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This paper aims to present some sufficient criteria under which a given function f : X → Y satisfies the error bound property, where X and Y are either topological vector spaces whose topologies are generated by metrics or metrizable subsets of some topological vector spaces. Then, we discuss the Hoffman estimation and obtain some results for the estimate of the distance to the set of solutions to a system of linear equalities. The advantage of our estimate is that it allows to calculate the coefficient of the error bound. The applications of this presentation are illustrated by some examples.

Introduction

The notion of error bound is a widely used notion in applied mathematics and thereby has received a lot of attention in the last years and decades. Indeed, it plays a key role in areas including variational analysis, mathematical programming, convergence properties of algorithms, sensitivity analysis, designing solution methods for non-convex quadratic problems, penalty functions, optimality conditions, weak sharp minima, stability and well-posedness of solutions, (sub)regularity and calmness of set-valued mappings, and subdifferential calculus (see in particular [START_REF] Peña | New characterizations of Hoffman constants for systems of linear constraints[END_REF][START_REF] Cuong | Error bounds revisited[END_REF] and the references therein). In this regard, Hoffman's estimation, as the starting point of the theory of error bounds, is very important and plays a considerable role in optimization and especially in iterative methods for solving linear systems and in sensitivity analysis of linear/integer programs [START_REF] Robinson | Bounds for error in the solution set of a perturbed linear program[END_REF][START_REF] Robinson | A characterization of stability in linear programming[END_REF][START_REF] Burke | A unified analysis of Hoffman's bound via Fenchel duality[END_REF]. Hoffman's estimation has been extended over the years to different contexts (see for instance [START_REF] Azé | On the sensitivity analysis of Hoffman constants for systems of linear inequalities[END_REF][START_REF] Jourani | Hoffman's error bound, local controllability, and sensitivity analysis[END_REF][START_REF] Dontchev | Implicit Functions and Solution Mappings. A View from Variational Analysis[END_REF][START_REF] Mordukhovich | Variational Analysis and Applications[END_REF][START_REF] Penot | Calculus Without Derivatives[END_REF] and the references therein for the fundamental role played by Hoffman's bounds).

In this work, we aim at providing some sufficient criteria under which the function f , acting either between metrizable topological vector spaces or between metrizable subsets of some topological vector spaces, satisfies the error bound property at a point x ∈ X. To characterize the error bound property of f , if d X and d X designate the metrics generating the topologies on X and Y , the following inequality is discussed:

d X (x, x) ≤ κd Y ( f (x), f ( x)).
(1.1) Indeed, we are looking for a neighborhood O of x and a constant κ > 0 such that the above inequality holds for all x ∈ O. In this case, a point x which satisfies relation (1.1) is called a strongly regular point of f (see [START_REF] Abbasi | Strongly regular points of mappings[END_REF]) and has a close relationship with the notion of regularity proposed by Ioffe (see, in [START_REF] Ioffe | Regular points of Lipschitz functions[END_REF][START_REF] Ioffe | Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions[END_REF]). Let us recall this notion in the sequel.

Definition 1.1 (Ioffe) Let X and Y be normed spaces and x ∈ X. We say that x is a regular point for the function f : X → Y with respect to the subset U ⊂ X if there are τ > 0 and a neighborhood V of x such that

dist (x, Q) ≤ τ f (x) -f ( x) , (1.2) 
for all x ∈ V ∩ U, where Q := {x ∈ U : f ( x) = f (x)} and dist (x, Q) := inf q∈Q xq is the distance from x to Q.

Inequality (1.1) asserts that if x is a strongly regular point of f : X → Y, then it is a regular point for the function f with respect to any subset U ⊂ X with x ∈ U (note that dist (x, Q) ≤ xx for all x ∈ X). Thus inequality (1.1) helps to find an upper error bound for the distance from x to the solution set Q (see [START_REF] Ioffe | Necessary and sufficient conditions for a local minimum. I. A reduction theorem and first order conditions[END_REF][START_REF] Lyusternik | On conditional extrema of functionals[END_REF][START_REF] Ioffe | Optimality condition for local efficient solutions of vector equilibrium problems via convexificators and applications[END_REF][16]).

When X is a normed space and f : X → R ∪ {+∞} is an extended-real-valued function, we can also establish a relationship between strongly regular points and sharp local minimizers of f . This notion introduced by Ferris in [START_REF] Ferris | Weak sharp minima and penalty functions in mathematical programming[END_REF] as a generalization of sharp minima due to Polyak [START_REF] Polyak | Introduction to optimization[END_REF] is well-studied for its usefulness in optimization (see [19,[START_REF] Burke | Weak sharp minima revisited. II. Application to linear regularity and error bounds[END_REF]). One says that x ∈ dom f := {x ∈ X : f (x) < +∞} is a sharp local minimizer of f with modulus τ > 0 provided there exists some r > 0 such that the following inequality holds:

f (x) ≥ f ( x) + τ x -x for all x ∈ B • X ( x, r), (1.3) 
where B • X ( x, r) denotes the open ball centered at x with radius r. It is clear from the definition that any sharp minimizer is a local minimizer, and even more, it is a strict local minimizer, since clearly, f (x) is strictly less than f ( x) when x ∈ B • X ( x, r) \ { x}. On the other hand, if x is a sharp local minimizer of f with modulus τ > 0, then

x -x ≤ τ -1 | f (x) -f ( x)| for all x ∈ B • X ( x,
r), implying that x is a strongly regular point of f . The converse might not be true. Indeed, given the function f : R → R defined as f (x) := x for all x ∈ R (identity function), clearly every x ∈ R is a strongly regular point of f while this function has no local minimizer, and therefore x fails to be a sharp local minimizer of f . Hence the notion of strongly regular point is weaker than the notion of sharp local minimizer. Note also that any smooth function cannot have a sharp local minimizer.

