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INTRODUCTION

Global warming due to increasing levels of greenhouse gases CO 2 and CH 4 in the atmosphere has become a major public issue. Several companies and countries have announced ambitious plans to reach net zero CO 2 emissions by 2050. According to the International Energy Agency, Carbon Capture, Utilization or Storage (CCUS) will likely play an important role in achieving this goal. [START_REF] Zero | A Roadmap for the Global Energy Sector[END_REF] Numerous materials for CO 2 capturing from gases were suggested, including chemical and physical solvents, zeolites, metal oxides, metal-organic frameworks, and membranes. [START_REF] Sifat | A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation[END_REF]3 The applicability of a certain technology in each case depends on many factors, including the concentrations of CO 2 and of other components in the gas, the pressure of the gas feed, the temperature, etc. In cases, wherein the partial pressure of CO 2 in a gas mixture is sufficiently large, physical solvents represent a perspective alternative to the conventionally used aqueous amines mixtures because of the lower energy requirement. Indeed, a large part of a physical solvent can be regenerated by pressure swing and air stripping, while the regeneration of chemical solvents requires heating and steam stripping 3,[START_REF] Borhani | Role of Solvents in CO2 Capture Processes: The Review of Selection and Design Methods[END_REF] Pre-combustion CO 2 capture is a key example of a case with a CO 2 partial pressure sufficiently high to use physical solvents. In a precombustion process the feed (e.g. coal, natural gas, biomass, etc.) is converted into syngas (H 2 and CO) via gasification, steam reforming, auto thermal reforming or partial oxidation and subsequently the CO is further converted into CO 2 and H 2 via the water gas shift reaction.

Typical CO 2 concentrations are in the range of 15 to 60 mol% for a total pressure of 2 to 7 MPa, thus, the CO 2 can be captured with a physical solvent [START_REF] Wang | Carbon Capture From Flue Gas and the Atmosphere: A Perspective[END_REF] . The other components are mainly H 2 , but also CO, N 2 , CH 4 , H 2 O (saturation). The composition strongly depends on the feedstock and on the process. At the moment, only a limited number of physical solvents such as methanol (Rectisol® process), propylene carbonate (Fluor® process), N-acetyl and N-formyl morpholines TOTAL Classification: Restricted Distribution TOTAL -All rights reserved (Morphysorb® process), 1-methylpyrrolidin-2-one (Purisol® process), polyethylene glycol ethers (Selexol® process), found application in the industrial CO 2 capture processes. Physical solvents are also often added to chemical solvents (so-called hybrid solvents), for example, to increase the selectivity of absorption towards a specific gas component, to lower the regeneration energy, etc. Examples are sulfolane (Sulfinol® process), thiodiglycol (Hysweet ® process), etc.

The search for new physical (co-)solvents is thus an important task. [START_REF] Wanderley | From Hybrid Solvents to Water-Lean Solvents -A Critical and Historical Review[END_REF] New suitable solvents should satisfy many criteria, among which are a decent capacity to absorb CO 2 , a competitive price, a low volatility (to avoid solvent losses), a low viscosity, etc.

Another very important criterium is the selectivity towards CO 2 which should be high enough to obtain a CO 2 stream of acceptable purity for re-utilization or storage, and to avoid losses of valuable chemicals like CH 4 . Depending on the source of the CO 2 , the selectivity criteria are different. For the removal of CO 2 from natural gas the co-absorption of mainly CH 4 , but also of N 2 and H 2 O and eventually H 2 S should be limited. For a steam methane reformer (SMR), which in a near future is likely to play a key role in the massive production of blue hydrogen from natural gas, the absorption of CO 2 with a high selectivity towards H 2 is important [START_REF] Collodi | Techno-Economic Evaluation of Deploying CCS in SMR Based Merchant H2 Production with NG as Feedstock and Fuel[END_REF][START_REF] Yan | Process Simulations of Blue Hydrogen Production by Upgraded Sorption TOTAL Classification: Restricted Distribution TOTAL -All rights reserved Enhanced Steam Methane Reforming (SE-SMR) Processes[END_REF] , but also towards CO, H 2 O, N 2 and CH 4 7,8 . The CO 2 present in flue gas from boilers should be removed with a high selectivity towards N 2 , but the co-absorption of water and SO x , NO x should be low too.

Experimental screening of gas solubility is a time and labor-intensive process, and solubility modeling is a viable strategy to reduce the costs of the required experiments. There were numerous approaches suggested for modeling gas solubility in pure physical solvents. In the work by Pirig et al. Nonetheless, the major disadvantage of the modeling approaches based on experimentally measured parameters -the limited number of compounds for which the parameters are available, complicates their usage for large-scale virtual screening of solvent candidates.

