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Deep Group-Wise Angular Translation of Cardiac
Diffusion MRI in q-space via Manifold Regularized

GAN
Yunlong He, Lihui Wang*, Feng Yang, Patrick Clarysse, and Yuemin Zhu*

Abstract—Diffusion magnetic resonance imaging (dMRI) has
become an indispensable tool for non-invasive characterization
of fiber structures of tissues. Clinical applicability of dMRI is
often shackled by trade-off between image quality and long
acquisition time. We propose a novel group-wise image transla-
tion method to improve the angular resolution of cardiac dMRI
data. It consists in using a generative adversarial network (GAN)
model to estimate a sequence of images from given DW images
acquired in a limited number of diffusion gradient directions.
We embed a supervised manifold regularized term in the GAN
loss function to exploit the correlation between multiple DW
images acquired in different gradient directions. Experimental
results on cardiac dMRI data demonstrated that our method
can significantly improve the quality of diffusion tensor imaging
(DTI) reconstruction.

Index Terms—diffusion MRI, super-resolution, cardiac DTI,
image synthesis, deep learning, spatial-angular information

I. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a non-
invasive imaging modality that probes the displacement of
the water molecules using diffusion-weighted pulse sequences.
It has been widely used to study diffusion properties and
fiber structures of biological tissues at a microscopic scale.
In cardiac imaging, dMRI provides an avenue to characterize
myocardial fiber architecture and has been used in various
applications and diseases [1].

Signal reconstruction in dMRI usually involves fitting a lim-
ited number of samples of the diffusion signal in 3D q-space
via an elegant model such as Diffusion Tensor Imaging (DTI)
[2]. The latter acquires signals from six gradient directions and
is adequate to recover the orientation of a single fiber at each
voxel. However, more complex configurations (such as fiber
crossing and bending) typically require more sophisticated
models, e.g., High Angular Resolution Diffusion Imaging
(HARDI) [3] acquires diffusion-weighted (DW) images along
a large number of diffusion gradient directions, each of which
corresponds to a point in q-space. A large number of DW
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images increase the accuracy of DTI reconstruction, but also
lengthen acquisition time, making dMRI impractical for clin-
ical routine use.

To address such problem, many post-acquisition methods
were proposed to increase the angular resolution of DW
images acquired in a limited number of gradient directions.
For example, [4] interpolated signals by weighted averaging of
angular neighboring measurements in q-space. [5] proposed to
employ spherical harmonic coefficient vectors for the measure-
ment interpolation. While these methods achieve promising
results, they neglected the fact that the signal is smooth in
the joint x-q space. To fill this gap, several compressive
sensing methods were developed, in which joint x-q space
information from dMRI data was exploited to generate HARDI
signals with a higher quality [6]–[8]. However, they usually
need dedicated imaging protocols, which limits their clinical
applicability.

Another possible solution to this problem is to estimate one
modality image from another using learning-based methods.
In this field, Jog et al. [9] generated high resolution MR
images from low resolution scans by learning a nonlinear
regression with random forest. Besides, the random forest
was also used to synthesize CT from MRI [10]. Recent
deep learning methods are attracting more and more research
interests, mainly due to their ability to map real distribution
of data more rapidly and more objectively without the need
of manual work. For instance, Dong et al. [11] addressed
the single image super-resolution using Convolutional Neural
Networks (CNNs) and gained impressive results. Kim et al.
[12] improved the performance of the super-resolution scheme
using a recursive CNN with a simple parametric learning
model.

Despite achieving promising performance in generating real
images, existing learning-based methods were mainly designed
for single medical image transformation, while it is nontrivial
to apply them to DMRI image estimation due to the spatial-
angular information within multiple images rather than inde-
pendent spatial information in a image. CNNs model may
handle this problem by operating deep convolution on both
spatial and angular domains using multi-channel 2D or 3D
kernels. Unfortunately, most deep learning methods focused
on standard medical images, such as computerized tomography
(CT), positron emission tomography (PET)) or the translation
of single image modality. Moreover, traditional CNN tends
to minimize the simple Euclidean distance between predicted



and ground truth pixels, which is insufficient to measure the
correlation between images acquired from different gradient
directions in dMRI.

