L

0

θ′(ux + y)udx+ o(λ−2)

=
k1
ρ1

(∫ L

0

θ|ux|2dx+

∫ L

0

θyuxdx+

∫ L

0

θ′uxudx+

∫ L

0

θ′yudx

)
+ o(λ−2).

Now, using definition of θ(x), (3.24), (3.31) and the fact that u bounded in L2(0, L), we get (3.37). �

From what precedes, Lemmas 3.3-3.8, we deduce that

‖U‖Hj = o(1), over (a2 + ε, b2 − ε).

Lemma 3.9. Assume that η > 0 and assumption (A2) holds. Let φ ∈ C1([0, L]) and φ(0) = φ(L) = 0 be
a given function. Then, for j = 1, 2, the solution (u, v, y, z, ω2) ∈ D (Aj) of system (3.12)-(3.16) satisfies the
following behavior estimation:∫ L

0

φ′

(
ρ1|λu|2 + k1|ux|2 + ρ2|λy|2 + k2

∣∣∣∣yx +
κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2
)
dx = o(1).

Proof. First, multiplying equation (3.17) by 2ρ1φux, integrating over (0, L), taking the real part, the fact that
ux is uniformly bounded in L2(0, L), ‖f1‖ = o(1) and ‖f2‖ = o(1), we obtain

(3.40) ρ1

∫ L

0

φ
d

dx
|λu|2dx+ k1

∫ L

0

φ
d

dx
|ux|2dx+ <

{
2k1

∫ L

0

φyxuxdx

}
= o(λ−1).

Now, multiplying equation (3.18) by 2ρ2φ

(
yx +

κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
, integrating over (0, L), tak-

ing the real part, then using the fact that
(
yx +

κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
is uniformly bounded in

L2(0, L), ‖y‖ = O(|λ|−1), ‖f3‖ = o(1) and ‖f4‖ = o(1), we obtain

(3.41)

<

{
2ρ2λ

2

∫ L

0

φy

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}

+k2

∫ L

0

φ
d

dx

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx
−<

{
2k1

∫ L

0

φux

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}

−<

{
2k1

∫ L

0

φy

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}
︸ ︷︷ ︸

=o(1)

= <

{
2ρ2

∫ L

0

φ
(
−λ−2f4 − iλ−1f3

)(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}
︸ ︷︷ ︸

=o(λ−1)

.

Moreover, by using the definition of D2(x) and Cauchy-Schwarz inequality, the fact that 0 < α < 1 and η > 0
and by using Lemma 3.3, Lemma 3.6 and the fact that ux is uniformly bounded in L2(0, L), we obtain

<

{
2ρ2λ

2

∫ L

0

φy

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}
= ρ2

∫ L

0

φ
d

dx
|λy|2dx+ o(λ−1),

−<

{
2k1

∫ L

0

φux

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
dx

}
= −<

{
2k1

∫ L

0

φuxyxdx

}
+ o(λ−1).
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Inserting the above equations in (3.41), we obtain

(3.42) ρ2
∫ L

0

φ
d

dx
|λy|2dx+k2

∫ L

0

φ
d

dx

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx−<
{

2k1

∫ L

0

φuxyxdx

}
= o(1).

Adding (3.40) and (3.42), then using integration by parts, we obtain (3.9). The proof is thus complete.
�

Lemma 3.10. Assume that η > 0 and assumption (A2) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω2) ∈
D (Aj) of system (3.12)-(3.16) satisfies the following asymptotic behavior estimation:

(3.43) ‖U‖Hj = o(1).

Proof.
Let a2 + ε < a2 + 2ε < b2 − ε and define the cut-off functions θ1, θ2 ∈ C∞0 ([0, L]) by

θ1(x) =


1 if x ∈ (0, a2 + ε),

0 if x ∈ (a2 + 2ε, L),

∈ [0, 1] elsewhere

and

θ2(x) =


1 if x ∈ (b2 − ε, L),

0 if x ∈ (0, b2 − 2ε),

∈ [0, 1] elsewhere.
Take φ = xθ1 in Lemma 3.9, then use the fact that ||U ||Hj = o(1) in (a2 +ε, b2−ε) and a2 +ε < a2 +2ε < b2−ε,
we have

(3.44)

∫ L

0

xθ′1

(
ρ1|v|2 + k1|ux|2 + ρ2|z|2 + k2

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2
)
dx

+

∫ L

0

θ1

(
ρ1|v|2 + k1|ux|2 + ρ2|z|2 + k2

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2
)
dx = o(1),

therefore, we get

(3.45)
∫ a2+ε

0

(
ρ1|v|2 + k1|ux|2 + ρ2|z|2 + k2

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2
)
dx = o(1).

Moreover, using estimation (3.20), the definition of D2 and (3.45), we observe that

(3.46)

∫ a2+ε

0

|yx|2dx ≤ 2

∫ a2+ε

0

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx
+2

d2κ(α)2

k22

∫ a2+ε

a2

∫
R
|ξ|2α−1|ω2(x, ξ)|2dξdx

= o(1)

using (3.45) and (3.46), we get
‖U‖Hj = o(1) on (0, a2 + ε).

Similarly, by taking φ = (x− L)θ2, we can prove ‖U‖Hj = o(1) on (b2 − ε, L). Therefore,

‖U‖Hj = o(1) on (0, L).

Thus, the proof is complete. �

Proof of Theorem 3.1. For j = 1, 2, from Lemma 3.10, we get that ‖U‖Hj = o(1), which contradicts (3.10).
This implies that

sup
λ∈R

∥∥∥(iλI −Aj)−1
∥∥∥
L(Hj)

= O
(
λ2
)
.

The result follows from Theorem A.3. �
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4. Polynomial stability when the damping is effective in shear force.

In this section, we study the polynomial stability of system (2.45)-(2.50) with the boundary conditions (2.51)
or (2.52) in the case η > 0, when the fractional Kelvin-Voigt damping is acting only on the shear force equation,
i.e assumption (A3) holds. Our main result in this section is the following theorem.

Theorem 4.1. Assume that η > 0 and assumption (A3) holds. Then, for j = 1, 2, there exists c > 0 such
that, for every U0 ∈ D (Aj), the following energy estimation holds:

(4.1) E (t) ≤ c

t
‖U0‖2D(Aj) , t > 0.

According to Theorem A.3 and by taking ` = 2, the polynomial energy decay (4.1) holds if the following
conditions

(H3) iR ⊂ ρ(Aj)

and

(H4) sup
λ∈R
‖(iλI −Aj)−1‖L(Hj) = O

(
|λ|2

)
,

are satisfied. Since condition (H3) is already proved in Theorem 2.9 in the case η > 0. We will prove condition
(H4) by an argument of contradiction. For this purpose, suppose that (H4) is false, then there exists{

(λn, Un := (un, vn, yn, zn, ω
1
n)>)

}
⊂ R×D(Aj)

with

(4.2) |λn| → +∞ and ‖Un‖Hj = ‖(un, vn, yn, zn, ω1
n)‖Hj = 1

such that

(4.3) λ2n (iλnI −Aj)Un = Fn := (f1,n, f2,n, f3,n, f4,n, f5,n)> → 0 in Hj .