Alternative strategies for modeling CO 2 solubility, that require less preliminary knowledge of the experimental properties, were also suggested. In the works of Li et al. [START_REF] Li | Structure-Activity Relationship for CO2 Absorbent[END_REF] and Shi et al. [START_REF] Shi | Molecular Simulations of CO 2 and H 2 Solubility, CO 2 Diffusivity, and Solvent Viscosity at 298 K for 27 Commercially Available Physical Solvents[END_REF] molecular simulations were used to predict CO 2 solubility in nine and twenty-seven physical solvents respectively. Although high predictive accuracy was achieved in both works, molecular simulations are also not very convenient for the large-scale virtual screening, as they are timeconsuming and require significant computational resources. Alternatively, the conductor-like screening model for real solvents (COSMO-RS), [START_REF] Klamt | Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena[END_REF] a method combining quantum chemical calculations with statistical thermodynamics, was suggested to rapidly screen large sets of various materials. In the work by Kim et al. [START_REF] Kim | New Materials for Methane Capture from Dilute and Medium-Concentration Sources[END_REF] CO 2 and CH 4 Henry's law coefficients were predicted by COSMO-RS for 63 common liquid solvents and 10 ionic liquids at 300 K.

Unfortunately, there was no comparison of the predicted solubilities with the available experimental data.

A pool of gas solubility data accumulated in scientific literature supports applying machine learning for quantitative structure-solubility relationships (QSPR) modeling. In this approach chemical structures of compounds are encoded as vectors of molecular descriptors and machine TOTAL Classification: Restricted Distribution TOTAL -All rights reserved learning algorithms are then applied for modeling the property of interest. As compared to the modeling based on the usage of experimentally determined parameters or resource-intensive molecular simulations, this method allows efficient screening of large numbers of compounds.

To our knowledge, there was only one work related to QSPR modeling of CO 2 solubility in physical solvents published. 15 In the paper of Gorji et al., 15 Henry coefficients for 22 solvents composed only of carbon, oxygen, and hydrogen elements at different temperatures were used to build a multiple linear regression model with Dragon [START_REF] Srl | Dragon (Software for Molecular Descriptor Calculation) Version 7[END_REF] descriptors. Although good predictive performance was achieved, the applicability domain (AD) of this model is limited to the specific classes of compounds used for model building. Except for recent publications on H 2 S solubility modeling [START_REF] Orlov | Computer-Aided Design of New Physical Solvents for Hydrogen Sulfide Absorption[END_REF][START_REF] Rostami | Quantitative Structure-Property Relationship Study on Solubility of Hydrogen Sulfide in Organic Solvent[END_REF] , to our knowledge there were no papers describing the application of the chemoinformatics-driven methods for physical solubility modeling of the major components encountered in natural gas treatment or in the pre-combustion CO 2 capture process : carbon dioxide (CO 2 ), methane (CH 4 ), carbon monoxide (CO), hydrogen (H 2 ), and nitrogen (N 2 ). Hence, the investigation of the perceptiveness of using chemoinformatics for the rational design of new solvents for the absorption of CO 2 and other industrial gases is an important task.

MATERIALS AND METHODS

Data collection and preprocessing

A dataset containing mole fraction solubility values ( ) for 280 liquid solvents at 298.15 K and 1 atm was collected (Table S1, Supporting Information) from IUPAC reports [19][START_REF] Methane | IUPAC Solubility Data Series[END_REF][START_REF]Carbon Monoxide[END_REF][START_REF]Hydrogen and Deuterium[END_REF][START_REF]Nitrogen and Air[END_REF] , scientific literature , and patents [START_REF] Atlani | Method of Purifying a Gas Mixture Containing Undesirable Gas Compounds[END_REF][START_REF] Barber | Removing Sulfur Compounds from Gases. 2245889A[END_REF] . The mole fraction solubility for a binary (gas-liquid) system is defined 19 as:

TOTAL Classification: Restricted Distribution TOTAL -All rights reserved (1) 
n(g) -an amount of substance in a gas phase, n(l) -an amount of substance in a liquid phase.