In this paper, we proposed a deep leaning-based method to
improve the angular resolution of cardiac dMRI data without
the need of requiring a large number of dMRI scans. Different
from previous works which focused on single image transla-
tion, our method is a group-wise translating strategy which
consists of training a generative model to simultaneously
estimate a sequence of new DW images from a sequence of
given DW images acquired in a limited number of gradient
directions. Instead of directly using traditional CNNs that only
minimize Euclidean distance between predicted and ground
truth images, we trained a generative adversarial network
(GAN) [13], [14] to minimize the difference at a higher
level, i.e., trying to classify whether the output image is
real or fake. Moreover, we modified the traditional GAN
loss function using a supervised manifold regularized term
to exploit the correlation between DW images in different
gradient directions.

II. METHOD

The goal of our method is to train a deep generative network
which can predict highly angular resolved images from images
acquired in a limited number of gradient directions. Given a
set of DW images X: {x1, x2, · · · , xn} which are acquired
in n diffusion gradient directions, our objective is to learn a
mapping G from existing X to DW images in new directions
G(X): {xn+1, xn+2, · · · , x2n}, where {x1, x2, · · · , x2n} de-
notes DW images with high angular resolution and their
diffusion gradient direction should be distributed uniformly
on a sphere.

A. GAN architecture

We propose to use conditional GANs [15] due to their
ability to generate highly realistic images with a limited
number of observed DW images X . More precisely, we trained
two networks to compete with each other, a Generator G and
a Discriminator D. Fig. 1 illustrates an overview of proposed
GAN network, the Generator G applies the transform to n
observed DW images X to predict the DW images G(X) in
a set of new n directions. The discriminator takes both the
observed DW images X in the n directions and images in the
n new directions, where the images in the new directions can
be either the output images from the generator or the real
images from the original dataset; and then the discriminator
tries to decide if the images in new directions were produced
by the generator or not. In Fig. 1, the red dashed arrows denote
the back propagation of the network that adjust the network
parameters to update the generator. This process continues
iteratively until the generator can produce highly realistic DW
image sequences.

Our network is constructed based on convolution-
BatchNorm-ReLu [16] and U-Net [17] as encoder-decoder that
combines the features from shallow and deep layers through
multi-path information to optimize the generator quickly.

Fig. 1. Schematic illustration for the proposed manifold regularized GAN.
The network maps DW images acquired in n gradient directions into new n
directions.

Fig. 2. The detailed network architecture of our generator and discriminator.
The solid arrows indicate the forward propagation of the network. The number
below the box indicates the size of the feature map in its corresponding layer.

Fig. 2 presents our network architecture in detail. For the
generator, the input is n 128×128 DW images with n channels
(from n gradient directions), and the output is the same. The
discriminator employs a PatchGAN strategy proposed in [18].
The input of discriminator is n 128 × 128 DW image with
n channels (from n gradient directions), and the output is a
15 × 15 image map where each pixel value represents how
believable the corresponding patch of the input image is. The
How number of diffusion gradient directions n used in our
experiments were 6, 12, and 24.

B. GAN Objective

The loss function of conditional GAN network can be
expressed as [15]:

LGAN (G,D) = EX,R[logD(X,R)]

+ EX [log(1−D(X,G(X)))]
(1)

where R: {rn+1, rn+2, · · · , r2n} represents the ground-truth
of n DW images from real dataset compared to the generated
images G(X): {xn+1, xn+2, · · · , x2n}. D tries to maximize
the probability of assigning the correct label to both real R



and generated {x1, x2, · · · , x2n} groups. Simultaneously, G
tries to minimize the second term against D. By minimizing
this function, the capability of generator G and discriminator
D will gradually increase from the competition process until
D(X,R) and D(X,G(X)) have the same distributions. Pre-
vious studies have found that it is beneficial to combine the
traditional GAN loss with L1 or L2 distance [19]. Therefore,
in our method, the task of the generator is not only to produce
realistic images but also to output difference between real and
fake DW images in L2 sense. This L2 loss function can be
expressed as:

Lsimilarity = EX,R‖(R−G(X))‖2 (2)

where ‖ · ‖2 can be some distance function, such as Frobenius
norm.