In the last section of this paper we prove that when X is finite dimensional, if x is both a strongly regular point and a local minimizer of f , then x is a local weak ε-efficient solution of ∂ f with respect to any pointed closed convex cone C. This paper is intended to provide some sufficient conditions under which the inequality (1.1) is verified. We shall see that if the metrics d X and d Y are translation invariant and positively homogeneous and the function f satisfies certain continuity and differentiability properties (like the ones mentioned in Theorem 3.1), then finding a constant κ and a neighborhood of x such that (1.1) holds is possible.

The paper is organized as follows. In Section 1, we give a background information on the error bound property. In Section 2, we introduce the notion of homogeneously continuity for functions acting between topological vector spaces and state some preliminaries. In Section 3, using a notion of lower directional derivative, we obtain some sufficient conditions that contribute to characterize the error bound property of functions. In Section 4, applying the results from Section 3 and focusing our attention on Hoffman's estimate of approximate solutions of finite systems of linear inequalities, we prove some estimations for the approximate solutions of finite systems of linear inequalities and of linear equalities. Finally, in Section 5, we establish a relationship between strongly regular points, local minimizer of f and local weak ε-efficient solution of ∂ f (the subdifferential of f ) with respect to any pointed closed convex cone C.

Preliminaries

Throughout this paper, unless specified otherwise, we assume that X and Y are arbitrary topological vector spaces whose topologies are induced by metrics or metrizable subsets of some topological vector spaces. The (continuous) dual of X is denoted by X * . In the case that X is a metric space, B • X (x, r) denotes the open ball centered at x with radius r. If X is a normed space, then the symbols S X and B X stand, respectively, for the unit sphere (i. e., the elements of X of norm one) and the closed unit ball (i. e., the elements of X of norm less than or equal to one). Some other notations are introduced as and when needed.

We begin with the following definition in which X and Y are arbitrary topological vector spaces.

Definition 2.1 Let X and Y be topological vector spaces and E ⊂ X. A function f : X → Y is said to be homogeneously continuous at x ∈ X on E if for every neighborhood V of origin in Y there exist a neighborhood O of origin in X and a 0 < β ≤ 1 such that

x -y ∈ O =⇒ f ( x + tx) -f ( x + ty) ∈ tV,
for all 0 < t ≤ β and all x, y ∈ E. Definition 2.2 If X is a vector space and d is a metric on X, we say that d is translation invariant (see [START_REF] Conway | A course in functional analysis[END_REF]) if d(x + u, y + u) = d(x, y) for all x, y, u in X. and we say that d is positively homogeneous if d(tx,ty) = td(x, y) for all x, y in X and all t ≥ 0. Example 2.1 (i) A Fréchet space is a complete locally convex vector space whose topology is metrizable and therefore is defined by a translation invariant metric d (see [START_REF] Conway | A course in functional analysis[END_REF]); (ii) If X is a normed space, then the metric defined by the norm of X (i.e., d(x, y) := xy for all x, y ∈ X) is both translation invariant and positively homogeneous; (iii) The metric d defined in Example 3.1 (and Theorem 3.3) below is both translation invariant and positively homogeneous; (iv) Note that there exist metrics that are positively homogeneous and not translation invariant. This is the case of the so-called "French railways distance" defined as follows: given two points A and B, the distance 

< β ≤ 1 such that d X (x, y) < δ =⇒ d Y ( f ( x + tx), f ( x + ty)) < tε,
for all 0 < t ≤ β and all x, y ∈ E.

Proof This is a straightforward consequence of the above definitions.

Remark 2.1 As Proposition 2.1 shows, the notion of homogeneously continuity given in Definition 2.1 extends to all topological metrizable vector spaces Definition 2.1 in [START_REF] Abbasi | Strongly regular points of mappings[END_REF] stated for normed spaces.

Example 2.2 Let X = 1 := {x := (x n ) ⊂ R : ∑ n |x n | < ∞} with the usual norm x := ∑ n |x n | for x ∈ 1
and Y be an arbitrary normed space. Let f : 1 → Y be an arbitrary continuous linear function. One may observe that f is homogeneously continuous at 0 on X (norm→ norm). Now assume that U is a weakly compact convex subset of 1 which contains the origin. Equip U with the induced topology. We claim that f | U (the restriction of f to U) is homogeneously continuous at 0 on U (weak → norm). Since 1 is separable, thus U is weakly metrizable. Indeed, if (x n ) is a dense sequence in S 1 , then thanks to the Hahn-Banach Theorem, there exists a sequence