Median values were then taken for the solvents associated to several reliable measurements of χ at the particular temperature. The final dataset used for modeling is present in Table S1 (Supporting Information). Extrapolation and interpolation of the data to 298.15 K were performed assuming a linear variation of Henry's coefficients with temperature or by the equations suggested in the IUPAC report or corresponding papers. The compounds that are structural outliers with respect to the training set majority, comprising water, carbon disulfide, octamethylcyclotetrasiloxane and hydrazines were not included to the dataset. These compounds contain rare or unique fragments significantly affecting their gas-absorbing properties, and, hence, confident predictions cannot be obtained for them by statistical modeling.

The collected mole fraction solubilities were converted to the Kuenen coefficients S using the following formula 78 :

(

S -Kuenen coefficient (m 3 kg -1 ), R -ideal gas constant (8.314 m 3 PaK -1 mol -1 ), T and Pstandard temperature and pressure (273.15 K and 101.325 kPa), Mw -molecular weight of compound (kgmol -1 ), χ -mole fraction solubility value.

The Kuenen coefficient is the volume of saturated gas reduced at 273.15 K and 1 atm pressure, which is dissolved by unit mass of pure solvent at the temperature of measurement and partial pressure of 1 atm. This parameter is widely used in industrial applications, as it enables one to TOTAL Classification: Restricted Distribution TOTAL -All rights reserved directly estimate the efficiency of the particular solvent related to its cost and dimensions of the required industrial unit (design-capital expenses cost CAPEX). Here, Kuenen coefficients were used for the data analysis and models interpretation.

The selectivity index SI was calculated using the following formula:

(3) SI -selectivity index, experimental or predicted χ CO2 and χ gas -mole fraction solubilities of CO 2 and other gases respectively.

All χ values were also transformed to a logarithmic scale, i.e. the negative value of the decimal logarithm was taken (Figure S1).

Modeling Standardization

All compound structures were standardized using in-house standardization procedures based on KNIME, 79 which included aromatization, stereochemistry depletion, etc.

Descriptors

193 different ISIDA fragment descriptor sets were generated using the Fragmentor17 software. [START_REF] Varnek | Substructural Fragments: An Universal Language to Encode Reactions, Molecular and Supramolecular Structures[END_REF][START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF] ISIDA fragments represent either sequences (the shortest topological paths with an explicit representation of all atoms and bonds), atom-centered fragments (all connected atoms to a certain topological distance), or triplets (all the possible combinations of 3 atoms in a graph with the topological distance between each pair indicated). The number of fragments in each set 

Machine learning algorithms

Random forest (RF): RF algorithm [START_REF] Breiman | Random Forests[END_REF] implemented in sci-kit learn library (v. 0.22.1) [START_REF] Pedregosa | Scikit-Learn: Machine Learning in Python[END_REF]85 was used. The following hyperparameters were tuning during optimization (grid search): number of trees (100, 300, 1000), number of features (all features, one-third of all features, log 2 of the number of features), the maximum depth of the tree (5, 10, full tree), bootstrapping (with and without the usage of bootstrap samples for building the tree).

XGBoost (XGB): XGBoost algorithm [START_REF] Chen | XGBoost: A Scalable Tree Boosting System[END_REF] as implemented in XGBoost python module (v.1.2.0) [START_REF] Xgboost | [END_REF] was used. The following hyperparameters were tuning during optimization (grid search): number of trees (50, 100, 300, 500), number of features (all features, 70% of all features), number of samples (all samples, 70% of all samples), the maximum depth of the tree (3, 5, 10), learning rate (0.3, 0.1, 0.5, 0.05), the minimum sum of instance weight needed in a node (1, 5, 10). All other parameters were left as default.

Support vector regression (SVR): SVR algorithm [START_REF] Cortes | Support-Vector Networks[END_REF] implemented in sci-kit learn library (v. 0.22.1), was used. The descriptors were scaled to the [0,1] range before applying the algorithm.

The following hyperparameters were tuning during optimization (grid search): kernel (linear, rbf, TOTAL Classification: Restricted Distribution TOTAL -All rights reserved poly, sigmoid), kernel coefficient (1, 0.1, 0.01, 0.001, 0.0001), regularization parameter (0.1, 1, 10, 100, 1000).

Model validation workflow

The modeling workflow was implemented using sci-kit learn library (v. 0.22.1) in python 3.7 scripting language. Identical modeling workflows were used for solubility modeling (expressed as -lg ) of all gases. At the first stage of the modeling, a machine learning algorithm: RF, SVR and XGB were tested in 5-fold cross-validation, which was repeated 5 times (Figure S2). For each descriptor set, the model's measures of performance were calculated and several models with a coefficient of determination Q 2 CV ≥0.7 were selected for consensus modeling.