C. Manifold regularized loss function

GAN provide an ingenious competition scheme with the
ability of to guide the generative model to produce data very
close to the distribution of real data. However, our experiments
showed that the traditional GAN even with L2 loss does not
perform well in practice, as it neglects the continuous spatial-
angular information in DW image sequences. Therefore, we
propose here a manifold regularized strategy to exploit the
angular correlation between images in different gradient direc-
tions. This consists in additionally minimizing the following
regularization function used in [20] for generator updates:

Lcorrelation = EX,R
1

4n2

2n∑
i=1,j=1

‖f(G(X))− f(R))‖2Wi,j .

(3)
where f(·) is an embedding function to extract the useful infor-
mation from the raw data, ‖f(G(X))−f(R))‖2 measures the
difference between the real and generated data. If f(x) = x,
then minimizing this term is equivalent to minimize Eq. (3).
In our cases, both the generated and real data are a sequence
of DW images for a number of directions. Then this term can
be expressed as:

‖G(xi)− ri −G(xj) + rj‖2. (4)

Wij in Eq. (3) is a weight measures the angular similarity
between ith and jth directions of DW images. It can be set
according to the Locality Preserving Projections strategy [21]
as follows:

Wij = e−
‖ di,j ‖2

ϕ (5)

where di,j denotes the angular difference between ith and jth
diffusion gradient directions. ϕ controls the scale of In the
dMRI, the diffusion gradient directions are often represented
by vectors in 3D q-space, e.g., ~vi and ~vj corresponding to
direction i and j. Here we compute the angular difference di,j
by using the angle of two vectors, e.g., di,j = (~vi · ~vi)/(|~vi| ·
|~vi|).

It should be noted that this choice of Eq. (4) with Wij incurs
a heavy constraint to control the generated results. Here, if
the data samples ri and rj are from different submanifolds

in 3D q-space (in terms of angle location), it encourages
the generated G(xi) and G(xj) to lie in different manifolds.
Finally, our loss function is:

G = argmin
G

max
D

LGAN + λLsimilarity + φLcorrelation (6)

Where λ and φ are regularization parameters which control the
importance of the spatial similarity and angular correlation,
respectively.

III. EXPERIMENTS

A. Datasets

dMRI of three ex vivo human hearts were acquired in clin-
ical conditions with Siemens 3T MRI Magnetom Verio. The
imaging parameters are the following: TE = 74ms, TR =
7900ms, FOV = 864 × 864mm2, slice thickness=1.4mm,
in-plane resolution = 2mm, slice spacing = 1.4mm, slice
duration = 123.2ms, number of slices = 35, slice size:
104 × 104 pixels, diffusion sensitivity b = 700s/mm2, and
gradient directions = 192, 64 or 12. In each direction, MRI
scans were performed 6-10 times for noise reduction. For
each heart, two different direction sampling strategies were
employed to obtain two groups of gradient directions, one for
n directions and the other one for 2n directions. Then their
corresponding DW images were selected to train and test the
network. In the following experiments, n = 6 and 24 and one
human heart will be reported here.

B. Experimental initialization

1) Gradient directions sampling: A necessary property
for an optimal sampling scheme in dMRI scan is that the
directions should be spherically uniformly distributed with no
directional preference. In our method, given a set of directions,
we generated a number of subsets of directions by using
an effective direction Q-space sampling algorithm [22]. Each
subset consists of 2n directions. Then the sampling algorithm
was used to select n directions from each subset to form a
pair of direction groups conditioning n and 2n directions,
respectively. As a result, both the n and 2n gradient directions
are distributed uniformly on a sphere.

2) Directional rotation: Since our network can just output
DW image sequence without any directional information in
q-space, it is necessary to determine a uniform input and
output CNN training model, and thus results can be used in
reconstruction of DTI without confusion of various directions
for the generated DW images. Previous studies have shown
that several independent sets of directions uniformly spread
on the sphere can be regarded as rigid rotations of the others
[23]. In our method, we first determine a fixed group of 2n
directions as the reference for the directions of input and
output DW images. For each set with different directions, we
find the optimal composition of rigid rotations with respect
to the reference using a point matching algorithm. Then, the
most uniform coverage possible is achieved by projecting the
rotated sets of points onto the same reference sphere. Finally,
the rotated DW images are taken as training and testing data.



