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ABSTRACT 16 

The removal of CO2 from gases is an important industrial process in the transition to a low-17 

carbon economy. The use of selective physical (co-)solvents is especially perspective in cases 18 

when the amount of CO2 is large as it enables one to lower the energy requirements for solvent 19 

regeneration. However, only a few physical solvents have found industrial application and the 20 

design of new ones can pave the way to more efficient gas treatment techniques. Experimental 21 

screening of gas solubility is a labor-intensive process, and solubility modeling is a viable 22 

strategy to reduce the number of solvents subject to experimental measurements. In this paper, a 23 

chemoinformatics-based modeling workflow was applied to build a predictive model for the 24 

solubility of CO2 and four other industrially important gases (CO, CH4, H2, N2). A dataset 25 

containing solubilities of gases in 280 solvents was collected from literature sources and 26 

supplemented with the new data for six solvents measured in the present study. A modeling 27 

workflow based on the usage of several state-of-the-art machine learning algorithms was applied 28 

to establish quantitative structure-solubility relationships. The best models were used to perform 29 

virtual screening of the industrially produced chemicals. It enabled the identification of 30 

compounds with high predicted CO2 solubility and selectivity towards the other gases. The 31 

prediction for one of the compounds − 4-Methylmorpholine was confirmed experimentally. 32 

SYNOPSIS STATEMENT 33 

Developing better solvents for selective CO2 capture is crucial for reaching net-zero emissions 34 

targets.  35 
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INTRODUCTION 36 

Global warming due to increasing levels of greenhouse gases CO2 and CH4 in the atmosphere 37 

has become a major public issue. Several companies and countries have announced ambitious 38 

plans to reach net zero CO2 emissions by 2050. According to the International Energy Agency, 39 

Carbon Capture, Utilization or Storage (CCUS) will likely play an important role in achieving 40 

this goal.
1
 Numerous materials for CO2 capturing from gases were suggested, including chemical 41 

and physical solvents, zeolites, metal oxides, metal-organic frameworks, and membranes.
2,3

 The 42 

applicability of a certain technology in each case depends on many factors, including the 43 

concentrations of CO2 and of other components in the gas, the pressure of the gas feed, the 44 

temperature, etc. In cases, wherein the partial pressure of CO2 in a gas mixture is sufficiently 45 

large, physical solvents represent a perspective alternative to the conventionally used aqueous 46 

amines mixtures because of the lower energy requirement. Indeed, a large part of a physical 47 

solvent can be regenerated by pressure swing and air stripping, while the regeneration of 48 

chemical solvents requires heating and steam stripping
3,4

 Pre-combustion CO2 capture is a key 49 

example of a case with a CO2 partial pressure sufficiently high to use physical solvents. In a pre-50 

combustion process the feed (e.g. coal, natural gas, biomass, etc.) is converted into syngas (H2 51 

and CO) via gasification, steam reforming, auto thermal reforming or partial oxidation and 52 

subsequently the CO is further converted into CO2 and H2 via the water gas shift reaction. 53 

Typical CO2 concentrations are in the range of 15 to 60 mol% for a total pressure of 2 to 7 MPa, 54 

thus, the CO2 can be captured with a physical solvent
5
. The other components are mainly H2, but 55 

also CO, N2, CH4, H2O (saturation). The composition strongly depends on the feedstock and on 56 

the process. At the moment, only a limited number of physical solvents such as methanol 57 

(Rectisol® process), propylene carbonate (Fluor® process), N-acetyl and N-formyl morpholines 58 
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(Morphysorb® process), 1-methylpyrrolidin-2-one (Purisol® process), polyethylene glycol 59 

ethers (Selexol® process), found application in the industrial CO2 capture processes. Physical 60 

solvents are also often added to chemical solvents (so-called hybrid solvents), for example, to 61 

increase the selectivity of absorption towards a specific gas component, to lower the regeneration 62 

energy, etc. Examples are sulfolane (Sulfinol® process), thiodiglycol (Hysweet ® process), etc. 63 

The search for new physical (co-)solvents is thus an important task.
6
 64 

New suitable solvents should satisfy many criteria, among which are a decent capacity to 65 

absorb CO2, a competitive price, a low volatility (to avoid solvent losses), a low viscosity, etc. 66 

Another very important criterium is the selectivity towards CO2 which should be high enough to 67 

obtain a CO2 stream of acceptable purity for re-utilization or storage, and to avoid losses of 68 

valuable chemicals like CH4. Depending on the source of the CO2, the selectivity criteria are 69 

different. For the removal of CO2 from natural gas the co-absorption of mainly CH4, but also of 70 

N2 and H2O and eventually H2S should be limited. For a steam methane reformer (SMR), which 71 

in a near future is likely to play a key role in the massive production of blue hydrogen from 72 

natural gas, the absorption of CO2 with a high selectivity towards H2 is important
7,8