The following equations were used to calculate the measures of the model's performance in cross-validation:

(4) (5) (6) 
Above, n is the number of compounds in the entire learning set, y i,exp , y i,pred experimental and values predicted in 5-fold cross-validation for compound i from the learning set, j is the index of the repetition of the 5-fold cross-validation procedure. For each measure of the model's performance, the standard deviation over 5 repetitions was calculated.

TOTAL Classification: Restricted Distribution TOTAL -All rights reserved Each of the selected models was then associated with an Applicability Domain (AD), defined as a bounding box. [START_REF] Sahigara | Comparison of Different Approaches to Define the Applicability Domain of QSAR Models[END_REF] Hence, the pool of selected models extracted from the given data set was used as a consensus predictor, returning for each input solvent candidate a mean value of solubility estimates and its standard deviation, taken over the predictions returned by each model in the pool, if the compounds appeared outside AD of all the models, or, alternatively, over the predictions returned by only those models having the candidate within their AD.

Outlying data points were defined as the data points for which absolute errors (|χexp-χpred|) from cross-validation were larger than 2×RMSE CV threshold.

Y-randomization test

The absence of chance correlation was checked through the Y-randomization procedure. Yrandomization test was performed in the following way: -lgχ values (y values) were shuffled, surrogate models from the cross-validation were built using shuffled values and the values from the corresponding cross-validation test set were calculated. This procedure was repeated 100 times for each fold and the maximum values of the coefficient of determination were compared with the coefficient of determination obtained for the original -lgχ values.

Virtual screening

An in-house dataset comprising 4,082 industrially produced compounds and their structural analogs was screened in the following way. Only structures containing the same atoms (C, H, N, O, S, P, halogens) as in the learning set were kept. All structures were standardized and ISIDA descriptors were calculated for them as described above. Individual ISIDA models refitted to the entire dataset with the hyperparameters selected in the cross-validation were used TOTAL Classification: Restricted Distribution TOTAL -All rights reserved to compose the final consensus model as described above. Then, predictions were made using the ISIDA consensus model. Only compounds that were inside the applicability domain defined as bounding box for at least three ISIDA fragment types were considered.

Software implementation

The developed model was implemented into the ISIDA-Predictor software. [START_REF] Varnek | ISIDA -Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors[END_REF] 

Experimental measurement of CO 2 solubility

A "static-synthetic" technique based on a closed-circuit method [START_REF] Descamps | Solubility of Hydrogen in Methanol at Temperatures from 248.41 to 308[END_REF][START_REF] Soubeyran | Thermodynamic Analysis of Carbon Dioxide Storage in Salt Caverns to Improve the Power-to-Gas Process[END_REF][START_REF] Dicko | Phase Equilibria of H2S-Hydrocarbons (Propane, n-Butane, and n-Pentane) Binary Systems at Low Temperatures[END_REF] was used for the determination of CO 2 solubility in the solvents. In this method, which is explained in detail in the supplementary information (Text S1, Figures S3, S4), the system pressure is measured at constant temperature for different overall compositions. To determine the global compositions, the quantities of pure substances charged into the stirred equilibrium cell, which is evacuated and placed in a thermostatic liquid bath, need to be known precisely. The purified and degassed solvents are charged into the cell as compressed liquids using thermostatted piston injectors.

Then, the gas is added stepwise as a liquefied gas using the same injection pumps or as a gaseous component using a thermo-regulated gas bomb. Knowing the pressure, temperature, and volume of the gas bomb, the amount of gas inside the bomb can be calculated using correlated PvT data of the gas. Thus, the injected amount of gas can be obtained from the pressure difference in the bomb before and after each injection.

Since only temperature, pressure, total loadings, gas-liquid interface level and total volumes are measured, the compositions of the coexisting phases need to be determined by the evaluation of the raw data. From the known amount of solvent, the liquid phase volume is determined using TOTAL Classification: Restricted Distribution TOTAL -All rights reserved precise information about the density of the liquid solution inside the equilibrium chamber. From the total volume of the cell, the remaining gas phase volume can be calculated precisely (see supplementary information). At given equilibrium conditions (temperature, gas phase volume, and gas pressure) the amounts of gas in the gas phase and thus, also in the liquid phase are obtained. In this approach, several effects influence the resulting liquid phase compositions.

These effects are the small amounts of solvents in the gas phase, the compressibility of the solvent under the gas pressure, the partial molar volume of the dissolved gas and the solvent activity coefficient. All effects are considered in an isothermal and isochoric algorithm by solving the mass and volume balances.