(x * n ) ∈ X * such that x * n = x * n , x n = x n = 1. Now define d : U × U → R as d(x, y) := ∑ n 2 -n | x * n , x -y |,
for all x, y ∈ U. Then (U, d) is a metric space and U in its weak topology, is homeomorphic to this metric space, and hence is itself metrizable. One can easily check that d is translation invariant (and positively homogeneous). Now, by contradiction let us ssuppose that f | U fails to be homogeneously continuous at 0 on U (weak → norm). Then, according to Proposition 2.1, there would be ε > 0 such that for every n ∈ N there exist x n ,

y n ∈ U with d(x n , y n ) < 1 n and 0 < t n ≤ 1 n such that f | U (t n x n ) -f | U (t n y n ) ≥ t n ε. Hence f (x n ) -f (y n ) ≥ ε for every n ∈ N. But (x n
) and (y n ), being contained in a weakly compact set, by the Eberlein-Smulian Theorem, they have subsequences, still denoted by (x n ) and (y n ), converging weakly to some x 0 and y 0 , respectively, in

U. Letting n → ∞ in d(x n , y n ) < 1
n , it follows that x 0 = y 0 . Since 1 satisfies the Schur property (see [START_REF] Morrison | On approximate solutions of systems of linear inequalities[END_REF]), (x n ) and (y n ) also converge strongly (in the norm topology) to x 0 and y 0 , respectively. Letting

n → ∞ in f (x n ) -f (y n ) ≥ ε, we deduce that f (x 0 ) -f (y 0 ) 1 ≥ ε which is absurd. This proves the above claim.
We now present various results providing some sufficient conditions under which a function f is homogeneously continuous. These results extend some similar conclusions stated in [START_REF] Abbasi | Strongly regular points of mappings[END_REF]. Let us recall that a function f : X → Y (d X and d Y are metrics on X and Y, respectively) is said to be locally Lipschitz around x ∈ X if there exist a neighborhood O of x and a

λ > 0 such that d Y ( f (x), f (y)) ≤ λ d X (x, y),
for all x, y ∈ O.

Proposition 2.2 Suppose that X and Y are locally convex metrizable vector spaces and d X and d Y are metrics on X and Y such that d Y is translation invariant and d X is both translation invariant and positively homogeneous. If f : X → Y is locally Lipschitz around x ∈ X, then f is homogeneously continuous at x on some convex neighborhood of origin E ⊂ X.

Proof There exists a constant λ > 0 such that

d Y ( f (x), f (y)) ≤ λ d X (x, y), for all x, y belonging to a neighborhood O of x in X. Choose a convex neighborhood E of 0 in X such that { x} + E ⊂ O. It follows that d Y ( f ( x + tx), f ( x + ty)) ≤ λ d X ( x + tx, x + ty) = tλ d X (x, y),
for all x, y ∈ E and all 0 ≤ t ≤ 1 (since E is convex and 0 ∈ E). Now let ε > 0 and take 0 < δ < ελ -1 . It follows that 

d X (x, y) < δ =⇒ d Y ( f ( x + tx), f ( x + ty)) <
: E × (0, 1] → Y defined by f E (x,t) := f ( x + tx) -f ( x) t
is uniformly continuous (E × (0, 1] equipped with the product topology with the usual linear operations of vector additions and scalar multiplication), then f is homogeneously continuous at x on E.

Proof By hypothesis, there exist δ , β > 0 such that for all x, y ∈ E with d X (x, y) < δ and all |s -h| < β we have

d Y ( f E (x, s), f E (y, h)) < ε. It follows that d Y f ( x + tx) -f ( x) t , f ( x + ty) -f ( x) t < ε,
for all x, y ∈ E with d X (x, y) < δ and all 0 < t ≤ 1. Since d Y is both translation invariant and positively homogeneous, thus

d Y ( f ( x + tx), f ( x + ty)) < tε,
for all d X (x, y) < δ and all 0 < t ≤ 1. This completes the proof.

To state the next result we need to recall the notion of Hadamard directional derivative.

Definition 2.3 f : X → Y is Hadamard directionally differentiable at x in the direction ν if there exists a function f H ( x, •) : X → Y such that f H ( x, ν) = lim ϑ →ν,t↓0 f ( x + tϑ ) -f ( x) t Corollary 2.
1 Let X and Y be metrizable topological vector spaces with corresponding metrics d X and d Y such that d X is translation invariant and d Y is both translation invariant and positively homogeneous. Let f : X → Y be a continuous function, E be a compact subset of X (equipped with the induced topology) and x ∈ X. If is Hadamard differentiable at x, then f is homogeneously continuous at x on E.

Proof Define the bifunction fE : 

E × [0, 1] → Y as fE (ν,t) :=        f ( x + tν) -f ( x) t if 0 < t ≤ 1, f H ( x, ν) if t = 0, for all (ν,t) ∈ E × [0, 1]. Since f is Hadamard differentiable at x, thus the bifunction fE is continuous. Since E × [0, 1] is compact, hence f E is uniformly continuous. It follows that the bifunction f E : E × (0, 1] → Y defined by f E (x,t) := f ( x + tx) -f ( x) t ,
d Y f ( x + tx) -f ( x) t , f ( x + ty) -f ( x) t < ε,
for all d X (x, y) < δ and all 0 < t ≤ β .

Proof The proof is obvious; we therefore omit it.

3 Characterizing the error bound property Definition 3.1 Given a function f : X → Y with Y a normed space, we consider the following notion of lower directional derivative at x ∈ X in direction ν ∈ X (see [START_REF] Abbasi | Strongly regular points of mappings[END_REF])defined by

f l ( x, ν) := lim inf t↓0 f ( x + tν) -f ( x) t .
Abbasi and Théra showed in [START_REF] Abbasi | Strongly regular points of mappings[END_REF] that if X and Y are both normed spaces, whose norms are denoted by the same symbol • and X is finite dimensional, then it holds:

Theorem 3.1 Let f : X → Y be homogeneously continuous at x ∈ X on S α for some positive scalar α (S α := αS). If there exists some κ > 0 such that inf ν∈S α f l ( x, ν) > κ, then there exists δ > 0 such that

x -x ≤ α κ f (x) -f ( x) ,
for all x ∈ B( x, δ ). In other words, x is a strongly regular point of f .