For simplicity, we drop the index n. Equivalently, from (4.3), we have

iλu− v = λ−2f1 in H1
0 (0, L),(4.4)

iλv − k1
ρ1

(
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= λ−2f2 in L2(0, L),(4.5)

iλy − z = λ−2f3 in Oj(0, L),(4.6)

iλz − k2
ρ2
yxx +

k1
ρ2

(ux + y)(4.7)

+
κ(α)

ρ2

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ = λ−2f4 in L2(0, L),

(
iλ+ ξ2 + η

)
ω1 − iλ

√
D1(ux + y)µ(ξ) = λ−2

[
f5 −

√
D1µ(ξ) ((f1)x + f3)

]
in W.(4.8)

where

Oj(0, L) =

{
H1

0 (0, L), if j = 1,

H1
∗ (0, L), if j = 2.

By inserting (4.4) in (4.5) and (4.6) in (4.7), we obtain

λ2u+
k1
ρ1

(
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

)
x

= −[λ−2f2 + iλ−1f1],(4.9)

λ2y +
k2
ρ2
yxx −

k1
ρ2

(ux + y)− κ(α)

ρ2

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ = −[λ−2f4 + iλ−1f3].(4.10)
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From the above system, ‖U‖Hj = 1 and ‖F‖Hj = o(1), we remark that

(4.11)


‖u‖ = O

(
|λ|−1

)
, ‖y‖ = O

(
|λ|−1

)
, ‖yxx‖ = O (|λ|) ,∥∥∥∥((ux + y) +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
x

∥∥∥∥ = O (|λ|) .

Our main goal is to find a contradiction with (4.2) such as ‖Un‖Hj = o(1). For clarity, we divide the proof into
several Lemmas.

Lemma 4.2. Assume that η > 0 and assumption (A3) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1) ∈
D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.12)
∫ L

0

∫
R

(ξ2 + η)
∣∣ω1(x, ξ)

∣∣2 dξdx = o
(
λ−2

)
.

Proof. Taking the inner product of F with U in Hj , then using the fact that U is uniformly bounded in Hj ,
we get

κ(α)

∫ L

0

∫
R

(ξ2 + η)
∣∣ω1(x, ξ)

∣∣2 dξdx = −<
(
〈AjU,U〉Hj

)
= <

(
〈 iλU −AjU,U〉Hj

)
= o

(
λ−2

)
.

�

Lemma 4.3. Assume that η > 0 and assumption (A3) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1) ∈
D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:∫ b1

a1

|ux + y|2 dx = o
(
λ−(3+α)

)
.(4.13)

Proof. From (4.8), we get

|λ|
√
D1(x)|ξ|

2α−1
2 |ux + y| ≤ (|λ|+ ξ2 + η)|ω1(x, ξ)|+ |λ|−2|f5(x, ξ)|+ |λ|−2

√
D1(x)|ξ|

2α−1
2 |(f1)x + f3|.

Multiplying the above equation by (λ+ ξ2 + η)−2 |ξ|, integrating over R and proceeding in a similar way as in
Lemma 3.4 (Section 3), we get our desired estimation (4.13). Thus, the proof is complete. �

Lemma 4.4. Assume that η > 0 and assumption (A3) holds. Then, for j = 1, 2, the solution U ∈ D (Aj) of
system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:∫ b1

a1

∣∣∣∣(ux + y) +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣2 dx = o(λ−2).

Proof. using the fact that |P +Q|2 ≤ 2P 2 + 2Q2, we obtain∫ b1

a1

∣∣∣∣(ux + y) +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣2 dx ≤ 2

∫ b1

a1

|ux + y|2 dx+ 2d1
κ(α)2

k21

∫ b1

a1

(∫
R

µ(ξ)
√
ξ2 + η√

ξ2 + η
ω1(x, ξ)dξ

)2

dx

≤ 2

∫ b1

a1

|ux + y|2 dx+ c3

∫ b1

a1

∫
R
(ξ2 + η)|ω1(x, ξ)|2dξdx

where c3 = 2d1
κ(α)2

k21
A4(α, η) and A4(α, η) is defined in Lemma 3.5. Using (4.12) and (4.13), we get our desired

result. Hence, the proof is complete. �

Lemma 4.5. Assume that η > 0 and assumption (A3) holds. Let ε < b1−a1
4 . Then, for j = 1, 2, the solution

(u, v, y, z, ω1) ∈ D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.14)
∫ b1−ε

a1+ε

|λu|2dx =
o(1)

λ2
.

Proof. We define the function θ3 ∈ C∞0 (0, L) such that 0 ≤ θ3(x) ≤ 1, for all x ∈ (0, L), by

(4.15) θ3(x) =

{
1 if x ∈ (a1 + ε, b1 − ε),
0 if x ∈ (0, L) \ (a1, b1).
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First, multiplying (4.9) by θ3u, integrating over (0, L), using the fact that λu and u are uniformly bounded in
L2(0, L) and ‖f1‖ = o(1), ‖f2‖ = o(1), we obtain

(4.16)
∫ L

0

θ3|λu|2dx+
k1
ρ1

∫ L

0

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
x

(θ3u)dx = o(λ−2).

Using integration by parts on the second term of the left hand side of (4.16), we get

k1
ρ1

∫ L

0

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
x

(θ3u)dx = −k1
ρ1

∫ L

0

θ3

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
uxdx

−k1
ρ1

∫ L

0

θ′3

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
udx.

Now, using (4.13), Lemma 4.4 and the fact that λy is bounded in L2(0, L), we get

(4.17)

k1
ρ1

∫ L

0

θ3

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
uxdx

=
k1
ρ1

∫ L

0

θ3

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
(ux + y)dx

−k1
ρ1

∫ L

0

θ3
1

λ

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
(λy)dx

=
o(1)

λ
5+α
2

+
o(1)

λ2
.

Thanks to Lemma 4.4 and the fact that λu is uniformly bounded in L2(0, L), we have

(4.18)
k1
ρ1

∫ L

0

θ′3
1

λ

[
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

]
λudx =

o(1)

λ2
.

Now, inserting (4.17) and (4.18) in (4.16), we get

(4.19)
∫ L

0

θ3|λu|2dx =
o(1)

λ2
.

From the above estimation and the definition of θ3(x), we obtain (4.14). Thus, the proof is complete. �

Lemma 4.6. Assume that η > 0 and assumption (A3) holds. Let ε < b1−a1
4 , then, for j = 1, 2, the solution

(u, v, y, z, ω1) ∈ D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.20)
∫ b1−ε

a1+ε

|λy|2dx = o(1).