, but also 73 

towards
 
CO, H2O, N2 and CH4

7,8
. The CO2 present in flue gas from boilers should be removed 74 

with a high selectivity towards N2, but the co-absorption of water and SOx, NOx should be low 75 

too. 76 

Experimental screening of gas solubility is a time and labor-intensive process, and solubility 77 

modeling is a viable strategy to reduce the costs of the required experiments. There were 78 

numerous approaches suggested for modeling gas solubility in pure physical solvents. In the 79 

work by Pirig et al.
9
 a five-parameter linear equation based on the experimentally measured 80 

properties was used to model the solubility in 58 solvents. In the work by Li et al.
10

, artificial 81 
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neural networks were used to model CO2 mole fraction solubility in 11 solvents (alcohols, ethers, 82 

ketones) at different temperatures and pressures. Several structural features (number of C-H, O-83 

H, C-O, C=O bonds, number of rotatable bonds, etc.) and physical properties of the compounds 84 

(density, dipole moment, etc.) were used as descriptors. It enabled achieving high precision of 85 

predictions for certain types of physical solvents under varying experimental conditions. 86 

Nonetheless, the major disadvantage of the modeling approaches based on experimentally 87 

measured parameters − the limited number of compounds for which the parameters are available, 88 

complicates their usage for large-scale virtual screening of solvent candidates. 89 

Alternative strategies for modeling CO2 solubility, that require less preliminary knowledge of 90 

the experimental properties, were also suggested. In the works of Li et al.
11

 and Shi et al.
12

 
 

91 

molecular simulations were used to predict CO2 solubility in nine and twenty-seven physical 92 

solvents respectively. Although high predictive accuracy was achieved in both works, molecular 93 

simulations are also not very convenient for the large-scale virtual screening, as they are time-94 

consuming and require significant computational resources. Alternatively, the conductor-like 95 

screening model for real solvents (COSMO-RS),
13

 a method combining quantum chemical 96 

calculations with statistical thermodynamics, was suggested to rapidly screen large sets of 97 

various materials. In the work by Kim et al.
14

 CO2 and CH4 Henry’s law coefficients were 98 

predicted by COSMO-RS for 63 common liquid solvents and 10 ionic liquids at 300 K. 99 

Unfortunately, there was no comparison of the predicted solubilities with the available 100 

experimental data. 101 

A pool of gas solubility data accumulated in scientific literature supports applying machine 102 

learning for quantitative structure-solubility relationships (QSPR) modeling. In this approach 103 

chemical structures of compounds are encoded as vectors of molecular descriptors and machine 104 
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learning algorithms are then applied for modeling the property of interest. As compared to the 105 

modeling based on the usage of experimentally determined parameters or resource-intensive 106 

molecular simulations, this method allows efficient screening of large numbers of compounds. 107 

To our knowledge, there was only one work related to QSPR modeling of CO2 solubility in 108 

physical solvents published.
15

 In the paper of Gorji et al.,
15

 Henry coefficients for 22 solvents 109 

composed only of carbon, oxygen, and hydrogen elements at different temperatures were used to 110 

build a multiple linear regression model with Dragon
16

 descriptors. Although good predictive 111 

performance was achieved, the applicability domain (AD) of this model is limited to the specific 112 

classes of compounds used for model building. Except for recent publications on H2S solubility 113 

modeling
17,18

, to our knowledge there were no papers describing the application of the 114 

chemoinformatics-driven methods for physical solubility modeling of the major components 115 

encountered in natural gas treatment or in the pre-combustion CO2 capture process : carbon 116 

dioxide (CO2), methane (CH4), carbon monoxide (CO), hydrogen (H2), and nitrogen (N2). Hence, 117 

the investigation of the perceptiveness of using chemoinformatics for the rational design of new 118 

solvents for the absorption of CO2 and other industrial gases is an important task. 119 

 120 

MATERIALS AND METHODS 121 

Data collection and preprocessing 122 

A dataset containing mole fraction solubility values ( ) for 280 liquid solvents at 298.15 K and 123 

1 atm was collected (Table S1, Supporting Information) from IUPAC reports
19–23

, scientific 124 

literature
24–75

, and patents
76,77

. The mole fraction solubility for a binary (gas-liquid) system is 125 

defined
19

 as: 126 
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 (1) 127 

n(g) – an amount of substance in a gas phase, n(l) – an amount of substance in a liquid phase. 128 

Median values were then taken for the solvents associated to several reliable measurements of 129 

χ at the particular temperature. The final dataset used for modeling is present in Table S1 130 

(Supporting Information). Extrapolation and interpolation of the data to 298.15 K were 131 

performed assuming a linear variation of Henry’s coefficients with temperature or by the 132 

equations suggested in the IUPAC report or corresponding papers. The compounds that are 133 

structural outliers with respect to the training set majority, comprising water, carbon disulfide, 134 

octamethylcyclotetrasiloxane and hydrazines were not included to the dataset. These compounds 135 

contain rare or unique fragments significantly affecting their gas-absorbing properties, and, 136 

hence, confident predictions cannot be obtained for them by statistical modeling. 137 

The collected mole fraction solubilities were converted to the Kuenen coefficients S using the 138 

following formula
78

: 139 

     
     

  
 

 