We begin with the following result which is proved with the help of Theorem 3.1.

Theorem 3.2 Let X and Y be normed spaces, U ⊂ X be a finite dimensional subspace of X and x ∈ U. Suppose that f : X → Y is homogeneously continuous at x on the subset E α := α(S ∩ U) (norm → norm) with α an arbitrary positive number. If there exists some κ > 0 such that inf ν∈E α f l ( x, ν) > κ, then there exists some δ > 0 such that

x -x ≤ α κ f (x) -f ( x) , for all x ∈ B • X ( x, δ ) ∩ U. In particular, there exists a constant κ such that dist (x, Q) ≤ κ f (x) -f ( x) , for all x ∈ B • X ( x, δ ) ∩ U, where Q := {x ∈ U : f ( x) = f (x)}.
In other words, x is a regular point for the function f with respect to U in the sense of Ioffe (Definition 1.1).

Proof Apply Theorem 3.1 to the function g := f | U : U → Y ( f restricted to U) and notice that E α is a nonempty compact subset of U, g is homogeneously continuous at x on E α and inf ν∈E α g l ( x, ν) > κ. This completes the proof of the first claim. To prove the second one, note that x ∈ Q and therefore dist (x, Q) ≤ xx for all x ∈ X. Corollary 3.1 Let X and Y be normed spaces, U ⊂ X be a finite dimensional subspace of X and f : X → Y be locally Lipschitz around x ∈ U. If there exists some κ > 0 such that inf ν∈E f l ( x, ν) > κ where E := S ∩ U, then there exists some δ > 0 such that

x -x ≤ 1 κ f (x) -f ( x) , for all x ∈ B • X ( x, δ ) ∩ U. Proof Proposition 2.
2 implies that, there exists some convex neighborhood of origin V ⊂ X such that f is homogeneously continuous at x on V. Choose some α > 0 such that E α := α(S ∩ U) ⊂ V. Hence, f is homogeneously continuous at x on E α . One can easily check that inf ν∈E α f l ( x, ν) > ακ. Now apply Theorem 3.2.

Let us recall that a subset D of the dual space X * is said to be total whenever x * , x = 0 for all x * ∈ D implies that x = 0 (see [START_REF] Morrison | On approximate solutions of systems of linear inequalities[END_REF]). The following theorem yields a similar result when one considers the weak topology on X. It subsumes the special case where X is separable. Theorem 3.3 Let X and Y be Banach spaces with X * containing a countable total subset {x * 1 , x * 2 , • • • } and U ⊂ X be a weakly compact subset which contains the origin and a nonzero vector u. Define d :

U × U → R as d(x, y) := ∑ n 2 -n | x * n , x -y |,
for all x, y ∈ U and let H := {x ∈ U : d(x, 0) = d(u, 0)}. Suppose that f : X → Y is homogeneously continuous at some x ∈ U on H (weak → norm). If there exists some κ > 0 such that inf ν∈H f l ( x, ν) > κ, then there exists a weak neighborhood O of x in X such that d(x, x) ≤ d(u, 0)

κ f (x) -f ( x) , for all x ∈ O ∩ U.
Proof First note that H = / 0 (since u ∈ H) and the subset U in its weak topology, is homeomorphic to the metric space (U, d), and hence is itself metrizable (see [START_REF] Morrison | On approximate solutions of systems of linear inequalities[END_REF]). Hence the subset H is weakly closed, and since H ⊂ U, is weakly compact. Let κ < ρ < inf ν∈H f l ( x, ν) and ε := ρκ. By hypothesis, for all ν ∈ H there exists 0

< r ν ≤ 1 such that inf h∈(0,r ν ] f ( x + hν) -f ( x) h > ρ. (3.1)
Since f is homogeneously continuous (weak → norm) at x on H, thus there exist η, β > 0 such that

f ( x + tx) -f ( x) t - f ( x + ty) -f ( x) t < ε, (3.2) 
for all x, y ∈ H with d(x, y) < η and all 0 < t ≤ β , by Proposition 2.4. Let rν := min{η, β , r ν } for all ν ∈ H. Clearly we have

H ⊂ ν∈H B • U (ν, rν ),
where by B • U (ν, rν ) we mean the open ball centered at ν with radius rν in the metric space (U, d). The (weak) compactness of H implies that there exist ν 1 , ν 2 , . . . , ν m ∈ E such that

H ⊂ m k=1 B • U (ν k , rν k ). Now let x ∈ B • U ( x, δ d(u, 0)) \ { x} and ν := d(u,0) d(x, x) (x -x)
where δ := min{r ν k : 1 ≤ k ≤ m}. One can easily check that ν ∈ H, and hence ν ∈ B • U (ν s , rν s ) for some 1 ≤ s ≤ m. It follows that d(ν, ν s ) < η and d(x, x) d(u,0) < β . By (3.2) we deduce that

f ( x + d(x, x) d(u,0) ν s ) -f ( x) d(x, x) d(u,0) - f ( x + d(x, x) d(u,0) ν) -f ( x) d(x, x) d(u,0) < ε. Hence f ( x + d(x, x) d(u,0) ν) -f ( x) d(x, x) d(u,0) > f ( x + d(x, x) d(u,0) ν s ) -f ( x) d(x, x) d(u,0) -ε > ρ -ε = κ by (3.1), since d(x, x) d(u,0) < r ν s . It follows that f (x) -f ( x) d(x, x) > κ d(u, 0) . Thus d(x, x) ≤ d(u, 0) κ f (x) -f ( x) ,
which holds for every x ∈ B • U ( x, δ d(u, 0)). Notice that, by the argument stated at the beginning of the proof, B • U ( x, δ d(u, 0)) is a weak neighborhood of x in U. Thus there must exist some

weak neighborhood O of x in X such that O ∩ U = B • U ( x, δ d(u, 0 
)). This completes the proof.