The partial pressure is obtained during the iterative procedure:

Pgas = Psys -Psolvent (6) 
where Pgas -partial pressure of the acid gas in the system, Psys -total pressure in the system, Psolvent -partial pressure of a solvent vapour. This equation is valid at low pressure and in the absence of chemical reactions in the gas phase. The method to calculate the uncertainty of the measured experimental data is explained in the supplementary information. The uncertainty of the measured CO 2 solubility at 1 atm. is equal or lower than 1%.

RESULTS AND DISCUSSION

Data collection, preprocessing and analysis

IUPAC reports on gas solubilities in non-aqueous solvents contain to our knowledge the most complete and carefully analyzed publicly available data on gas solubility. The data from these reports were used to compose the "cores" of our datasets. As the largest number of data points 1a; Table S1). The choice of the solvents was motivated by their wide application in industrial processes and the absence of consistent data at 298.15 K for them in the literature. TDG is employed in a commercial mixed chemical/physical solvent formulation for sour gas treating (HySWEET technology) developed by TotalEnergies S.E. [START_REF] Cadours | Industrial Operation of HySWEET®, a New Hybrid Solvent for Improved Mercaptan Removal[END_REF] HMPA and DMI are being used as solvents for gases, polymers, and in organic synthesis. Aqueous amines are used as chemical solvents, and only little is known about the physical solubility of gases in pure amines. One of the few examples is MDEA, which, in an aqueous solution, is commonly used for industrial gas treatment, and for which the CO 2 mole fraction solubility can be estimated from Skylogianni. [START_REF] Skylogianni | Density and Viscosity of the Nonaqueous and Aqueous Mixtures of Methyldiethanolamine and Monoethylene Glycol at Temperatures from 283[END_REF] The value is extremely high (~0.04 at 1 atm and 313K) as compared to other physical solvents (see below). Hence, considering the growing interest in water-lean solvents [START_REF] Heldebrant | Water-Lean Solvents for Post-Combustion CO 2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook[END_REF] , including the ones based on pure amines [START_REF] Zheng | A Single-Component Water-Lean Post-Combustion CO 2 Capture Solvent with Exceptionally Low Operational Heat and Total Costs of Capture -Comprehensive Experimental and Theoretical Evaluation[END_REF] , we have chosen three industrial amines (MDEA, EDEA, DEAE-EO) for the experimental assessment of CO 2 physical solubility.

TOTAL Classification: Restricted Distribution TOTAL -All rights reserved

All the solvents showed close to linear variation of mole fraction solubility vs partial pressure of the gas in the pressure range 0-2 atm (Figure 1a). Estimated mole fraction solubilities for TDG and DMI (0.0041; 0.0150) are in good agreement with the data that can be obtained by extrapolation from recent publications. There were 211 mole fraction solubility values collected for CO 2 . The largest mole fraction CO 2 solubility was for tertiary amines MDEA and EDEA (Figure 1b). Among other classes of compounds with large CO 2 solubility were phosphoric acid esters, long chain ethers, and esters.

To estimate the efficiency of a solvent related to its cost and dimensions of the required industrial unit, mole fractions were converted to Kuenen coefficients. MDEA and EDEA also have the largest Kuenen coefficients. By contrast to the trend observed for mole fractions, the largest Kuenen coefficient values in other compound classes were for small polar compounds:

nitriles, ketones (acetone, butan-2-one), tetrahydrofuran (THF). Notably, the solvents, which are used in industrial gas treatment processes are not among the best ones in terms of CO 2 solubility (Figure 1b).

Other gases are less studied as compared to CO for non-polar compounds, including perfluorated alkanes, and long-chain n-alkanes (Figure S5).

The minimal χ values were for polar solvents, such as methanol, N,N-dimethylformamide

(DMF).
The collected experimental data were used to analyze the trends in the selectivity of CO 2 absorption towards other gases (Figure S6). The only industrial solvent for which the data were available for all the solvents is methanol, which is not selective at 298.15 K and 1 atm. The industrially used solvents were among the best ones in terms of the CO 2 /CH 4 selectivity. The highest selectivity index (SIexp) was for dimethyl sulfoxide (DMSO, SIexp=24) and N-formyl morpholine (NFM, SIexp=21). Among other most selective solvents were industrially used propylene carbonate (PC) and N-Methyl-2-pyrrolidone (NMP). The large selectivity stems from the extremely low solubility of CH 4 in these solvents. The same observation was made for all other gases: the most selective are the polar solvents, such as DMF, 1,4-dioxane, DMSO, etc.

