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Consider a large ecosystem (foodweb) with n species, where the abundances follow a Lotka-Volterra system of coupled differential equations. We assume that each species interacts with d = dn other species and that their interaction coefficients are independent random variables. This parameter d reflects the connectance of the foodweb and the sparsity of its interactions especially if d is much smaller that n. We address the question of feasibility of the foodweb, that is the existence of an equilibrium solution of the Lotka-Volterra system with no vanishing species. We establish that for a given range of d, namely d ∝ n or d ≥ log(n) with an extra condition on the sparsity structure, there exists an explicit threshold depending on n and d and reflecting the strength of the interactions, which guarantees the existence of a positive equilibrium as the number of species n gets large. From a mathematical point of view, the study of feasibility is equivalent to the existence of a positive solution xn (component-wise) to the equilibrium linear equation:

where 1n is the n × 1 vector with components 1 and Mn is a large sparse random matrix, accounting for the interactions between 1 Feasibility of sparse ecosystems species. The analysis of such positive solutions essentially relies on large random matrix theory for sparse matrices and Gaussian concentration of measure. The stability of the equilibrium is established. The results in this article extend to a sparse setting the results obtained by Bizeul and Najim in [1].

Introduction

Lotka-Volterra system of coupled differential equations.

Large Lotka-Volterra (LV) systems are widely used in mathematical biology and ecology to model pobulations with interactions [START_REF] Gopalsamy | Global asymptotic stability in volterra's population systems[END_REF][START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF][START_REF] Kiss | Qualitative behavior of n-dimensional ratiodependent predator-prey systems[END_REF].

For a given foodweb, denote by x n = (x k (t)) 1≤k≤n the vector of abundances of the various species at time t ≥ 0. In a LV system, the abundances are connected via the following coupled equations:

dx k (t) dt = x k (t) r k -x k (t) + n =1 M k x (t) for k ∈ [n] := {1, • • • , n} ,
where M n = (M k ) stands for the interaction matrix, and r k for the intrinsic growth of species k. At the equilibrium dxn dt = 0, the abundance vector x n = (x k ) k∈ [n] is solution of the system:

x k   r k -x k + ∈[n] M k x   = 0 for x k ≥ 0 and k ∈ [n] . (1) 
An important question, which motivated recent developments [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF][START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF], is the existence of a feasible solution x n to [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], that is a solution where all the x k 's are positive, corresponding to a scenario where no species disappears. Notice that in this latter case, the system (1) takes the much simpler form:

x n = r n + M n x n ,
where r n = (r k ).

Aside from the question of feasibility arises the question of stability : for a complex system, how likely a perturbation of the solution x n at equilibrium will return to the equilibrium? Gardner and Ashby [START_REF] Gardner | Connectance of large dynamic (cybernetic) systems: Critical values for stability[END_REF] considered stability issues of complex systems connected at random. Based on the circular law for large random matrices with i.i.d. entries, May [START_REF] May | Will a large complex system be stable?[END_REF] provided a complexity/stability criterion and motivated the systematic use of large random matrix theory in the study of foodwebs, see for instance Allesina et al. [START_REF] Allesina | The stability-complexity relationship at age 40: a random matrix perspective[END_REF]. Recently, Stone [START_REF] Stone | The feasibility and stability of large complex biological networks: a random matrix approach[END_REF] and Gibbs et al. [START_REF] Gibbs | Effect of population abundances on the stability of large random ecosystems[END_REF] revisited the relation between feasibility and stability.

In the spirit of May 1 and in the absence of any prior information, we shall model the interactions of matrix M n as random and in order to simplify the analysis, we will consider intrinsic growths (r i ) i∈[n equal to 1, and the equations under study will take the following form in the sequel:

dx k (t) dt = x k (t)   1 -x k (t) + ∈[n] M k x (t)   for k ∈ [n] . (2) 

Sparse foodwebs

One of the most important parameters of the complexity of an ecosystem is its connectance, which is the proportion of interactions between species (see for instance [START_REF] Pimm | The complexity and stability of ecosystems[END_REF]). This corresponds to the proportion of non-zero entries in the interaction matrix M n . May's complexity/stability criterion asserts that the instability of an ecosystem increases with the connectance (i.e. the less sparse M n is, the more unstable is the ecosystem equilibrium). More specifically, [START_REF] Grilli | Feasibility and coexistence of large ecological communities[END_REF] specifies that the effect of the sparsity depends on the nature of the interactions (random, predator-prey, mutualistic or competitive). In the case of random interactions, [START_REF] Allesina | Stability criteria for complex ecosystems[END_REF] supports the idea that sparse ecosystems lead to a stable equilibrium. Based on ecological and biological data (see for instance [START_REF] Dunne | Food-web structure and network theory: The role of connectance and size[END_REF]), recent studies [START_REF] Busiello | Explorability and the origin of network sparsity in living systems[END_REF] suggest that foodwebs can actually be very sparse.

In a recent theoretical study, [START_REF] Marcus | Local and collective transitions in sparsely-interacting ecological communities[END_REF] study the properties of sparse ecological communities in relation with the strength of interactions.

To encode this sparsity in a simple parametric way, we first consider a directed d n -regular graph with n vertices and its associated n × n adjacency matrix ∆ n = (∆ ij ):

∆ ij =
1 if there is an edge pointing from i to j , 0 otherwise. 

• A n = (∆ ij A ij ). Let (α n ) n≥1
be a positive sequence. We assume that matrix M n has the following form

M n = ∆ n • A n α n √ d n . (3) 
Let us comment on the normalizing factor 1/(α n √ d n ). Theoretical results on sparse large random matrices [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF] assert that asymptotically

∆ n • A n √ d n = O(1) , (n → ∞)
where • stands for the spectral norm, if the degree d n of the graph satisfies d n ≥ log(n), a condition that we will assume in the remaining of the article.