Proof. First, multiplying (4.10) by θ3(ux + y), integrating over (0, L), using integration by parts, the fact that
λu, λy are uniformly bounded in L2(0, L) and ‖f3‖ = o(1), ‖f4‖ = o(1), we obtain

(4.21)

∫ L

0

θ3λ
2y(ux + y)dx+

k2
ρ2

∫ L

0

θ3yxx(ux + y)dx− k1
ρ2

∫ L

0

θ3|ux + y|2dx

−κ(α)

ρ2

∫ L

0

θ3
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ(ux + y)dx = o(λ−2).

Using (4.12), (4.13) and the fact that 1
λ‖yxx‖ = O(1), we get

(4.22)



k2
ρ2

∫ L

0

θ3
1

λ
yxxλ(ux + y)dx =

o(1)

λ
1+α
2

,

k1
ρ2

∫ L

0

θ3|ux + y|2dx =
o(1)

λ3+α
,

κ(α)

ρ2

∫ L

0

θ3
√
D1(x)

∫
R
µ(ξ)ω1(x, ξ)dξ(ux + y)dx =

o(1)

λ
5+α
2

.
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Inserting (4.22) in (4.21) and since 0 < α < 1, we get

(4.23)
∫ L

0

θ3λ
2yuxdx+

∫ L

0

θ3|λy|2dx =
o(1)

λ
1+α
2

.

Using the integration by parts, we get

(4.24)
∫ L

0

θ3λ
2yuxdx = −

∫ L

0

θ′3λyλudx−
∫ L

0

θ3λyxλudx.

Now, using (4.14) and the fact that λy and yx are uniformly bounded in L2(0, L), we get

(4.25)
∫ L

0

θ3λ
2yuxdx = o(1).

Inserting (4.25) in (4.23), we get ∫ L

0

θ3|λy|2dx = o(1).

From the above estimation and the definition of θ3(x), we obtain (4.20). Thus, the proof is complete. �

Lemma 4.7. Assume that η > 0 and assumption (A3) holds. Let ε < b1−a1
4 . Then, for j = 1, 2, the solution

(u, v, y, z, ω1) ∈ D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.26)
∫ b1−ε

a1+ε

|yx|2dx = o(1).

Proof. First, multiplying (4.10) by θ3y, integrating over (0, L), using integration by parts, using the fact that
λy is bounded in L2(0, L), ‖f3‖ = o(1) and ‖f4‖ = o(1), we obtain
(4.27)∫ L

0

θ3λ
2|y|2dx+

k2
ρ2

∫ L

0

θ3yxxydx−
k1
ρ2

∫ L

0

θ3(ux + y)ydx− κ(α)

ρ2

∫ L

0

θ3
√
D1

∫
R
µ(ξ)ω1(x, ξ)dξydx = o(λ−2).

Using integration by parts for the second term of the left hand side, we get

(4.28)
k2
ρ2

∫ L

0

θ3yxxydx = −k2
ρ2

∫ L

0

θ′3yxydx−
k2
ρ2

∫ L

0

θ3|yx|2dx.

Inserting (4.28) in (4.27), using (4.20), (4.12) and the fact that yx and ux+y are uniformly bounded in L2(0, L),
we get

(4.29)
k2
ρ2

∫ L

0

θ3|yx|2dx = o(1).

From the above estimation and the definition of θ3(x), we obtain (4.26). Thus, the proof is complete. �

From what precedes, from Lemmas 4.2-4.7, we deduce that

‖U‖Hj = o(1), over (a1 − ε, b1 − ε).

Lemma 4.8. Assume that η > 0 and assumption (A3) holds. Let h ∈ C1([0, L]) and h(0) = h(L) = 0 be
a given function. Then, for j = 1, 2, the solution (u, v, y, z, ω1) ∈ D (Aj) of system (4.4)-(4.8) satisfies the
following asymptotic behavior estimation:∫ L

0

h′

(
ρ1|λu|2 + k2|yx|2 + ρ2|λy|2 + k1

∣∣∣∣ux +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣2
)
dx = o(1).

Proof. Let S := ux +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ, from Lemma 4.2, the definition of D1(x) and the fact that

ux is uniformly bounded in L2(0, L), we get S is uniformly bounded in L2(0, L). First, multiplying (4.9) by
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2ρ1hS, integrating over (0, L), taking the real part, then using the fact that ‖f1‖ = o(1) and ‖f2‖ = o(1), we
obtain

(4.30)

<

{
ρ1

∫ L

0

2hλ2uSdx

}
+ <

{
k1

∫ L

0

hyxSdx

}
+ k1

∫ L

0

h
(
|S|2

)
x
dx

= <

{
−2ρ1

∫ L

0

h
(
λ−2f2 + iλ−1f1

)
Sdx

}
︸ ︷︷ ︸

o(λ−1)

.

Moreover, from the definition of S and the definition of D1(x) and from using Cauchy-Schwarz inequality, the
fact that 0 < α < 1 and η > 0, Lemma 4.2, Lemma 4.5 and the fact that yx is uniformly bounded in L2(0, L),
we obtain

<

{
2k1

∫ L

0

hyxSdx

}
= <

{
2k1

∫ L

0

hyxuxdx

}
+ <

{
2κ(α)d1

∫ b1

a1

hyx

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=o(λ−1)

,

<

{
ρ1

∫ L

0

2hλ2uSdx

}
= ρ1

∫ L

0

h
(
|λu|2

)
x
dx+ <

{
2ρ1

κ(α)

k1
d1

∫ b1

a1

hλ2u

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=o(λ−1)

.

Inserting the above estimations in (4.30), we get

(4.31) ρ1

∫ L

0

h
(
|λu|2

)
x
dx+ k1

∫ L

0

h
(
|S|2

)
x
dx+ <

{
2k1

∫ L

0

hyxuxdx

}
= o(λ−1).

Now, multiplying (4.10) by 2ρ2hyx, integrating over (0, L), taking the real part, then using Lemma 4.2, the
fact that yx is uniformly bounded in L2(0, L), ‖y‖ = O(|λ|−1), ‖f3‖ = o(1) and ‖f4‖ = o(1), we obtain

(4.32)

ρ2

∫ L

0

h
(
|λy|2

)
x
dx+ k2

∫ L

0

h
(
|yx|2

)
x
dx−<

{
2k1

∫ L

0

huxyx

}
dx−<

{
k1

∫ L

0

2hyyx

}
dx︸ ︷︷ ︸

=o(1)

−<

{
2κ(α)d1

∫ b1

a1

hyx

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=o(λ−1)

= <

{
−2ρ2

∫ L

0

h
(
λ−2f4 + iλ−1f4

)
yxdx

}
︸ ︷︷ ︸

=o(λ−1)

.