Remark 3.1 Note that Theorem 3.3 applies when X is a separable Banach space. Indeed if (x n ) is a countable dense set in the unit sphere of X, and if we choose

x * n ∈ X * such that x * n (x n ) = 1, then (x * n ) is total in X * . Example 3.1 let X = 1 := {x := (x n ) ⊂ R : ∑ n |x n | < ∞} with the usual norm x := ∑ n |x n | for x ∈ 1
and Y be an arbitrary normed space with the norm • . For each n ∈ N let e n denote the kth unit vector in 1 (i.e., e k is just the sequence whose only nonzero entry is a "1" in the kth coordinate). Then, X * = * 1 = ∞ contains the countable total subset {e 1 , e 2 , • • • }. Assume that U is a weakly compact convex subset of 1 which contains the subset {0, e 1 }. Define d) is a metric space and U in its weak topology, is homeomorphic to this metric space, and hence is itself metrizable. Now let f : 1 → Y be an arbitrary injective continuous linear function (norm → norm). In Example 3.1, we observed that f | U : U → Y (the restriction of f to U) with U equipped with the subspace topology (weak), is homogeneously continuous at 0 on U (and so on H). On the other hand, inf ν∈H f l (0, ν) > 0. Indeed, for each ν 0 ∈ H one has

d : U × U → R as d(x, y) := ∑ n 2 -n | e n , x -y |, for all x, y ∈ U and let H := {x ∈ U : d(x, 0) = d(e 1 , 0) = 1 2 }. Then (U,
f l (0, ν 0 ) = lim inf t↓0 f (tν 0 ) -f (0) t = f (ν 0 ) .
Since ν 0 ∈ H, thus ν 0 = 0 and since f is injective thus f (ν 0 ) > 0. By Schur's Theorem, the function ν → f | H (ν) is continuous (weak → norm), and H is weakly compact, thus the function ν → f | H (ν) attains its minimum at some ν 1 ∈ H. It follows that

inf ν∈H f l (0, ν) = inf ν∈H f (ν) = inf ν∈H f | H (ν) = f | H (ν 1 ) > 0,
proving the above claim. Thus the function f satisfies the conditions of Theorem 3.3. Hence, if inf ν∈H f (ν) > κ, then there exists a weak neighborhood O of 0 in 1 such that

d(x, 0) ≤ d(e 1 , 0) κ f (x) -f (0) , for all x ∈ O ∩ U. Hence ∑ n 2 -n | e n , x | ≤ 1 2κ f (x) ,
for all x ∈ O ∩ U. In particular, by letting Y := R we deduce that for every functional x * ∈ *

1 = ∞ and every 0 < β < 2 inf ν∈H | x * , ν | there exists a weak neighborhood O of 0 in 1 such that β ∑ n 2 -n | e n , x | ≤ | x * , x |, for all x ∈ O ∩ U.
When X is a Hilbert space having a countable basis (dim X = ℵ 0 ), we get the following result.

Corollary 3.2 Let X be a Hilbert space having a countable basis, Y be a Banach space and x ∈ B X . Suppose that f : X → Y is homogeneously continuous at x on B X (weak → norm). If there exists some κ > 0 such that

inf f l ( x, ν) : 1 2 ≤ ν ≤ 1 > κ,
then there exist a sequence ( n ) n ∈ S X and a weak neighborhood O of x in X such that

∑ n 2 -n | n , x -x | ≤ 1 κ f (x) -f ( x) , for all x ∈ O ∩ B X .
Proof Since X is a Hilbert space with a countable basis, thus X is separable (see [START_REF] Conway | A course in functional analysis[END_REF]). Suppose that (x n ) n be a dense sequence in the unit sphere of X. Thanks to the Hahn-Banach theorem (see [START_REF] Morrison | On approximate solutions of systems of linear inequalities[END_REF]), there must exist a sequence ( n ) n ∈ X * = X such that n = n , x n = x n = 1; not only is the family ( n ) n total in X, but given x ∈ X we have

x = sup{| n , x | : n ∈ N}. (3.3) Define d : B X × B X → R as d(x, y) := ∑ n 2 -n | n , x -y |, for all x, y ∈ B X . Let α := d(x 1 , 0) and H := {x ∈ B X : d(x, 0) = α}. Note that 1 2 ≤ α ≤ 1. Indeed α = d(x 1 , 0) = ∑ n 2 -n | n , x 1 | ≤ ∑ n 2 -n n x 1 = ∑ n 2 -n = 1.
And

α = d(x 1 , 0) = ∑ n 2 -n | n , x 1 | ≥ 2 -1 | 1 , x 1 | = 1 2 .
On the other hand, for every x ∈ H we have

x = sup{| n , x | : n ∈ N}, by (3.3). Hence x ≥ | n , x | for all n ∈ N. It follows that x = ∑ n 2 -n x ≥ ∑ n 2 -n | n , x | = d(x, 0) = α.
Hence H ⊂ {x ∈ B X : x ≥ 1 2 }. Thus inf ν∈H f l ( x, ν) > κ, by hypothesis. We now apply Theorem 3.3. It follows that there exists a weak neighborhood O of x in X such that

∑ n 2 -n | n , x -x | ≤ α κ f (x) -f ( x) ≤ 1 κ f (x) -f ( x) ,
for all x ∈ O ∩ B X . This completes the proof.