(Figure 1b, Figures S3-S4).

Quantitative structure solubility relationships

Application of the machine learning allowed one to establish quantitative structuresolubility relationships. Reasonable predictive accuracy was achieved in the repeated crossvalidation procedure for all the gases (Table 1). None of the models has shown chance correlation in the y-scrambling procedure. Since the collected datasets are small, the presence of compounds containing rare fragments, or compounds with noise in the experimental data lead to unstable modeling results. Several compounds, which were systematically mispredicted (the absolute error >0.7 log units) in the cross-validation procedure were removed: dodecanal and dodecene for the H 2 model, and dimethyl ether and dodecanal for the CO model. The values for all these compounds are significantly different from their close structural analogs. They were obtained by interpolation and additional experimental confirmation is required to assess whether the values are reliable.

After the removal of outliers, the models with reasonable figures of merit were obtained for each gas (Table 1). The lowest mean absolute error (MAE CV ) was for the CO 2 model, which is based on the largest pool of data. Note, that MAE CV is close to the variance in the experimental data.

For example, the standard deviation for propylene carbonate based on IUPAC's data 19 and the recently published data 36 can be estimated as 0.05 log units.

To check if some other descriptor types can lead to significantly better results, we calculated quantum chemical descriptors using Spartan software. The results of modeling were on average comparable to those obtained by the usage of ISIDA fragments (Table S2). Considering the advantages of ISIDA fragments, i.e. speed of calculation and intuitive interpretation of structureproperty relationships, we further focused on this descriptor type.
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For each model, the compounds for which absolute errors were larger than 2×RMSE CV threshold were analyzed (Figure 2, Table S3). These compounds either contain rare fragments or can be considered as "solubility cliffs": small changes in structure (e.g. replacement of hydrogen atom by methyl group) lead to large changes in solubility (see Figure S7 and discussion below).

For example, hexafluorobenzene -the only polyhalogenated aromatic compound and MDEAone of few representatives of alkanolamines in the dataset were among the compounds with the largest errors for the CO 2 model. The datasets for the gases are rather chemically diverse. Many compounds containing rare fragments appear outside AD of the models in the cross-validation.

There were 15% of compounds appearing to be outside AD in the cross-validation for CO 2 , while about 20-25% of compounds were outside AD for other gases. The presence of compounds with rare fragments leads to high variance of predictions in the cross-validation. From the learning curve (Figure S8), one can see that adding data improves the performance on the validation sets, and, therefore, decreases the gap between prediction accuracy on validation and training sets. Hence, further accumulation of the experimental data on gas solubility organic solvents is required for building more robust models with enlarged applicability domains and the extended range of temperature and pressure values.

TOTAL Classification: Restricted Distribution TOTAL -All rights reserved In contrast to the above examples, solubility of CO 2 in alcohols, glycols and ethers was systematically studied. Yet, one of the largest absolute errors were for glycols (glycerol, ethane-1,2-diol), which is related to a sharp change in solubility with the replacement of -OH group to -OCH 3 (Figure S7). For example, the mole fraction solubility in glycerol is more than three-time smaller, than the solubility in its closest structural analog -propylene glycol (PG). At the same time solubility in another structural analog -diethylene glycol (DEG), containing the same number of carbon and oxygen atoms as glycerol, is six time higher. This phenomenon can be However, the cohesive energy density is not the only factor affecting the solubility of CO 2 .

Although carbon dioxide is nonpolar, its appreciable polarizability and ability to accept hydrogen bonds from suitable donor solvents 106 makes structure solubility landscape more complex. For example, CO 2 solubility is lower in hexane than in dimethyl ether of ethylene glycol (DMEG), while the cohesive energy density of DMEG is higher than that of hexane (DMEG: 317 MPa; hexane: 222 MPa) 105,107 . Thus, the interplay between cohesive energy density and solvent-CO 2 interactions should be taken into account in the process of the design of new solvents.

Virtual screening

To find new solvents with high CO 2 solubility and high selectivity towards other gases, we performed the virtual screening of the in-house library of industrially produced chemicals and their close structural analogs comprising more than 4,000 chemicals (Figure S9). It is worth noting that the experimentally measured physico-chemical properties such as melting and boiling points, density, flash points, etc. were available only for a small fraction of the dataset and thus, we did not check if the compounds possess plausible values of properties at 298.15 K and 1 atm.