    
   (2) 140 

S – Kuenen coefficient (m
3
kg

-1
), R – ideal gas constant (8.314 m

3
PaK

-1
mol

-1
), T and P – 141 

standard temperature and pressure (273.15 K and 101.325 kPa), Mw – molecular weight of 142 

compound (kgmol
-1

), χ – mole fraction solubility value. 143 

The Kuenen coefficient is the volume of saturated gas reduced at 273.15 K and 1 atm pressure, 144 

which is dissolved by unit mass of pure solvent at the temperature of measurement and partial 145 

pressure of 1 atm. This parameter is widely used in industrial applications, as it enables one to 146 
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directly estimate the efficiency of the particular solvent related to its cost and dimensions of the 147 

required industrial unit (design-capital expenses cost CAPEX). Here, Kuenen coefficients were 148 

used for the data analysis and models interpretation. 149 

The selectivity index SI was calculated using the following formula: 150 

      
    

    
 (3) 151 

SI – selectivity index, experimental or predicted χCO2 and χgas – mole fraction solubilities of 152 

CO2 and other gases respectively. 153 

All χ values were also transformed to a logarithmic scale, i.e. the negative value of the decimal 154 

logarithm was taken (Figure S1). 155 

Modeling 156 

Standardization 157 

All compound structures were standardized using in-house standardization procedures based 158 

on KNIME,
79

 which included aromatization, stereochemistry depletion, etc. 159 

Descriptors 160 

193 different ISIDA fragment descriptor sets were generated using the Fragmentor17 161 

software.
80,81

 ISIDA fragments represent either sequences (the shortest topological paths with an 162 

explicit representation of all atoms and bonds), atom-centered fragments (all connected atoms to 163 

a certain topological distance), or triplets (all the possible combinations of 3 atoms in a graph 164 

with the topological distance between each pair indicated). The number of fragments in each set 165 
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varied from 30-40 (for short sequences of atoms/bonds) to 400-1200 (for long sequences up to 6 166 

atoms) for different gases. 167 

Quantum chemical descriptors resulted from DFT calculations in the gas phase, with model 168 

wB97X-D 6-31G* performed with the Spartan 18.0 program
82

. Default QSAR descriptors 169 

available in Spartan including energy, dipole moment, EHOMO, and ELUMO were calculated. 170 

Machine learning algorithms 171 

Random forest (RF): RF algorithm
83

 implemented in sci-kit learn library (v. 0.22.1)
84,85

 was 172 

used. The following hyperparameters were tuning during optimization (grid search): number of 173 

trees (100, 300, 1000), number of features (all features, one-third of all features, log2 of the 174 

number of features), the maximum depth of the tree (5, 10, full tree), bootstrapping (with and 175 

without the usage of bootstrap samples for building the tree). 176 

XGBoost (XGB): XGBoost algorithm
86

 as implemented in XGBoost python module (v.1.2.0)
87

 177 

was used. The following hyperparameters were tuning during optimization (grid search): number 178 

of trees (50, 100, 300, 500), number of features (all features, 70% of all features), number of 179 

samples (all samples, 70% of all samples), the maximum depth of the tree (3, 5, 10), learning rate 180 

(0.3, 0.1, 0.5, 0.05), the minimum sum of instance weight needed in a node (1, 5, 10). All other 181 

parameters were left as default. 182 

Support vector regression (SVR): SVR algorithm
88

 implemented in sci-kit learn library (v. 183 

0.22.1), was used. The descriptors were scaled to the [0,1] range before applying the algorithm. 184 

The following hyperparameters were tuning during optimization (grid search): kernel (linear, rbf, 185 
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poly, sigmoid), kernel coefficient (1, 0.1, 0.01, 0.001, 0.0001), regularization parameter (0.1, 1, 186 

10, 100, 1000). 187 

Model validation workflow 188 

The modeling workflow was implemented using sci-kit learn library (v. 0.22.1) in python 3.7 189 

scripting language. Identical modeling workflows were used for solubility modeling (expressed 190 

as -lg ) of all gases. At the first stage of the modeling, a machine learning algorithm: RF, SVR 191 

and XGB were tested in 5-fold cross-validation, which was repeated 5 times (Figure S2). For 192 

each descriptor set, the model’s measures of performance were calculated and several models 193 

with a coefficient of determination Q
2

CV ≥0.7 were selected for consensus modeling. 194 

The following equations were used to calculate the measures of the model’s performance in 195 

cross-validation: 196 

   
  

    
                    

   

               
   

 
    

 
   (4) 197 

       
   

                  

 
 
   

 
   

 
  (5) 198 

       
  

                

 
 
   

 
   

 
  (6) 199 

Above, n is the number of compounds in the entire learning set, yi,exp, yi,pred experimental and 200 

values predicted in 5-fold cross-validation for compound i from the learning set, j is the index of 201 

the repetition of the 5-fold cross-validation procedure. For each measure of the model’s 202 

performance, the standard deviation over 5 repetitions was calculated. 203 
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Each of the selected models was then associated with an Applicability Domain (AD), defined 204 

as a bounding box.
89

 Hence, the pool of selected models extracted from the given data set was 205 

used as a consensus predictor, returning for each input solvent candidate a mean value of 206 

solubility estimates and its standard deviation, taken over the predictions returned by each model 207 

in the pool, if the compounds appeared outside AD of all the models, or, alternatively, over the 208 

predictions returned by only those models having the candidate within their AD. 209 