4 Applications: On Hoffman's estimation Theorem 4.1 [START_REF] Morrison | On approximate solutions of systems of linear inequalities[END_REF] 

[24,25] Let (x * i ) i=1,2,••• ,k be a finite family of linear forms on R n . Set C 0 := {x ∈ R n such that x * i , x ≤ 0, (i = 1, 2, • • • , k)}, (4.1) 
Φ(x) := max{ x * i , x , i = 1, 2, • • • k} and [Φ(x)] + := max(Φ(x), 0). Then, there exists κ > 0 such that dist (x, C 0 ) ≤ κ[Φ(x)] + . (4.2) 
Now let X and Y be arbitrary normed spaces, A : X → Y a continuous linear function and

x * i ∈ X * , i = 1, 2, • • • , k some given functionals. Let C := {x ∈ X : A(x) = 0, x * i , x ≤ 0, i = 1, 2, • • • , k}.
We have the following estimation due to Ioffe.

Theorem 4.2 (Ioffe, 1979) [26]) If Ran A, the range of A, is closed, then there exists some

κ > 0 such that dist (x, C) ≤ κ A(x) + k ∑ i=1 [ x * i , x ] + , (4.3) 
for all x ∈ X.

Now set G := Ker A ∩ ∩ k i=1 Ker x * i .
Ioffe's Theorem yields the following estimation. Corollary 4.1 If Ran(A) is closed, then there exists some κ > 0 such that

dist (x, G) ≤ κ A(x) + k ∑ i=1 | x * i , x | , (4.4) 
for all x ∈ X.

Proof Define the functionals y * i , i = 1, • • • , 2k as

y * i := x * i if 1 ≤ i ≤ k, -x * i-k if k < i ≤ 2k. (4.5) 
Obviously G = C = {x ∈ X : A(x) = 0, y * i , x ≤ 0, i = 1, • • • , 2k}. One has 2k ∑ i=1 [ y * i , x ] + = k ∑ i=1 [ x * i , x ] + + 2k ∑ i=k+1 [ -x * i-k , x ] + = k ∑ i=1 [ x * i , x ] + + k ∑ i=1 [ -x * i , x ] + = k ∑ i=1 ([ x * i , x ] + + [ -x * i , x ] + ) = k ∑ i=1 | x * i , x |.
Thus, applying Theorem 4.2 to the functionals y * i , i = 1, • • • , 2k and to the function A, ensures the existence of some κ > 0 such that

dist (x, G) ≤ κ A(x) + k ∑ i=1 | x * i , x | ,
for all x ∈ X.

In the above results, the image of the function A is supposed to be closed. There are many examples of continuous linear functions which fail to have a closed image. This is the case of the function A : L 1 (R) → L 1 (R) defined as A( f ) := g f where g : R → R is given by

g(t) := 1 1 + t 2 .
Functions with compact support are dense in L 1 (R), hence A(L 1 (R)) is dense in L 1 (R). One can easily show that A(L 1 (R)) = L 1 (R); hence A(L 1 (R)) is not closed in L 1 (R). As another example see Example 4.1 below.

In the sequel, we aim to achieve some estimations similar to the one obtained in (4.4) without using the closedness of the range of A. Theorem 4.3 Let X and Y be normed spaces, A : X → Y be a continuous linear function and x * i ∈ X * , i = 1, 2, • • • , k be given. Suppose that L : X → X is a continuous linear function such that Ker L = G. Then, for every finite dimensional subspace U ⊂ X one has

dist (x, G) ≤ 1 γ U L(x) + k ∑ i=1 [ x * i , x ] + ,
for every x ∈ U where γ U is a positive real number given as

γ U := inf L(u) + n ∑ i=1 [ x * i , u ] + : u ∈ U, dist (u, G) = 1 .
Proof Let us consider the quotient spaces M := X G and U := belongs to G ⊥ and hence, belongs to the dual of M (which is isometrically isomorphic to G ⊥ [START_REF] Conway | A course in functional analysis[END_REF]). Set

C := {[x] ∈ M : L([x]) = 0, [x i ] * , [x] ≤ 0, i = 1, 2, • • • , k}.
We have Ker L = Ker L = G and therefore C = {[0]}. Now define the function f : M → R as

f ([x]) := L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + .
We now verify the conditions of Theorem 3. 

f ([tϑ ]) -f ([0]) t = L([ν]) + k ∑ i=1 [ [x i ] * , [ν] ] + .
Thus f is homogeneously continuous at [0] on E , by Corollary 2.1. We also have

f l ([0], [ν]) = L([ν]) + k ∑ [ [x i ] * , [ν] ] + = f ([ν]) = L(ν) + k ∑ i=1 [ x * i , ν ] + . (4.7 
)