Adding (4.31) and (4.32), then using integration by parts, we obtain

(4.33)
∫ L

0

h′

(
ρ1|λu|2 + k2|yx|2 + ρ2|λy|2 + k1

∣∣∣∣ux +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣2
)
dx = o(1).

The proof is thus complete. �

Lemma 4.9. Assume that η > 0 and assumption (A3) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1) ∈
D (Aj) of system (4.4)-(4.8) satisfies the following asymptotic behavior estimation:

(4.34) ‖U‖Hj = o(1).

Proof.
Let a1 + ε < a1 + 2ε < b1 − ε and define the cut-off functions θ4, θ5 ∈ C∞0 ([0, L]) by

θ4(x) =


1 if x ∈ (0, a1 + ε),

0 if x ∈ (a1 + 2ε, L),

∈ [0, 1] elsewhere
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and

θ5(x) =


1 if x ∈ (b1 − ε, L),

0 if x ∈ (0, b1 − 2ε),

∈ [0, 1] elsewhere.

First, by taking φ = xθ4 in Lemma 4.8 and proceeding in a similar way as in Lemma 3.10 we get ‖U‖Hj =
o(1) on (0, a1 + ε). Moreover, by taking φ = (x − L)θ5, we can prove ‖U‖Hj = o(1) on (b1 − ε, L). Thus, the
proof is complete. �

Proof of Theorem 4.1. From Lemma 4.9 we get that ‖U‖Hj = o(1), which contradicts (4.2). This implies
that

sup
λ∈R

∥∥∥(iλI −Aj)−1
∥∥∥
L(Hj)

= O
(
λ2
)
.

The result follows from Theorem A.3. �

5. Polynomial stability when the damping is effective in shear force and bending moment.

In this section, we study the polynomial stability of system (2.9)-(2.15) in the case η > 0, when the fractional
Kelvin-Voigt damping is present in both shear stress and bending moment equations and the support of D1

and D2 intersect, i.e assumption (A1) holds and 0 < a1 < a2 < b1 < b2 < L. Our main result in this section is
the following theorem.

Theorem 5.1. Assume that η > 0 and assumption (A1) holds. Then, for j = 1, 2, there exists c > 0 such
that, for every U0 ∈ D (Aj), the following energy estimation holds:

(5.1) E (t) ≤ c

t
4

2−α
‖U0‖2D(Aj) , t > 0.

According to Theorem A.3 and by taking ` = 1− α
2 , the polynomial energy decay (5.1) holds if the following

conditions

(H5) iR ⊂ ρ(Aj)

and

(H6) sup
λ∈R
‖(iλI −Aj)−1‖L(Hj) = O

(
|λ|1−

α
2

)
,

are satisfied. In the case η > 0, according to Theorem 2.9, condition (H5) is proved. Now, we will prove
condition (H6) by an argument of contradiction. For this purpose, suppose that (H6) is false, then there exists{

(λn, Un := (un, vn, yn, zn, ω
1
n, ω

2
n)>)

}
⊂ R×D(Aj)

with

(5.2) |λn| → +∞ and ‖Un‖Hj = ‖(un, vn, yn, zn, ω1
n, ω

2
n)‖Hj = 1

such that

(5.3) λ
1−α2
n (iλnI −A)Un = Fn := (f1,n, f2,n, f3,n, f4,n, f5,n, f6,n)> → 0 in Hj .
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For simplicity, we drop the index n. Equivalently, from (5.3), we have

iλu− v = λ
α
2−1f1 in H1

0 (0, L),(5.4)

iλv − k1
ρ1

(Sd1)x = λ
α
2−1f2 in L2(0, L),(5.5)

iλy − z = λ
α
2−1f3 in Oj(0, L),(5.6)

iλz − k2
ρ2

(Sd2)x +
k1
ρ2

(ux + y)(5.7)

+
κ(α)
√
D1

ρ2

∫
R
µ(ξ)ω1(x, ξ)dξ = λ

α
2−1f4 in L2(0, L),

(
iλ+ ξ2 + η

)
ω1 − iλ

√
D1(ux + y)µ(ξ) = λ

α
2−1

[
f5 −

√
D1µ(ξ) ((f1)x + f3)

]
in W,(5.8) (

iλ+ ξ2 + η
)
ω2 − iλ

√
D2yxµ(ξ) = λ

α
2−1

[
f6 −

√
D2(f3)xµ(ξ)

]
in Wj ,(5.9)

where

Oj(0, L) =

{
H1

0 (0, L), if j = 1,

H1
∗ (0, L), if j = 2,

Wj =

{
W, if j = 1,

W∗, if j = 2,

Sd1 =

(
(ux + y) +

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

)
and Sd2 =

(
yx +

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

)
.

Here we will check the condition (H6) by finding a contradiction with (5.2) by showing ‖U‖Hj = o(1). For
clarity, we divide the proof into several Lemmas.

Lemma 5.2. Assume that η > 0 and assumption (A1) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈
D (Aj) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

(5.10)
∫ L

0

∫
R
(ξ2 + η)

∣∣ω1(x, ξ)
∣∣2 dξdx = o

(
λ
α
2−1

)
and

∫ L

0

∫
R
(ξ2 + η)

∣∣ω2(x, ξ)
∣∣2 dξdx = o

(
λ
α
2−1

)
,

(5.11)
∫ b1

a2

|yx|2 dx = o
(
λ−

α
2−2

)
and

∫ b1

a2

|zx|2 dx = o
(
λ−

α
2

)
,

(5.12)
∫ b1

a2

|ux + y|2 dx = o
(
λ−

α
2−2

)
and

∫ b1

a2

|vx + z|2 dx = o
(
λ−

α
2

)
,

(5.13)
∫ b1

a2

|Sd1 |2 = o(λ
α
2−1) and

∫ b1

a2

|Sd2 |2 = o(λ
α
2−1).

Proof. First, we proof the second estimation of (5.11). From (5.6), we have

zx = iλyx − λ
α
2−1(f3)x.

It follows that
‖zx‖L2(a2,b1) ≤ ‖λyx‖L2(a2,b1) + |λ|α2−1‖(f3)x‖L2(a2,b1) ≤

o(1)

λ
α
4

+
o(1)

λ1−
α
2
.

Since α ∈ (0, 1), we have min(α4 , 1−
α
2 ) = α

4 , hence, from the above equation, we get∫ b1

a2

|zx|2dx = o(λ−
α
2 ).

Now, we proof the second estimation of (5.12). From (5.4) and (5.6) we have

vx = iλux − λ
α
2−1(f1)x and z = iλy − λα2−1f3.

It follows that

‖vx + z‖L2(a2,b1) ≤ ‖λ(ux + y)‖L2(a2,b1) + |λ|α2−1‖(f1)x + f3‖L2(a2,b1) ≤
o(1)

λ
α
4

+
o(1)

λ1−
α
2
.