Fig. 3. An example of generated DW images using our method. Here the 12
DW images were generated from 6 given directions for 12 gradient directions.

TABLE I
COMPARISON BETWEEN GENERATED AND GROUND TRUTH TENSOR

METRICS.

MSE RMSE PNSR SSIM

MD 0.0002 0.0141 36.1151 0.9710
AD 0.0026 0.051 25.8167 0.8787
FA 0.0038 0.0616 24.2153 0.7633

C. Results

Fig. 3 shows 12 DW images generated from 6 acquired DW
images by our method. The network was trained and tested by
600 and 400 samples, respectively. In the generated images,
both the structural and detail information are preserved. This
indicates that the generative model has well captured the
underlying distribution of the input data, and thus generated
realistic images. Furthermore, we also computed DT field and
mapped it with three commonly used metrics computed from
the three eigenvalues of the tensors: mean diffusivity (MD),
axial diffusion (AD), and fractional anisotropy (FA) [24]. In
Table I, we quantitatively compared the difference between the
MD, AD, FA from the generated DT and ground-truth. The
results were tested in terms of mean squared error (MSE),
root Mean squared error (RMSE), peak signal to noise ratio
(PNSR), and structural similarity index (SSIM) [25]. We found
that the MD and AD are more similar to their corresponding
ground-truth compared with FA. This may be because FA are
more sensitive to anisotropic diffusion within a voxel. In other
words, our method can rather accurately simulate the signals
from isotropic area, but failed to represent strongly anisotropic
signals.

Table II gives a quantitative comparison of diffusion prop-
erties and fiber orientations for original DW images in 24
directions. The network was trained and tested by 1000 and
500 samples, respectively. The final resulting DW images
consists of the original 24 DW images and new 24 DW
images (in 24 directions) generated by the proposed method.
The images in 192 direction were used as ground-truth for
comparison. The values in the first three columns are the
RMSE differences between the estimated DW images and
ground-truth in terms of MD AD, and FA, respectively. The
values in the last column are the angle differences between the
underlying critical fiber orientations of the estimated images

TABLE II
RMSE OF DIFFUSION PROPERTIES AND FIBER ORIENTATIONS FOR

ORIGINAL DW IMAGES IN 24 DIRECTIONS (TOP ROW) AND OUR
SIMULATED DW IMAGES IN 48 DIRECTIONS (BOTTOM ROW).

MD AD FA difference (deg)

Original 0.206× 10−4 0.569× 10−3 0.0394 6.046
Obtained 0.142× 10−4 0.381× 10−3 0.0265 4.581

(a) (b) (c)

Fig. 4. An comparison of main fiber orientations. (a), (b) and (c) are the
fiber orientations estimated from original DW images in 24 directions, our
obtained DW images in 48 directions, and DW images in 192 directions as
ground-truth, respectively.

and ground truth. An example of qualitative results in terms of
main fiber orientations on one human heart is given in Fig. 4
with FA image as backgrounds. It can be seen in that the main
fiber orientation from the our resulted DW images are much
closer to the ground-truth, compared with the fiber orientation
from original images. Note that the fiber orientations from the
original DW images are very noisy, while the fiber orientations
from the resulted DW images are locally well-aligned and
regularized.

IV. CONCLUSION

We have presented a deep leaning-based translation method
for super-angular resolution in cardiac dMRI data. DW images
in additional gradient directions are estimated from given DW
image sequence acquired in a limited number of gradient direc-
tions. The correlation between multiple DW images acquired
in different gradient directions are exploited by introducing a
supervised manifold regularized term which takes advantage
of the information of gradient directions in 3D q-space.
Experiments on cardiac dMRI data showed that our method is
capable of producing highly realistic dMRI data and improving
the accuracy of DTI measurements.
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