If [ν] ∈ E , then [ν] / ∈ C and therefore L([ν]) + k ∑ i=1 [ [x i ] * , [ν] ] + > 0.
The continuity of f and the compactness of E imply that f | E attains its minimum at some [ ν] ∈ E . Then, f ([ ν]) > 0, by the above discussion. Hence by (4.6) and (4.7) we obtain

γ U = inf L(u) + n ∑ i=1 [ x * i , u ] + : u ∈ U, dist (u, G) = 1 = inf [u]∈E f l ([0], [u]) = f ([ ν]) > 0.
Let 0 < κ < γ U . Theorem 3.2 yields that, there exists some δ > 0 such that

[x] -[0] = [x] ≤ 1 κ L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + , for all [x] ∈ B • M ([0], δ ) ∩ U . Since f is sublinear, thus [x] ≤ 1 κ L([x]) + k ∑ i=1 [ [x i ] * , [x] ] + , for all [x] ∈ U . It follows that dist (x, G) ≤ 1 κ L(x) + k ∑ i=1 [ x * i , x ] + ,
for all x ∈ U. Letting κ → γ U in the above inequality proves the claim.

Remark 4.1 When X is separable, the existence of the linear continuous function L : X → X discussed in Theorem 4.3 is straightforward. Indeed, G is a closed subspace of X and X is separable, thus there exists a continuous linear function L : X → X with Ker L = G (see [START_REF] Laustsen | Subspaces that can and cannot be the kernel of a bounded operator on a Banach space[END_REF]).

Corollary 4.2 Let X and Y be normed spaces, A : X → Y be a continuous linear function and x * i ∈ X * , i = 1, 2, • • • , k be given. Suppose that : X → X is a continuous linear function such that Ker L = G. Set

γ := inf L(u) + n ∑ i=1 [ x * i , u ] + : u ∈ X, dist (u, G) = 1 . If γ > 0, then dist (x, G) ≤ 1 γ L(x) + k ∑ i=1 [ x * i , x ] + ,
for every x ∈ X.

Proof Let x ∈ X and U be the subspace generated by the singleton {x}. By Theorem 4.3 we have

dist (t, G) ≤ 1 γ U L(t) + k ∑ i=1 [ x * i ,t ] + ,
for all t ∈ U where

γ U := inf L(u) + n ∑ i=1 [ x * i , u ] + : u ∈ U, dist (u, G) = 1 . Note that γ U ≥ γ > 0. Hence dist (x, G) ≤ 1 γ L(x) + k ∑ i=1 [ x * i , x ] + .
This completes the proof.

Corollary 4.3 Let X be a normed space and A : X → X be a continuous linear function.

Then, for every finite dimensional subspace U ⊂ X one has

dist (x, Ker A) ≤ A(x) inf { A(u) : u ∈ U, dist (u, Ker A) = 1} , for all x ∈ U.
Proof In Theorem 4.3, let X = Y and x * i ≡ 0 for all 1 ≤ i ≤ k. Then, G = Ker A. Now take L := A and use Theorem 4.3. Corollary 4.4 Let X be a normed space and A : X → X be a continuous linear function. Set

σ := inf { A(u) : u ∈ X, dist (u, Ker A) = 1} If σ > 0, then dist (x, Ker A) ≤ 1 σ A(x) , (4.8) 
for all x ∈ X. Consequently, if A is injective and σ > 0, then Ran A is closed.

Proof The proof of the first assertion is similar to that of Corollary 4.2; we therefore omit it.

To prove the second claim just note that by (4.8), we have x ≤ 1 σ A(x) for every x ∈ X. Hence X and Ran A are isomorphic. This completes the proof. for every finite dimensional subspace U ⊂ X and for all x ∈ U.

Sharp minimizer, strongly regular points and local efficient solutions

As we said at the beginning of this paper, if x is a sharp local minimizer of the extended realvalued function f with constant τ > 0, then x is a strongly regular point of f . As the above discussion shows, the converse may fail to hold. But, a strongly regular point x which is a local minimizer of f is a sharp local minimizer of the extended real-valued function f . In this section, we claim that a strongly regular point x which is a local minimizer of f is a local efficient solution of the subdifferential mapping ∂ f at x.

Recall that the Moreau-Rockafellar subdifferential ∂ f : X ⇒ X * of an extended-realvalued convex function f is defined by ∂ f (x) := {x * ∈ X * : x * , y ≤ f (x + y)f (x) ∀y ∈ X}.

To prove this claim, we need to recall the notion of efficient solution (see [START_REF] Abbasi | Approximate solutions in set-valued optimization problems with applications to maximal monotone operators[END_REF] and references therein). Definition 5.1 Let F : X ⇒ Y be a set-valued mapping and x ∈ X. For any subset of X, note F(U) := ∪ x∈U F(x). Given ε > 0 and C a closed convex cone supposed to be pointed, i.e. C ∩ -C = {0}, we say that ȳ ∈ F( x) is a local weak ε-efficient element of F with respect to C if there exist a neighborhood O ⊂ X of x and an element y ε ∈ Y such that y ε < ε and

F(O) { ȳ -y ε -intC} = / 0.
When this case occurs we say that x is a local weak ε-efficient solution of F with respect to C.

In the next corollary, we assume that X is a finite-dimensional space partially ordered by a pointed closed convex cone C with nonempty interior (int C = / 0).