Outlying data points were defined as the data points for which absolute errors (|χexp−χpred|) 210 

from cross-validation were larger than 2×RMSECV threshold. 211 

Y-randomization test 212 

The absence of chance correlation was checked through the Y-randomization procedure. Y-213 

randomization test was performed in the following way: -lgχ values (y values) were shuffled, 214 

surrogate models from the cross-validation were built using shuffled values and the values from 215 

the corresponding cross-validation test set were calculated. This procedure was repeated 100 216 

times for each fold and the maximum values of the coefficient of determination were compared 217 

with the coefficient of determination obtained for the original -lgχ values. 218 

Virtual screening 219 

 An in-house dataset comprising 4,082 industrially produced compounds and their 220 

structural analogs was screened in the following way. Only structures containing the same atoms 221 

(C, H, N, O, S, P, halogens) as in the learning set were kept. All structures were standardized and 222 

ISIDA descriptors were calculated for them as described above. Individual ISIDA models 223 

refitted to the entire dataset with the hyperparameters selected in the cross-validation were used 224 
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to compose the final consensus model as described above. Then, predictions were made using the 225 

ISIDA consensus model. Only compounds that were inside the applicability domain defined as 226 

bounding box for at least three ISIDA fragment types were considered. 227 

Software implementation 228 

The developed model was implemented into the ISIDA-Predictor software.
81

 229 

Experimental measurement of CO2 solubility 230 

A “static-synthetic” technique based on a closed-circuit method
90–92

 was used for the 231 

determination of CO2 solubility in the solvents. In this method, which is explained in detail in the 232 

supplementary information (Text S1, Figures S3, S4), the system pressure is measured at 233 

constant temperature for different overall compositions. To determine the global compositions, 234 

the quantities of pure substances charged into the stirred equilibrium cell, which is evacuated and 235 

placed in a thermostatic liquid bath, need to be known precisely. The purified and degassed 236 

solvents are charged into the cell as compressed liquids using thermostatted piston injectors. 237 

Then, the gas is added stepwise as a liquefied gas using the same injection pumps or as a gaseous 238 

component using a thermo-regulated gas bomb. Knowing the pressure, temperature, and volume 239 

of the gas bomb, the amount of gas inside the bomb can be calculated using correlated PvT data 240 

of the gas. Thus, the injected amount of gas can be obtained from the pressure difference in the 241 

bomb before and after each injection. 242 

Since only temperature, pressure, total loadings, gas-liquid interface level and total volumes 243 

are measured, the compositions of the coexisting phases need to be determined by the evaluation 244 

of the raw data. From the known amount of solvent, the liquid phase volume is determined using 245 
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precise information about the density of the liquid solution inside the equilibrium chamber. From 246 

the total volume of the cell, the remaining gas phase volume can be calculated precisely (see 247 

supplementary information). At given equilibrium conditions (temperature, gas phase volume, 248 

and gas pressure) the amounts of gas in the gas phase and thus, also in the liquid phase are 249 

obtained. In this approach, several effects influence the resulting liquid phase compositions. 250 

These effects are the small amounts of solvents in the gas phase, the compressibility of the 251 

solvent under the gas pressure, the partial molar volume of the dissolved gas and the solvent 252 

activity coefficient. All effects are considered in an isothermal and isochoric algorithm by 253 

solving the mass and volume balances. 254 

The partial pressure is obtained during the iterative procedure: 255 

Pgas = Psys – Psolvent (6) 256 

where Pgas – partial pressure of the acid gas in the system, Psys – total pressure in the system, 257 

Psolvent – partial pressure of a solvent vapour. This equation is valid at low pressure and in the 258 

absence of chemical reactions in the gas phase. The method to calculate the uncertainty of the 259 

measured experimental data is explained in the supplementary information. The uncertainty of 260 

the measured CO2 solubility at 1 atm. is equal or lower than 1%. 261 

RESULTS AND DISCUSSION 262 

Data collection, preprocessing and analysis 263 

IUPAC reports on gas solubilities in non-aqueous solvents contain to our knowledge the most 264 

complete and carefully analyzed publicly available data on gas solubility. The data from these 265 

reports were used to compose the “cores” of our datasets. As the largest number of data points 266 
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for various solvents was available at 298.15 K and 1 atm, the data at this temperature and 267 

pressure was chosen for modeling. Since the mole fraction values can vary significantly 268 

depending on the experimental methods being used, we chose only the data points which were 269 

considered as the most reliable by IUPAC’s or Total’s experts. Data from recent publications 270 

either at 298.15 K or obtained by extrapolation or interpolation of the data measured at close 271 

temperatures were also added to the dataset. 272 

Besides the data collected from IUPAC reports and literature, data points for six compounds, 273 

hexametapol (HMPA), 1,3-Dimethylimidazolidin-2-one (DMI), thiodiglycol (TDG), and three 274 