Most of the screened compounds (87%) appeared to be inside AD of the CO 2 model. There were TOTAL Classification: Restricted Distribution TOTAL -All rights reserved numerous compounds found with high predicted CO 2 mole fractions values and Kuenen coefficients, several of which were superior to the existing industrially used solvents (Figure 3a).

Among the best CO 2 solvents according to mole fraction solubilities were tertiary amines and long-chain esters (e.g., dioctyl adipate, χ pred = 0.27), while the largest Kuenen coefficients were for tertiary amines and the close structural analogs of the compounds with the largest Kuenen coefficients from the learning set: ethers (e.g. ethyl methyl ether, S pred = 0.0068), ketones (e.g. methoxyacetone, S pred = 0.0053) and nitriles (e.g. butyronitrile, S pred = 0.0052). One of the tertiary amines with the largest Kuenen coefficient (S pred = 0.0054) -4-Methylmorpholine (NMM) was selected for the experimental measurement of solubility. NMM showed linear variation of mole fraction solubility vs partial pressure of the gas in the pressure range indicating pure physical solubility (Figure 3b). The experimental mole fraction solubility (0. demister, reclaiming units, etc.). One clear advantage of using physical solvents is that there is much less thermal and oxidative solvent degradation because the regeneration is not thermal and the high operating pressure avoids oxygen ingress. According to the safety datasheet 108 NMM is flammable, corrosive and harmful, but the substance contains no components considered to be either persistent, bioaccumulative and toxic. The position of the NFM on the plot is shown for comparison.

The selectivity of the NMM calculated from predicted mole fraction values is comparable to the one of industrially used solvents (Figure S10). Other tertiary amines were also among the most selective solvents. For example, the 3-(Dimethylamino)-1,2-propanediol was among the most selective solvents for all gases. Among other classes of solvents with the highest selectivity TOTAL Classification: Restricted Distribution TOTAL -All rights reserved indexes were cyclic amides (e.g. 5-(hydroxymethyl)-1-methylpyrrolidin-2-one) and ketones (e.g. methoxyacetone).

To conclude, the rational approach to the design of new physical solvents based on the usage of machine learning for modeling of structure-solubility relationships was suggested in this paper. The collected data on solubility of gases were used to build QSPR models, which were then applied to identify compounds potentially superior to the existing ones via virtual screening of industrially produced chemicals. We have identified pure tertiary amines with a remarkable CO 2 absorption capacity. Previously, the team of Heldebrandt et al. 101 has investigated the use of pure, anhydrous amines for high pressure CO 2 absorption. They compared the performance of anhydrous EDEA to the Fluor solvent (propylene carbonate), to Selexol, and to aqueous MDEA for a representative absorber. Despite the attractiveness due to lower energy consumptions, the use of anhydrous or water-lean amines faces numerous challenges, for example, their lower absorption capacity and their higher viscosity. [START_REF] Wanderley | From Hybrid Solvents to Water-Lean Solvents -A Critical and Historical Review[END_REF] In this work we have focused on the gas solubility. A further extension of the сhemoinformatics workflow for the prediction of other industrial important solvent properties might be very useful in the identification of the most suitable physical (co-)solvent (optimal absorption properties, selectivity, viscosity, 109 EHS impact, 110 etc.) for a given application. 
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 1 Figure 1. (a) Variation of mole fraction with partial pressure for CO 2 in TDG (×), DMI (★), HMPA (•), MDEA

Figure 2 .

 2 Figure 2. Plot of predicted (-lgχ pred ) vs experimental (-lgχ exp ) values for ISIDA consensus model in crossvalidation procedure for CO 2 (a), CH 4 (b), CO (c), H 2 (d), N 2 (e). The predicted values are calculated as an average of 5 folds. Compounds for which absolute errors were larger than 2×RMSE CV are shown in red. Dash lines indicate ±2×RMSE CV threshold.

Figure 3 .

 3 Figure 3. (a) A plot of CO 2 molecular fraction values vs Kuenen coefficients. Experimental values -black and orange (solvents used in the industry). (b) Variation of mole fraction with partial pressure for CO 2 in NMM at 298.15 K experimentally measured in this paper; χ exp -experimental mole fraction value at 1 atm and 298.15 K, χ pred -predicted value. Predicted values for compounds inside AD -grey, outside AD -light grey, for NMM -green.