Corollary 5.1 ( [28] Corollary 5 ) Suppose that f : X → R ∪ {+∞} is a convex lower semicontinuous proper function on a finite-dimensional vector space X. If 0 ∈ int ∂ f ( x) for some x ∈ int dom f , then x is a local weak ε-efficient solution of ∂ f with respect to C.

  U G . Denote by [x] the equivalence class containing x in M (and U ), that is [x] := x + G. We note [x] := inf{ x + y : y ∈ G}. Obviously U is a finite dimensional subspace of M . Let S M := {[x] ∈ M : [x] = 1}. Consider the continuous linear function L : M → X defined as L([x]) := L(x) for all [x] ∈ M . Also for each 1 ≤ i ≤ k define [x i ] * , [x] := x * i , x for all [x] ∈ M . Obviously each [x i ] *

  2 for the function f at [ x] = [0]. For the sake of convenience let E := S M ∩ U . Obviously E = {u ∈ U : inf{ u + y : y ∈ G} = 1} = {u ∈ U : dist (u, G) = 1}. (4.6) Then, for all [ν] ∈ E one has lim t↓0,ϑ →ν

Example 4 . 1 for all x ∈ 2 .= x 2 . 3 2 + 1 i ) , 3 -( 3 2 + 1 i

 412231331 Let X = Y = 2 := {x := (x n ) ⊂ R : ∑ n x 2 n < ∞} with the usual norm x 2 2 := ∑ n x 2 n for all x ∈ 2 . Define A : 2 → 2 asA(x = (x 1 , x 2 , • • • ))One can easily check that A is and injective. We have Hence A is a bounded linear function (A ∈ B(2)) with A ≤ 1 (note that A(e 1 ) 2 = 1 and therefore A = 1). One can also check that A fails to have a closed range. To see thislet y = (y 1 , y 2 , • • • ) ∈ Ran A. Thus A(x = (x 1 , x 2 , • • • )) = y for some x ∈ 2 . It follows that x n = ny n for all n ∈ N. Hence y ∈ Ran A if and only if ∑ n n 2 y 2 n < ∞. Thus for each i ∈ N the vector y i = (1, 2 -( ) , • • • ) ∈ Ran A and the vector y = (1, 2 -3 2 , 3 -3 2 , • • • ) / ∈ Ran Awhile y i → y. This implies that Ran A is not closed. By Corollary 4.4 we obtain σ := inf { A(u) : u ∈ S X } = 0. Corollary 4.3 yields dist (x, Ker A) = x 2 ≤ A(x) 2 inf A(u) 2 : u ∈ U ∩ S X ,

  Let X and Y be metrizable topological vector spaces whose topologies are respectively given by the metrics d X and d Y and let E ⊂ X. Suppose that d X is translation invariant and d Y is both translation invariant and positively homogeneous. Then, f : X → Y is homogeneously continuous at x ∈ X on E if and only if for every ε > 0 there exist δ > 0 and 0

	Proposition 2.1

D(A, B) is the usual distance Euclidean distance d(A, B) if A and B lie on the same ray from the origin O and otherwise D(A, B) := d(O, A) + d(O, B).

  is uniformly continuous. Now apply Proposition 2.3. Let X and Y be metrizable topological vector spaces with corresponding metrics d X and d Y such that d X is translation invariant and d Y is both translation invariant and positively homogeneous. Let f : X → Y be a function, E be a subset of X and x ∈ X. If f is homogeneously continuous at x on E, then there exist δ , β > 0 such that

	Proposition 2.4
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We now are completely ready to prove the above claim. Proposition 5.1 Let f : X → R ∪ {+∞} be an extended-real-valued convex lower semicontinuous proper function on a finite-dimensional vector space X and ε > 0. If x ∈ int dom f is a strongly regular point of f and if 0 ∈ ∂ f ( x), then x is a local weak ε-efficient solution of ∂ f with respect to C.

Proof By hypothesis there exist a neighborhood U of x and a constant κ > 0 such that

for all x ∈ U. Since 0 ∈ ∂ f ( x), thus x is a local minimizer of f . Hence, in view of the above inequality, there is some δ > 0 such that [START_REF] Jahn | Vector optimization[END_REF]). This implies that 0 ∈ int ∂ f ( x). Now apply Corollary 5.1.

In the proof of Proposition 5.1 we saw that, for an extended-real-valued convex lower semicontinuous proper function f , if x ∈ int dom f is a strongly regular point of f and 0 ∈ ∂ f ( x), then one has κ -1 B ⊂ ∂ f ( x). As remarked by Thibault in his forthcoming book, sharp minimizers of convex functions enjoy a similar property. Proposition 5.2 (Thibault) [START_REF] Thibault | Unilateral Variational Analysis in Banach Spaces[END_REF] Let f : X → R ∪ {+∞} be an extended-real-valued function defined on a normed space X and let x ∈ dom f . If x is a sharp minimizer of f with constant τ > 0, then τB X ⊂ ∂ f ( x).

Conclusion

In this work we studied the notion of strongly regular points for functions acting between topological vector spaces whose topologies are generated by metrics. The following observations are the main achievements of this study:

By using a notion of lower directional derivative, we have obtained sufficient conditions guaranteeing that a given point x be a strongly regular point; Some estimations for the approximate solutions of finite systems of linear inequalities and linear equalities, were proven; A relationship between the notions of strongly regular points, local minimizer and local weak ε-efficient solution of the subdifferential of an extended-real-valued lower semicontinuous convex function with respect to any pointed closed convex cone was obtained.
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