tertiary amines 2-[2-hydroxyethyl(methyl)amino]ethanol (MDEA), 2-[ethyl(2-275 

hydroxyethyl)amino]ethanol (EDEA), and 2-[2-(diethylamino)ethoxy]ethanol (DEAE-EO) were 276 

measured experimentally and added to the dataset (Figure 1a; Table S1). The choice of the 277 

solvents was motivated by their wide application in industrial processes and the absence of 278 

consistent data at 298.15 K for them in the literature. TDG is employed in a commercial mixed 279 

chemical/physical solvent formulation for sour gas treating (HySWEET technology) developed 280 

by TotalEnergies S.E.
93

 HMPA and DMI are being used as solvents for gases, polymers, and in 281 

organic synthesis. Aqueous amines are used as chemical solvents, and only little is known about 282 

the physical solubility of gases in pure amines. One of the few examples is MDEA, which, in an 283 

aqueous solution, is commonly used for industrial gas treatment, and for which the CO2 mole 284 

fraction solubility can be estimated from Skylogianni.
94

 The value is extremely high (~0.04 at 1 285 

atm and 313K) as compared to other physical solvents (see below). Hence, considering the 286 

growing interest in water-lean solvents
95

, including the ones based on pure amines
96

, we have 287 

chosen three industrial amines (MDEA, EDEA, DEAE-EO) for the experimental assessment of 288 

CO2 physical solubility. 289 



 16 TOTAL Classification: Restricted Distribution 
TOTAL - All rights reserved 

All the solvents showed close to linear variation of mole fraction solubility vs partial pressure 290 

of the gas in the pressure range 0-2 atm (Figure 1a). Estimated mole fraction solubilities for TDG 291 

and DMI (0.0041; 0.0150) are in good agreement with the data that can be obtained by 292 

extrapolation from recent publications.
27,97

 On the contrary, CO2 mole fraction solubility in 293 

HMPA (0.024) is lower, than the one suggested by IUPAC’s expert
19

 (0.031), but is close to the 294 

one obtained by Schay et al.
19

 (0.028). The mole fractions values in MDEA (0.1) and EDEA 295 

(0.08) are remarkably high and in agreement with the aforementioned data for MDEA from the 296 

Skylogianni et al. obtained at higher temperatures.
94

 At the same time, the CO2 solubility in 297 

DEAE-EO is much lower (0.02) and is the same as in two other tertiary amines present in the 298 

dataset: triethylamine (0.02) and perfluorotributylamine (0.02). 299 

The high CO2 solubility in pure MDEA and EDEA triggers the question whether the 300 

absorption is purely physical. It is commonly reported in the literature that, contrary to primary 301 

and secondary amines, tertiary amines cannot chemically absorb CO2 in the absence of water
98,99

 302 

(we have verified that no water was present in the solvent in the experiments performed in the 303 

present paper). This view has been challenged by Maddox
100

 and more recently by Heldebrandt 304 

et al.
101,102

 who studied the reaction of CO2 with anhydrous tertiary amines. Both conclude that 305 

reversible Lewis acid-base adducts are formed at high pressure (note that in this work we 306 

compare solubilities at low pressure, 1 atm.). Heldebrandt
101

 suggests that the difference in 307 

absorption capacity between pure amines can be explained by solvent polarity effects. Either 308 

way, anhydrous tertiary amines do absorb less CO2 than aqueous tertiary amines, but some still 309 

absorb significant amounts of CO2. 310 
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 311 

Figure 1. (a) Variation of mole fraction with partial pressure for CO2 in TDG (×), DMI (★), HMPA (●), MDEA 312 

(▼), EDEA (■), and DEAE-EO (⬟) at 298.15 K experimentally measured for this paper. (b) Plot of experimental 313 

molecular fraction values (χexp) vs Kuenen coefficients (Sexp) at 298.15 K and 1 atm for CO2. 314 

There were 211 mole fraction solubility values collected for CO2. The largest mole fraction 315 

CO2 solubility was for tertiary amines MDEA and EDEA (Figure 1b). Among other classes of 316 

compounds with large CO2 solubility were phosphoric acid esters, long chain ethers, and esters. 317 

To estimate the efficiency of a solvent related to its cost and dimensions of the required 318 

industrial unit, mole fractions were converted to Kuenen coefficients. MDEA and EDEA also 319 

have the largest Kuenen coefficients. By contrast to the trend observed for mole fractions, the 320 

largest Kuenen coefficient values in other compound classes were for small polar compounds: 321 

nitriles, ketones (acetone, butan-2-one), tetrahydrofuran (THF). Notably, the solvents, which are 322 

used in industrial gas treatment processes are not among the best ones in terms of CO2 solubility 323 

(Figure 1b).  324 

Other gases are less studied as compared to CO2. There were less than 105 mole fraction 325 

solubility values collected for each of other gases (N2, H2, CO, CH4). It is worth noting, that 326 

polar CO and non-polar CH4, N2, H2 showed similar solubility trends. The largest values were 327 
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for non-polar compounds, including perfluorated alkanes, and long-chain n-alkanes (Figure S5). 328 

The minimal χ values were for polar solvents, such as methanol, N,N-dimethylformamide 329 