  hydroxyethoxy)ethanol (diethylene glycol) DEGM -2-(2-Methoxyethoxy)ethan-1-ol (diethylene glycol monomethyl ether) diglyme -1-methoxy-2-(2-methoxyethoxy)ethane DMF -N,N-dimethylformamide DMI -1,3-Dimethylimidazolidin-2-one DMSO -methylsulfinylmethane (dimethyl sulfoxide) EG -ethane-1,2-diol (ethylene glycol) glycerol -propane-1,2,3-triol HMPA -N-[bis(dimethylamino)phosphoryl]-N-methylmethanamine (hexametapol) M2CA -methyl 2-cyanoacetate MDEA -2-[2-hydroxyethyl(methyl)amino]ethanol 2-[ethyl(2-hydroxyethyl)amino]ethanol EDEA -2-[ethyl(2-hydroxyethyl)amino]ethanol DEAE-EO -2-[2-(diethylamino)ethoxy]ethanol methoxyacetone -1-methoxypropan-2-one NMM -4-methylmorpholine TOTAL Classification: Restricted Distribution TOTAL -All rights reserved NFM -morpholine-4-carbaldehyde (N-formylmorpholine) NMP -1-methylpyrrolidin-2-one PC -4-methyl-1,3-dioxolan-2-one (propylene carbonate) TDG -2-(2-hydroxyethylsulfanyl)ethanol (thiodiglycol) pentaglyme -1-methoxy-2-[2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethoxy]ethane perflubron -1-bromo-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane perfluoroheptane -1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,coefficients selectivity index squalane -2,6,10,15,19,23-hexamethyltetracosane

  

  solvents was available at 298.15 K and 1 atm, the data at this temperature and pressure was chosen for modeling. Since the mole fraction values can vary significantly depending on the experimental methods being used, we chose only the data points which were considered as the most reliable by IUPAC's or Total's experts. Data from recent publications either at 298.15 K or obtained by extrapolation or interpolation of the data measured at close temperatures were also added to the dataset.

	Besides the data collected from IUPAC reports and literature, data points for six compounds,
	hexametapol (HMPA), 1,3-Dimethylimidazolidin-2-one (DMI), thiodiglycol (TDG), and three
	tertiary	amines	2-[2-hydroxyethyl(methyl)amino]ethanol	(MDEA),	2-[ethyl(2-

TOTAL Classification: Restricted Distribution TOTAL -All rights reserved for various hydroxyethyl)amino]ethanol (EDEA), and 2-[2-(diethylamino)ethoxy]ethanol (DEAE-EO) were measured experimentally and added to the dataset (Figure

Table 1 .

 1 Performance estimation for modeling of mole fraction solubility expressed as -lgχ.

	Gas	ISIDA consensus models	Q 2	CV	RMSE CV	MAE CV
	CO 2	20 RF, 17 XGBoost	0.71±0.01 0.12±0.01 0.08±0.01

  TOTAL Classification: Restricted Distribution TOTAL -All rights reserved explained by considering forces driving the process of gas dissolution. The mechanistic interpretation of this process assumes the formation of a cavity capable of accommodating a gas molecule by breaking solvent-solvent bonds and introduction and fixation of a gas molecule in this cavity due to gas-solvent interactions. Hence, solubility of gases in liquids depends upon two types of interactions: gas-solvent and solvent-solvent.103,104 Strong gas-solvent and weak solventsolvent interactions lead to greater solubility. In line with that, CO 2 solubility in glycols and their ethers follows the cohesive energy density values trend: the solubility is increasing from glycerol to DEG with the decreasing cohesive energy density (glycerol: 1142 MPa; DEG: 615 MPa).105 

  On the other hand, the boiling point of NMM is 116 °C (MDEA 243 °C). NMM is thus more volatile than MDEA. The NMM solvent should thus be used at a lower temperature, to minimize the solvent losses. This is e.g. also done in the Rectisol process which uses methanol (boiling point 65 °C).

	The environment, health and safety (EHS) of solvents for CO 2 capture is a potential issue. In
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) matched the predicted one (0.24) well. The CO 2 solubility in NMM is appreciably higher than in industrially used NFM, which instead of a tertiary amine group contains an amide group. We have measured the dynamic viscosity of NMM: 0,92 cP at 20 °C. The dynamic viscosity of water at 20 °C is 1 cP. The viscosity of NMM is thus comparable to water. NMM is much less viscous than e.g. pure MDEA (100 cP at 20 °C) or pure EDEA (90 cP at 20 °C), which is a significant advantage.

principle, amine emissions should not be an obstacle because the causes are well known and counter-measures can be put in place (operating temperature and pressure, water wash, Brownian TOTAL Classification: Restricted Distribution TOTAL -All rights reserved
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