29



STABILITY OF A TRANSMISSION PROBLEM INVOLVING TIMOSHENKO SYSTEMS

Since α ∈ (0, 1), we get ∫ b1

a2

|vx + z|2dx = o(λ−
α
2 ).

Finally, the proof of the remaining estimations can follow using similar computations as in Section 3 (Lemmas
3.3, 3.4 and 3.5) and Section 4 (Lemmas 4.2, 4.3 and 4.4). �

Lemma 5.3. Assume that η > 0, assumption (A1) holds. Let g ∈ C1([a2, b1]) such that

g(b1) = −g(a2) = 1, max
x∈(a2,b1)

|g(x)| = cg and max
x∈(a2,b1)

|g′(x)| = cg′ ,

where cg and c′g are strictly positive constant. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈ D (Aj) of
system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

(5.14) |Sd2(b1)|2 + |Sd2(a2)|2 ≤ ρ2
2k2

λ1+
α
2

∫ b1

a2

|z|2dx+ o(1),

and

(5.15) |z(b1)|2 + |z(a2)|2 ≤ (
ρ2
2k2

λ1−
α
2 + 2c′g)

∫ b1

a2

|z|2dx+
o(1)

λ
.

Proof. First, we will prove equation (5.14). Multiplying (5.7) by −2 ρ2k2 gSd2 and integrating over (a2, b1), we
get

|Sd2(b1)|2 + |Sd2(a2)|2 =

∫ b1

a2

g′ |Sd2 |2dx+ <

(
2
ρ2iλ

k2

∫ b1

a2

g z Sd2dx

)
+ <

(
2
k1
k2

∫ b1

a2

g (ux + y)Sd2dx

)

+<

(
2
κ(α)

k2

∫ b1

a2

g
√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ Sd2dx

)
−<

(
2ρ2
k2

λ
α
2−1

∫ b1

a2

g f4 Sd2dx

)
,

consequently,

(5.16)
|Sd2(b1)|2 + |Sd2(a2)|2 ≤ c′g

∫ b1

a2

|Sd2 |
2
dx+ 2

ρ2λ

k2
cg

∫ b1

a2

|z| |Sd2 | dx+ 2
k1
k2
cg

∫ b1

a2

|ux + y| |Sd2 | dx

+2
κ(α)

k2
d1cg

∫ b1

a2

∣∣∣∣∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣ |Sd2 | dx+
2ρ2
k2

λ
α
2−1cg

∫ b1

a2

|f4| |Sd2 | dx.

Using Young’s inequality and second estimation of (5.13), we obtain

(5.17)
2ρ2λcg
k2

|z| |Sd2 | ≤
ρ2λ

1+α
2

2k2
|z|2 +

2ρ2λ
1−α2 c2g
k2

|Sd2 |
2 ≤ ρ2λ

1+α
2

2k2
|z|2 + o(1).

Using Cauchy-Schwarz inequality, first estimations of (5.10) and (5.12), second estimation of (5.13) and using
the fact that ||f4|| = o(1), we obtain

(5.18)



∫ b1

a2

|ux + y| |Sd2 | dx =
o(1)

λ
3
2

,

∫ b1

a2

|Sd2 |
2
dx =

o(1)

λ1−
α
2
,

∫ b1

a2

∣∣∣∣∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣ |Sd2 | dx =
o(1)

λ1−
α
2
, λ

α
2−1

∫ b1

a2

|f4| |Sd2 | dx =
o(1)

λ
3
2−

3α
4

.

Inserting (5.17) and (5.18) in (5.16), and since α ∈ (0, 1), we obtain

(5.19) |Sd2(b1)|2 + |Sd2(a2)|2 ≤ ρ2λ
1+α

2

2k2

∫ b1

a2

|z|2 dx+ o(1).

Now, we will prove (5.15). From equation (5.6), we have

(5.20) zx = iλyx − λ
α
2−1(f3)x.

Multiplying Equation (5.20) by 2gz and integrating over (a2, b1), then taking the real part, we get

|z(b1)|2 + |z(a2)|2 =

∫ b1

a2

g′|z|2dx+ <

{
2iλ

∫ b1

a2

gyxzdx

}
−<

{
2λ

α
2−1

∫ b1

a2

g(f3)xzdx

}
.
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Then,

(5.21) |z(b1)|2 + |z(a2)|2 ≤ cg′
∫ b1

a2

|z|2dx+ 2cgλ

∫ b1

a2

|yx||z|dx+ 2cgλ
α
2−1

∫ b1

a2

|(f3)x||z|dx.

Using Young’s inequality, we have

2cgλ|yx||z| ≤
ρ2
2k2

λ1−
α
2 |z|2 +

2k2c
2
g

ρ2
λ1+

α
2 |yx|2 and 2cgλ

α
2−1|(f3)x||z| ≤ cg′ |z|2 +

c2g
cg′
λ−2+α|(f3)x|2.

Using the above inequalities, first estimation of (5.11) and the fact that ||(f3)x|| = o(1), then equation (5.21)
becomes

|z(b1)|2 + |z(a2)|2 ≤
(
ρ2
2k2

λ1−
α
2 + 2cg′

)∫ b1

a2

|z|2dx+
o(1)

λ
.

�

Lemma 5.4. Assume that η > 0 and assumption (A1) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈
D (Aj) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

(5.22)
∫ b1

a2

|z|2dx =
o(1)

λ1+
α
2

and
∫ b1

a2

|y|2dx =
o(1)

λ3+
α
2
.

Proof. Multiplying Equation (5.7) by −iλ−1z and integrating over (a2, b1), then taking the real part, we get∫ b1

a2

|z|2dx = −k2
ρ2
λ−1<

{
i

∫ b1

a2

(Sd2)x zdx

}
+
k1
ρ2
λ−1<

{
i

∫ b1

a2

(ux + y)zdx

}

+
κ(α)

ρ2
λ−1<

{
i

∫ b1

a2

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ zdx

}
− λα2−2<

{
i

∫ b1

a2

f4 zdx

}
,

consequently,

(5.23)

∫ b1

a2

|z|2dx ≤ k2
ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd2) zxdx

∣∣∣∣∣+
k2
ρ2
λ−1 |Sd2(b1)| |z(b1)|+ k2

ρ2
λ−1 |Sd2(a2)| |z(a2)|

+
k1
ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

(ux + y)zdx

∣∣∣∣∣+
κ(α)

ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ zdx

∣∣∣∣∣+ λ
α
2−2

∫ b1

a2

|f4||z|dx.

Using Cauchy-Schwarz inequality, the fact that z is uniformly bounded in L2(0, L) and ||f4|| = o(1), we get

(5.24) λ
α
2−2

∫ b1

a2

|f4||z|dx = o(λ
α
2−2).