(DMF). 330 

The collected experimental data were used to analyze the trends in the selectivity of CO2 331 

absorption towards other gases (Figure S6). The only industrial solvent for which the data were 332 

available for all the solvents is methanol, which is not selective at 298.15 K and 1 atm. The 333 

industrially used solvents were among the best ones in terms of the CO2/CH4 selectivity. The 334 

highest selectivity index (SIexp) was for dimethyl sulfoxide (DMSO, SIexp=24) and N-formyl 335 

morpholine (NFM, SIexp=21). Among other most selective solvents were industrially used 336 

propylene carbonate (PC) and N-Methyl-2-pyrrolidone (NMP). The large selectivity stems from 337 

the extremely low solubility of CH4 in these solvents. The same observation was made for all 338 

other gases: the most selective are the polar solvents, such as DMF, 1,4-dioxane, DMSO, etc. 339 

(Figure 1b, Figures S3-S4). 340 

Quantitative structure solubility relationships 341 

Application of the machine learning allowed one to establish quantitative structure-342 

solubility relationships. Reasonable predictive accuracy was achieved in the repeated cross-343 

validation procedure for all the gases (Table 1). None of the models has shown chance 344 

correlation in the y-scrambling procedure. 345 

Table 1. Performance estimation for modeling of mole fraction solubility expressed as -lgχ. 346 

Gas ISIDA consensus models Q
2

CV RMSECV MAECV 

CO2 20 RF, 17 XGBoost 0.71±0.01 0.12±0.01 0.08±0.01 
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CH4 9 SVR, 15 XGBoost 0.77±0.02 0.15±0.01 0.10±0.01 

CO 5 SVR, 8 XGBoost 0.78±0.03 0.12±0.01 0.09±0.01 

H2 2 RF, 3 SVR, 23 XGBoost 0.77±0.04 0.15±0.01 0.10±0.01 

N2 9 SVR, 12 XGBoost 0.75±0.06 0.17±0.01 0.11±0.01 

 347 

Since the collected datasets are small, the presence of compounds containing rare fragments, or 348 

compounds with noise in the experimental data lead to unstable modeling results. Several 349 

compounds, which were systematically mispredicted (the absolute error >0.7 log units) in the 350 

cross-validation procedure were removed: dodecanal and dodecene for the H2 model, and 351 

dimethyl ether and dodecanal for the CO model. The values for all these compounds are 352 

significantly different from their close structural analogs. They were obtained by interpolation 353 

and additional experimental confirmation is required to assess whether the values are reliable. 354 

After the removal of outliers, the models with reasonable figures of merit were obtained for each 355 

gas (Table 1). The lowest mean absolute error (MAECV) was for the CO2 model, which is based 356 

on the largest pool of data. Note, that MAECV is close to the variance in the experimental data. 357 

For example, the standard deviation for propylene carbonate based on IUPAC’s data
19

 and the 358 

recently published data
36

 can be estimated as 0.05 log units. 359 

To check if some other descriptor types can lead to significantly better results, we calculated 360 

quantum chemical descriptors using Spartan software. The results of modeling were on average 361 

comparable to those obtained by the usage of ISIDA fragments (Table S2). Considering the 362 

advantages of ISIDA fragments, i.e. speed of calculation and intuitive interpretation of structure-363 

property relationships, we further focused on this descriptor type. 364 
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For each model, the compounds for which absolute errors were larger than 2×RMSECV 365 

threshold were analyzed (Figure 2, Table S3). These compounds either contain rare fragments or 366 

can be considered as “solubility cliffs”: small changes in structure (e.g. replacement of hydrogen 367 

atom by methyl group) lead to large changes in solubility (see Figure S7 and discussion below). 368 

For example, hexafluorobenzene – the only polyhalogenated aromatic compound and MDEA – 369 

one of few representatives of alkanolamines in the dataset were among the compounds with the 370 

largest errors for the CO2 model. The datasets for the gases are rather chemically diverse. Many 371 

compounds containing rare fragments appear outside AD of the models in the cross-validation. 372 

There were 15% of compounds appearing to be outside AD in the cross-validation for CO2, 373 

while about 20-25% of compounds were outside AD for other gases. The presence of compounds 374 

with rare fragments leads to high variance of predictions in the cross-validation. From the 375 

learning curve (Figure S8), one can see that adding data improves the performance on the 376 

validation sets, and, therefore, decreases the gap between prediction accuracy on validation and 377 

training sets. Hence, further accumulation of the experimental data on gas solubility organic 378 

solvents is required for building more robust models with enlarged applicability domains and the 379 

extended range of temperature and pressure values. 380 
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 381 

Figure 2. Plot of predicted (-lgχpred) vs experimental (-lgχexp) values for ISIDA consensus model in cross-382 

validation procedure for CO2 (a), CH4 (b), CO (c), H2 (d), N2 (e). The predicted values are calculated as an average 383 

of 5 folds. Compounds for which absolute errors were larger than 2×RMSECV are shown in red. Dash lines indicate 384 

±2×RMSECV threshold. 385 

 386 

In contrast to the above examples, solubility of CO2 in alcohols, glycols and ethers was 387 

systematically studied. Yet, one of the largest absolute errors were for glycols (glycerol, ethane-388 

1,2-diol), which is related to a sharp change in solubility with the replacement of -OH group to -389 

OCH3 (Figure S7). For example, the mole fraction solubility in glycerol is more than three-time 390 

smaller, than the solubility in its closest structural analog − propylene glycol (PG). At the same 391 

time solubility in another structural analog − diethylene glycol (DEG), containing the same 392 

number of carbon and oxygen atoms as glycerol, is six time higher. This phenomenon can be 393 
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explained by considering forces driving the process of gas dissolution. The mechanistic 394 

interpretation of this process assumes the formation of a cavity capable of accommodating a gas 395 

molecule by breaking solvent-solvent bonds and introduction and fixation of a gas molecule in 396 

this cavity due to gas-solvent interactions. Hence, solubility of gases in liquids depends upon two 397 

types of interactions: gas-solvent and solvent-solvent.
103,104

 Strong gas-solvent and weak solvent-398 

solvent interactions lead to greater solubility. In line with that, CO2 solubility in glycols and their 399 

ethers follows the cohesive energy density values trend: the solubility is increasing from glycerol 400 

to DEG with the decreasing cohesive energy density (glycerol: 1142 MPa; DEG: 615 MPa).
105 

401 

However, the cohesive energy density is not the only factor affecting the solubility of CO2. 402 

Although carbon dioxide is nonpolar, its appreciable polarizability and ability to accept hydrogen 403 

bonds from suitable donor solvents
106

 makes structure solubility landscape more complex. For 404 

example, CO2 solubility is lower in hexane than in dimethyl ether of ethylene glycol (DMEG), 405 

while the cohesive energy density of DMEG is higher than that of hexane (DMEG: 317 MPa; 406 

hexane: 222 MPa)
105,107

. Thus, the interplay between cohesive energy density and solvent-CO2 407 

interactions should be taken into account in the process of the design of new solvents. 408 

Virtual screening 409 

To find new solvents with high CO2 solubility and high selectivity towards other gases, we 410 

performed the virtual screening of the in-house library of industrially produced chemicals and 411 

their close structural analogs comprising more than 4,000 chemicals (Figure S9). It is worth 412 

noting that the experimentally measured physico-chemical properties such as melting and boiling 413 

points, density, flash points, etc. were available only for a small fraction of the dataset and thus, 414 

we did not check if the compounds possess plausible values of properties at 298.15 K and 1 atm. 415 

Most of the screened compounds (87%) appeared to be inside AD of the CO2 model. There were 416 
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numerous compounds found with high predicted CO2 mole fractions values and Kuenen 417 

coefficients, several of which were superior to the existing industrially used solvents (Figure 3a). 418 

Among the best CO2 solvents according to mole fraction solubilities were tertiary amines and 419 

long-chain esters (e.g., dioctyl adipate, χpred = 0.27), while the largest Kuenen coefficients were 420 

for tertiary amines and the close structural analogs of the compounds with the largest Kuenen 421 

coefficients from the learning set: ethers (e.g. ethyl methyl ether, Spred = 0.0068), ketones (e.g. 422 

methoxyacetone, Spred = 0.0053) and nitriles (e.g. butyronitrile, Spred = 0.0052). One of the 423 

tertiary amines with the largest Kuenen coefficient (Spred = 0.0054) − 4-Methylmorpholine 424 

(NMM) was selected for the experimental measurement of solubility. NMM showed linear 425 

variation of mole fraction solubility vs partial pressure of the gas in the pressure range indicating 426 

pure physical solubility (Figure 3b). The experimental mole fraction solubility (0.26) matched 427 

the predicted one (0.24) well. The CO2 solubility in NMM is appreciably higher than in 428 

industrially used NFM, which instead of a tertiary amine group contains an amide group. We 429 

have measured the dynamic viscosity of NMM: 0,92 cP at 20 °C. The dynamic viscosity of water 430 

at 20 °C is 1 cP. The viscosity of NMM is thus comparable to water. NMM is much less viscous 431 

than e.g. pure MDEA (100 cP at 20 °C) or pure EDEA (90 cP at 20 °C), which is a significant 432 

advantage. On the other hand, the boiling point of NMM is 116 °C (MDEA 243 °C). NMM is 433 

thus more volatile than MDEA. The NMM solvent should thus be used at a lower temperature, to 434 

minimize the solvent losses. This is e.g. also done in the Rectisol process which uses methanol 435 

(boiling point 65 °C). 436 

The environment, health and safety (EHS) of solvents for CO2 capture is a potential issue. In 437 

principle, amine emissions should not be an obstacle because the causes are well known and 438 

counter-measures can be put in place (operating temperature and pressure, water wash, Brownian 439 
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demister, reclaiming units, etc.). One clear advantage of using physical solvents is that there is 440 

much less thermal and oxidative solvent degradation because the regeneration is not thermal and 441 

the high operating pressure avoids oxygen ingress. According to the safety datasheet
108