Using Cauchy-Schwarz inequality, the second estimations in (5.11) and (5.13), we get

(5.25)
k2
ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd2) zxdx

∣∣∣∣∣ =
o(1)

λ
3
2

.

Using Cauchy-Schwarz inequality, the first estimation in (5.12) and the fact that z is uniformly bounded in
L2(0, L), we get

(5.26)
k1
ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

(ux + y)zdx

∣∣∣∣∣ =
o(1)

λ2+
α
4
.
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Using Young’s inequality, Cauchy-Schwarz inequality and the first estimation of (5.10), we get

(5.27)

κ(α)

ρ2
λ−1

∣∣∣∣∣
∫ b1

a2

√
D1z

∫
R
µ(ξ)ω1(x, ξ)dξ dx

∣∣∣∣∣
≤ 1

2
λ−1+

α
2

∫ b1

a2

|z|2 dx+
κ(α)2d1

2ρ22
λ−1−

α
2

∫ b1

a2

(∫
R
µ(ξ)ω1(x, ξ)dξ

)2

dx

≤ 1

2
λ−1+

α
2

∫ b1

a2

|z|2 dx+
κ(α)2d1

2ρ22
λ−1−

α
2

∫ b1

a2

(∫
R

µ(ξ)
√
ξ2 + η√

ξ2 + η
ω1(x, ξ)dξ

)2

dx

≤ 1

2
λ−1+

α
2

∫ b1

a2

|z|2 dx+ c4 λ
−1−α2

∫ b1

a2

∫
R

(ξ2 + η)
∣∣ω1(x, ξ)

∣∣2 dξdx
≤ 1

2
λ−1+

α
2

∫ b1

a2

|z|2 dx+
o(1)

λ2
,

where c4 =
κ(α)2d1

2ρ22

∫
R

|ξ|2α−1

|ξ|2 + η
dξ. Since 0 < α < 1 and η > 0, then c4 is well defined.

Inserting estimations (5.24)-(5.27) in (5.23), we get

(1− 1

2
λ−1+

α
2 )

∫ b1

a2

|z|2dx ≤ k2
2ρ2

λ−1+
α
2

(
|z(a2)|2 + |z(b1)|2

)
+

k2
2ρ2

λ−1−
α
2

(
|Sd2(a2)|2 + |Sd2(b1)|2

)
(5.28)

+
o(1)

λ
3
2

+
o(1)

λ2−
α
2
.

Now, inserting estimations (5.14) and (5.15) in (5.28), we get

(5.29) (
1

2
− 1

2
λ−1+

α
2 − k2

ρ2
c′gλ
−1+α

2 )

∫ b1

a2

|z|2dx ≤ o(1)

λ2−
α
2

+
o(1)

λ1+
α
2

+
o(1)

λ
3
2

.

Since 0 < α < 1, then min(2− α
2 , 1 + α

2 ,
3
2 ) = 1 + α

2 . Consequently,

(5.30) (
1

2
− 1

2
λ−1+

α
2 − k2

ρ2
c′gλ
−1+α

2 )

∫ b1

a2

|z|2dx ≤ o(1)

λ1+
α
2
.

Since |λ| −→ +∞, for λ large enough, we get

(5.31) 0 < (
1

2
− 1

2
λ−1+

α
2 − k2

ρ2
c′gλ
−1+α

2 )

∫ b1

a2

|z|2dx ≤ o(1)

λ1+
α
2
,

hence, the first asymptotic estimate of (5.22) holds. Then inserting the first asymptotic estimate of (5.22) in
(5.6), we get the second estimate of (5.22). Thus, the proof is complete. �

Lemma 5.5. Assume that η > 0 and assumption (A1) holds . Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈
D (Aj) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

(5.32) |Sd1(b1)|2 + |Sd1(a2)|2 ≤ ρ1
2k1

λ1+
α
2

∫ b1

a2

|v|2dx+ o(1)

and

(5.33) |v(b1)|2 + |v(a2)|2 ≤ (
ρ1
2k1

λ1−
α
2 + 2c′g)

∫ b1

a2

|v|2dx+
o(1)

λ
.

Proof. First, we will prove equation (5.32). Multiplying (5.5) by −2 ρ1k1 gSd1 and integrating over (a2, b1), we
get

(5.34) |Sd1(b1)|2 + |Sd1(a2)|2 =

∫ b1

a2

g′|Sd1 |2dx+ <

{
2
ρ1iλ

k1

∫ b1

a2

g v Sd1dx

}
−<

{
2ρ1
k1

λ
α
2−1

∫ b1

a2

g f2 Sd1dx

}
,

consequently,

(5.35) |Sd1(b1)|2 + |Sd1(a2)|2 ≤ c′g
∫ b1

a2

|Sd1 |2dx+ 2
ρ1λ

k1
cg

∫ b1

a2

|v| |Sd1 | dx−
2ρ1
k1

λ
α
2−1cg

∫ b1

a2

|f2| |Sd1 | dx.
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Using Young’s inequality and first estimation of (5.13), we obtain

(5.36)
2ρ1λcg
k1

|v| |Sd1 | ≤
ρ1λ

1+α
2

2k1
|v|2 +

2ρ1λ
1−α2 c2g
k1

|Sd1 |
2 ≤ ρ1λ

1+α
2

2k1
|v|2 + o(1).

Using Cauchy-Schwarz inequality, first estimation of (5.13) and using the fact that ||f2|| = o(1), we obtain

(5.37)



∫ b1

a2

|Sd1 |
2
dx =

o(1)

λ1−
α
2
,

λ
α
2−1

∫ b1

a2

|f2| |Sd1 | dx =
o(1)

λ
3
2−

3α
4

.

Inserting (5.36) and (5.37) in (5.35) and since 0 < α < 1, we get

(5.38) |Sd1(b1)|2 + |Sd1(a2)|2 ≤ ρ1λ
1+α

2

2k1

∫ b1

a2

|v|2 dx+ o(1).

Now, we will prove (5.33). From equation (5.4), we have

(5.39) vx = iλux − λ
α
2−1(f1)x.

Multiplying equation (5.39) by 2gv and integrating over (b1, a2), then taking the real part, we get

|v(b1)|2 + |v(a2)|2 =

∫ b1

a2

g′|v|2dx+ <

{
2iλ

∫ b1

a2

guxvdx

}
−<

{
2λ

α
2−1

∫ b1

a2

g(f1)xvdx

}
.

Then,

(5.40) |v(b1)|2 + |v(a2)|2 ≤ cg′
∫ b1

a2

|v|2dx+ 2cgλ

∫ b1

a2

|ux||v|dx+ 2cgλ
α
2−1

∫ b1

a2

|(f1)x||v|dx.

Using Young’s inequality, we have

(5.41) 2cgλ|ux||v| ≤
ρ1
2k1

λ1−
α
2 |v|2 +

2k1c
2
g

ρ1
λ1+

α
2 |ux|2 and 2cgλ

−`|(f1)x||v| ≤ cg′ |v|2 +
c2g
cg′
λα−2|(f1)x|2.