 NMM is 442 

flammable, corrosive and harmful, but the substance contains no components considered to be 443 

either persistent, bioaccumulative and toxic. 444 

 445 

Figure 3. (a) A plot of CO2 molecular fraction values vs Kuenen coefficients. Experimental values – black and 446 

orange (solvents used in the industry). (b) Variation of mole fraction with partial pressure for CO2 in NMM at 447 

298.15 K experimentally measured in this paper; χexp – experimental mole fraction value at 1 atm and 298.15 K, χpred 448 

– predicted value. Predicted values for compounds inside AD – grey, outside AD – light grey, for NMM – green. 449 

The position of the NFM on the plot is shown for comparison. 450 

 451 

The selectivity of the NMM calculated from predicted mole fraction values is comparable to 452 

the one of industrially used solvents (Figure S10). Other tertiary amines were also among the 453 

most selective solvents. For example, the 3-(Dimethylamino)-1,2-propanediol was among the 454 

most selective solvents for all gases. Among other classes of solvents with the highest selectivity 455 
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indexes were cyclic amides (e.g. 5-(hydroxymethyl)-1-methylpyrrolidin-2-one) and ketones (e.g. 456 

methoxyacetone). 457 

To conclude, the rational approach to the design of new physical solvents based on the usage 458 

of machine learning for modeling of structure-solubility relationships was suggested in this 459 

paper. The collected data on solubility of gases were used to build QSPR models, which were 460 

then applied to identify compounds potentially superior to the existing ones via virtual screening 461 

of industrially produced chemicals. We have identified pure tertiary amines with a remarkable 462 

CO2 absorption capacity. Previously, the team of Heldebrandt et al.
101

 has investigated the use of 463 

pure, anhydrous amines for high pressure CO2 absorption. They compared the performance of 464 

anhydrous EDEA to the Fluor solvent (propylene carbonate), to Selexol, and to aqueous MDEA 465 

for a representative absorber. Despite the attractiveness due to lower energy consumptions, the 466 

use of anhydrous or water-lean amines faces numerous challenges, for example, their lower 467 

absorption capacity and their higher viscosity.
6
 In this work we have focused on the gas 468 

solubility. A further extension of the сhemoinformatics workflow for the prediction of other 469 

industrial important solvent properties might be very useful in the identification of the most 470 

suitable physical (co-)solvent (optimal absorption properties, selectivity, viscosity,
109

 EHS 471 

impact,
110

 etc.) for a given application. 472 

 473 
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Caroxin D – 1,1,2,2,3,3,4,4-octafluoro-1,4-bis(1,1,1,2,3,3,3-heptafluoropropan-2-yloxy)butane 515 

Caroxin F – 1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluoro-6-(1,1,1,2,3,3,3-heptafluoropropan-2-516 

yloxy)hexane 517 

DEG – 2-(2-hydroxyethoxy)ethanol (diethylene glycol) 518 

DEGM – 2-(2-Methoxyethoxy)ethan-1-ol (diethylene glycol monomethyl ether) 519 

diglyme – 1-methoxy-2-(2-methoxyethoxy)ethane 520 

DMF – N,N-dimethylformamide 521 

DMI – 1,3-Dimethylimidazolidin-2-one 522 

DMSO – methylsulfinylmethane (dimethyl sulfoxide) 523 

EG – ethane-1,2-diol (ethylene glycol) 524 

glycerol – propane-1,2,3-triol 525 

HMPA – N-[bis(dimethylamino)phosphoryl]-N-methylmethanamine (hexametapol) 526 

M2CA – methyl 2-cyanoacetate 527 

MDEA – 2-[2-hydroxyethyl(methyl)amino]ethanol 2-[ethyl(2-hydroxyethyl)amino]ethanol 528 

EDEA – 2-[ethyl(2-hydroxyethyl)amino]ethanol 529 

DEAE-EO – 2-[2-(diethylamino)ethoxy]ethanol 530 

methoxyacetone – 1-methoxypropan-2-one 531 

NMM – 4-methylmorpholine 532 
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NFM – morpholine-4-carbaldehyde (N-formylmorpholine) 533 

NMP – 1-methylpyrrolidin-2-one 534 

PC – 4-methyl-1,3-dioxolan-2-one (propylene carbonate) 535 

TDG – 2-(2-hydroxyethylsulfanyl)ethanol (thiodiglycol) 536 

pentaglyme – 1-methoxy-2-[2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethoxy]ethane 537 

perflubron – 1-bromo-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane 538 

perfluoroheptane – 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-hexadecafluoroheptane 539 

perfluoro(methylcyclohexane) – 1,1,2,2,3,3,4,4,5,5,6-undecafluoro-6-540 

(trifluoromethyl)cyclohexane 541 

perfluoroctane – 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-octadecafluorooctane 542 

perfluorotributylamine – 1,1,2,2,3,3,4,4,4-nonafluoro-N,N-bis(1,1,2,2,3,3,4,4,4-543 

nonafluorobutyl)butan-1-amine 544 

THF – oxolane (tetrahydrofuran) 545 

TPrP – tripropyl phosphate 546 

χ – mole fraction solubility 547 

S – Kuenen coefficient 548 

SI – Kuenen coefficients selectivity index 549 

squalane – 2,6,10,15,19,23-hexamethyltetracosane 550 
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