Using equation (5.41) and the fact that ||(f1)x|| = o(1), then equation (5.40) becomes

(5.42) |v(b1)|2 + |v(a2)|2 ≤
(
ρ1
2k1

λ1−
α
2 + 2cg′

)∫ b1

a2

|v|2dx+
2k1c

2
g

ρ1
λ1+

α
2

∫ b1

a2

|ux|2dx+
o(1)

λ2−α
.

Using the first estimation of (5.12) and the second estimation of (5.22), we get

(5.43)

λ1+
α
2

∫ b1

a2

|ux|2dx ≤ 2λ1+
α
2

∫ b1

a2

|ux + y|2dx+ 2λ1+
α
2

∫ b1

a2

|y|2dx

≤ o(1)

λ
+
o(1)

λ2

≤ o(1)

λ
.

Now, inserting (5.43) in (5.42) and 0 < α < 1, we get

(5.44) |v(b1)|2 + |v(a2)|2 ≤
(
ρ1
2k1

λ1−
α
2 + 2cg′

)∫ b1

a2

|v|2dx+
o(1)

λ
.

�

Lemma 5.6. Assume that η > 0 and assumption (A1) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈
D (Aj) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimations:

(5.45)
∫ b1

a2

|v|2dx =
o(1)

λ1+
α
2

and
∫ b1

a2

|u|2dx =
o(1)

λ3+
α
2
.
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Proof. Multiplying Equation (5.5) by −iλ−1v and integrating over (a2, b1), then taking the real part, we get∫ b1

a2

|v|2dx = −k1
ρ1
λ−1<

{
i

∫ b1

a2

(Sd1)x vdx

}
− λ−2+α

2 <

{
i

∫ b1

a2

f2 vdx

}
,

consequently,

(5.46)

∫ b1

a2

|v|2dx ≤ k1
ρ1
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd1) vxdx

∣∣∣∣∣+
k1
ρ1
λ−1 |Sd1(b1)| |v(b1)|+ k1

ρ1
λ−1 |Sd1(a2)| |v(a2)|

+λ−2+
α
2

∫ b1

a2

|f2||v|dx.

From the fact that v is uniformly bounded in L2(0, L) and ||f2|| = o(1), we get

(5.47) λ−2+
α
2

∫ b1

a2

|f2||v|dx = o(λ−2+
α
2 ).

Using the second estimation in (5.12), the first estimation in (5.22) and the first one in (5.13), we get

(5.48)

k1
ρ1
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd1) vxdx

∣∣∣∣∣ ≤ k1
ρ1
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd1) (vx + z)dx

∣∣∣∣∣+
k1
ρ1
λ−1

∣∣∣∣∣
∫ b1

a2

(Sd1) zdx

∣∣∣∣∣
≤ o(1)

λ
3
2

+
o(1)

λ2

≤ o(1)

λ
3
2

.

Inserting (5.47) and (5.48) in (5.46), we get

(5.49)

∫ b1

a2

|v|2dx ≤ k1
2ρ1

λ−1+
α
2

(
|v(b1)|2 + |v(a2)|2

)
+

k1
2ρ1

λ−1−
α
2

(
|Sd1(b1)|2 + |Sd1(a2)|2

)
+

o(1)

λ
3
2

+
o(1)

λ2−
α
2
.

Now, inserting (5.32) and (5.33) in the above estimation, we get

(5.50) (
1

2
− k1
ρ1
c′gλ
−1+α

2 )

∫ b1

a2

|v|2dx ≤ o(1)

λ2−
α
2

+
o(1)

λ1+
α
2

+
o(1)

λ
3
2

.

Since 0 < α < 1 and |λ| −→ +∞, for λ large enough, we get

(5.51) 0 < (
1

2
− k1
ρ1
c′gλ
−1+α

2 )

∫ b1

a2

|v|2dx ≤ o(1)

λ1+
α
2
.

Hence, we get the first asymptotic estimate of (5.45). Inserting the first asymptotic estimate of (5.45) in (5.4),
we get the second estimate of (5.45). Thus, the proof is complete. �

From what precedes and from Lemma 5.2-5.6, we deduce that

‖U‖Hj = o(1), over (a2, b1).

Lemma 5.7. Assume that η > 0 and assumption (A1) holds . Let h ∈ C1([0, L]) and h(0) = h(L) = 0 be a
given function. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈ D (Aj) of system (5.4)-(5.9) satisfies the
following asymptotic behavior estimation:∫ L

0

h′

(
ρ1|v|2 + k2

∣∣∣∣yx +
κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 + ρ2|z|2 + k1

∣∣∣∣ux +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ

∣∣∣∣2
)
dx = o(1).

Proof. Let S := ux +
κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ, from Lemma 5.2, the definition of D1(x) and the fact that

ux is uniformly bounded in L2(0, L), we get S is uniformly bounded in L2(0, L). First, multiplying (5.5) by
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2ρ1hS, integrating over (0, L), taking the real part, and using the fact that ‖f2‖ = o(1), we obtain

(5.52)

<

{
ρ1

∫ L

0

2hiλvSdx

}
−<

{
2k1

∫ L

0

hyxSdx

}
− k1

∫ L

0

h
(
|S|2

)
x
dx

= <

{
2ρ1

∫ L

0

hλ
α
2−1f2Sdx

}
︸ ︷︷ ︸

o(λ
α
2
−1)

.

From equation (5.4), we have
iλux = −vx − λ

α
2−1(f1)x.

Then,

(5.53) iλS = −vx − λ
α
2−1(f1)x + iλ

κ(α)

k1

√
D1

∫
R
µ(ξ)ω1(x, ξ)dξ.

Moreover, from the definition of S and D1(x), Cauchy-Schwarz inequality, the fact that 0 < α < 1 and
η > 0, Lemma 5.2, Lemma 5.6, equation (5.53), the fact that yx and v are uniformly bounded in L2(0, L) and
‖(f1)x‖ = o(1), we get

<

{
2k1

∫ L

0

hyxSdx

}
= <

{
2k1

∫ L

0

hyxuxdx

}
+ <

{
2κ(α)d1

∫ b1

a2

hyx

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=
o(1)

λ
3
2

,

<

{
ρ1

∫ L

0

2hiλvSdx

}
= −ρ1

∫ L

0

h
(
|v|2
)
x
dx− λα2−12ρ1

∫ L

0

hv(f1)xdx︸ ︷︷ ︸
=

o(1)

λ
1−α

2

+<

{
2ρ1

κ(α)

k1
d1

∫ b1

a2

hiλv

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=o(1)

.

Inserting the above estimations in equation (5.52), we obtain

(5.54) −ρ1
∫ L

0

h
(
|v|2
)
x
dx− k1

∫ L

0

h
(
|S|2

)
x
dx−<

{
2k1

∫ L

0

hyxuxdx

}
= o(1).

Now, multiplying (5.7) by 2ρ2hSd2 = 2ρ2h

(
yx +

κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
, integrating over (0, L),

taking the real part, then using the fact that
(
yx +

κ(α)

k2

√
D2(x)

∫
R
µ(ξ)ω2(x, ξ)dξ

)
is uniformly bounded in

L2(0, L), equation (5.10), equation (5.13), ‖y‖ = O(|λ|−1) and ‖f4‖ = o(1), we obtain

(5.55)

<

{
2ρ2iλ

∫ L

0

hzSd2dx

}
− k2

∫ L

0

h
d

dx

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx
+<

{
2k1

∫ L

0

huxSd2dx

}
+ <

{
2k1

∫ L

0

hySd2dx

}
︸ ︷︷ ︸

=
O(1)
λ

+<

{
2κ(α)

∫ L

0

h
√
D1

∫
R
µ(ξ)ω1(x, ξ)dξSd2dx

}
︸ ︷︷ ︸

=
o(1)

1−α
2

= <

{
2ρ2

∫ L

0

hλ
α
2−1f4Sd2dx

}
︸ ︷︷ ︸

=
o(1)

λ
1−α

2

.

From equation (5.6), we have
iλyx = −zx − λ

α
2−1(f3)x.
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Then,

(5.56) iλSd2 = −zx − λ
α
2−1(f3)x + iλ

κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ.

Moreover, from the definition of Sd2 and D2(x), Cauchy-Schwarz inequality, the fact that 0 < α < 1 and
η > 0, Lemma 5.2, Lemma 5.4, equation (5.56), the fact that ux and z are uniformly bounded in L2(0, L) and
‖(f3)x‖ = o(1), we have

<

{
2k1

∫ L

0

huxSd2dx

}
= <

{
2k1

∫ L

0

huxyxdx

}
+ <

{
2
k1
k2
κ(α)d2

∫ b1

a2

hux

∫
R
µ(ξ)ω2(x, ξ)dξdx

}
︸ ︷︷ ︸

=
o(1)

λ
1
2
−α

4

,

<

{
ρ2

∫ L

0

2hiλzSd2dx

}
= −ρ2

∫ L

0

h
(
|z|2
)
x
dx− λα2−12ρ1

∫ L

0

hz(f3)xdx︸ ︷︷ ︸
=

o(1)

λ
1−α

2

+<

{
2ρ2κ(α)

k2
d2

∫ b1

a2

hiλz

∫
R
µ(ξ)ω1(x, ξ)dξdx

}
︸ ︷︷ ︸

=o(1)

.

Inserting the above estimations in (5.55), we obtain
(5.57)

−ρ2
∫ L

0

h
d

dx
|z|2dx− k2

∫ L

0

h
d

dx

∣∣∣∣yx +
κ(α)

k2

√
D2

∫
R
µ(ξ)ω2(x, ξ)dξ

∣∣∣∣2 dx+ <

{
2k1

∫ L

0

huxyxdx

}
= o(1).

Adding (5.54) and (5.57), we get our desired result. �

Lemma 5.8. Assume that η > 0 and assumption (A1) holds. Then, for j = 1, 2, the solution (u, v, y, z, ω1, ω2) ∈
D (Aj) of system (5.4)-(5.9) satisfies the following asymptotic behavior estimation:

‖U‖Hj = o(1).

Proof. Proceeding in a similar way as in Lemma 3.10, we get our desired result. �

Proof of Theorem 5.1. From Lemma 5.8 we get that ‖U‖Hj = o(1), which contradicts (5.2). This implies
that

sup
λ∈R

∥∥∥(iλI −Aj)−1
∥∥∥
L(Hj)

= O
(
λ1−

α
2

)
.

The result follows from Theorem A.3. �

6. Conclusion

We have studied the stabilization of a one-dimensional Timoshenko system with localized internal fractional
kelvin-Voigt damping via non-smooth coefficients. We proved the strong stability of the system using Arendt-
Batty criteria. Polynomial stability results has been proved in three cases: The case of fractional kelvin-Voigt
damping acting on the bending moment equation. We showed a polynomial energy decay rate of type t−1. The
case of fractional kelvin-Voigt damping acting on the shear force equation. We proved a polynomial energy decay
rate of type t−1. In the last case, the fractional kelvin-Voigt damping acting on the shear force and bending
moment equations. We established a polynomial energy decay rate of type t

−4
2−α . Thereby, we highlight the

following important open problems: the optimality of the obtained decay rates and the generalization of our
results to a Bresse system.
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Appendix A. Some notions and stability theorems

In order to make this paper more self-contained, we recall in this short appendix some notions and stability
results used in this work.

Definition A.1. Let A : D(A) ⊂ H → H generates a C0−semigroup of contractions
(
etA
)
t≥0 on H. The

C0-semigroup
(
etA
)
t≥0 is said to be

1. Strongly stable if
lim

t→+∞
‖etAx0‖H = 0, ∀ x0 ∈ H.

2. Exponentially (or uniformly) stable if there exist two positive constants M and ε such that

‖etAx0‖H ≤Me−εt‖x0‖H , ∀ t > 0, ∀ x0 ∈ H.
3. Polynomially stable if there exists two positive constants C and α such that

‖etAx0‖H ≤ Ct−δ‖Ax0‖H , ∀ t > 0, ∀ x0 ∈ D (A) .

�

Now, we look for sufficient conditions to show the strong stability of the C0-semigroup
(
etA
)
t≥0. We will rely

on the following result obtained by Arendt and Batty [1].

Theorem A.2. (Arendt and Batty [1]) Let A : D(A) ⊂ H → H generates a C0−semigroup of contractions(
etA
)
t≥0 on H. If
1. A has no pure imaginary eigenvalues,
2. σ (A) ∩ iR is countable,

where σ (A) denotes the spectrum of A, then the C0-semigroup
(
etA
)
t≥0 is strongly stable. �

Concerning the characterization of polynomial stability stability of a C0−semigroup of contraction
(
etA
)
t≥0 we

rely on the following result due to Borichev and Tomilov [3] (see also [2] and [6])

Theorem A.3. (Batty in [2], Borichev and Tomilov in [3]). Assume that A is the generator of a strongly
continuous semigroup of contractions

(
etA
)
t≥0 on H. If σ (A) ∩ iR = ∅, then for a fixed ` > 0 the following

conditions are equivalent:

1. supλ∈R

∥∥∥(iλI −A)
−1
∥∥∥
L(H)

= O
(
|λ|`
)
.

2. ‖etAU0‖H ≤
C

t
1
`

‖U0‖D(A), ∀ t > 0, U0 ∈ D (A), for some C > 0.

�
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