In particular, normalization 1/ √ d n guarantees that matrix ∆ n • A n / √ d n has a macroscopic effect in the LV system, even for large foodwebs (large n).

The extra normalization 1/α n is to be tuned to get a feasible solution.

Denote by 1 n the n × 1 vector of ones and by A T the transpose of matrix A. In the full matrix case ∆ n = 1 n 1 T n , [START_REF] Dougoud | The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate[END_REF], based on [START_REF] Geman | A chaos hypothesis for some large systems of random equations[END_REF], proved that a feasible solution is very unlikely to exist if α n ≡ α is a constant. We thus consider the regime where α n → ∞ and will prove that there is a sharp threshold α n ∼ 2 log(n) above which a feasible solution exists (with high probability) and below which does not. This phase transition has already been established in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] for the full matrix case.

One can notice that, in sparse foodwebs (d n < n), the interaction coefficients can be stronger than when the interaction matrix is full (i.e. when

d n = n) in the sense that 1 √ dn > 1 √ n .

Models and feasibility results

The sparse random matrix model under investigation is given in [START_REF] Hofbauer | Evolutionary Games and Population Dynamics[END_REF]. Specifying the range of d n and the structure of ∆ n , we introduce hereafter two models amenable to analysis.

Model (A): Block permutation matrix.

Let n = d × m. Denote by S m the group of permutations of [m] = {1, . . . , m}. Given σ ∈ S m , consider the associated permutation matrix

P σ = (P ij ) i,j∈[m] where P ij = 1 if j = σ(i), 0 else. Denote by J d = 1 d 1 T d the d × d matrix of ones. Assume that • matrix M n is given by (3), • d = d n ≥ log(n),
• matrix ∆ n introduced in (3) is a block-permutation adjacency matrix given by Matrices Pσ, ∆ and ∆ • A are respectively given by:

∆ n = P σ ⊗ J d = (P ij J d ) i,j∈[m] , (4) 
Pσ =     1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0     , ∆ =     J d 0 0 0 0 0 0 J d 0 J d 0 0 0 0 J d 0     , ∆ • A =      A (1) 0 0 0 0 0 0 A (2) 0 A (3) 0 0 0 0 A (4) 0      , where A (µ) (µ ∈ [4]
) is a d × d matrix with i.i.d. N (0, 1) entries.

Model (B):

d is proportional to n.
Assume that M n is given by (3) and that d = d n satisfies lim

n→∞ d n n = β > 0 . (5) 
We can now state the main result of the article:

Theorem 1 Let An be a n × n matrix with i.i.d. N (0, 1) entries and ∆n given by Model (A) or (B). Assume that αn ----→ n→∞ ∞ and denote by

α * n = 2 log n . Let xn = (x k ) k∈[n] be the solution of xn = 1n + 1 αn √ dn (∆n • An) xn . (6) 
Then

1. If ∃ ε > 0 such that eventually α n ≤ (1 -ε)α * n then P min k∈[n] x k > 0 ----→ n→∞ 0 , 2. If ∃ ε > 0 such that eventually α n ≥ (1 + ε)α * n then P min k∈[n] x k > 0 ----→ n→∞ 1 .
The results of Theorem 1 are illustrated in Fig. 1.

Remarks

1. By taking d n ≥ log(n), we guarantee that the spectral norm of matrix ∆n•An √ dn is of order O(1), see [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF]. In particular, matrix I n -∆n•An αn √ dn is invertible and the solution x n can be represented as:

x n = I n - ∆ n • A n α n √ d n -1 1 n .
2. An informal first-order expansion of the solution immediatly explains this phase transition. If we expand the inverse matrix and neglect the remaining terms, we get

x n 1 n + ∆ n • A n α n √ d n 1 n = 1 + z n α n where z n = (z i ) and z i = n j=1 (∆ n • A n ) ij √ d n .
Notice that the z i 's remain i.i.d. N (0, 1). Going one step further in the approximation yields

min i∈[n] x i 1 + min i∈[n] z i α n .
By standard extreme value results, we have min i∈[n] z i ∼ -2 log(n), hence the phase transition.

3. The component-wise positivity of the solution has been studied in the full matrix case, i.e. ∆ n = 1 n 1 T n and d n = n, in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] where the same phase transition phenomenon occurs. Proof of Theorem 1 can be handled as in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] for Model (B) with non-trivial adaptations that will be specified.

In the case where d n n, a normalization issue occurs. To say it roughly, the Euclidian norm of vector 1 n / √ d n is no longer of order O(1) but of order n/d n and one needs to handle more carefully the sparsity of matrix ∆ n .

In this regard, the block-permutation structure of Model (A) is a technical and simplifying assumption. The problem of the component-wise positivity of x n for a general adjacency matrix ∆ n of a d-regular graph with d ≥ log(n) remains open. 

Stability results

A classical property of (2) is the positivity of the orbits2 : if x 0 n ∈ (R * + ) n , then x t n ∈ (R * + ) n as well (t > 0). We first recall definitions related to stability from [START_REF] Takeuchi | Global Dynamical Properties of Lotka-Volterra Systems[END_REF]Chapter 3]. An equilibrium x n is stable if for any given neighborhood W of x n , there exists a neighborhood V such that for any initial point x 0 n ∈ V , the orbit {x t n ; t ≥ 0; x 0 n ∈ V } stays in W . In addition, if the equilibrium is stable and the orbit converges to x n , the equilibrium is said asymptotically stable.

In the full matrix case (

∆ n = 1 n 1 T n , d n = n)
, it has been proved in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] that in the regime where feasibility occurs, the system is asymptotically stable in the sense that the Jacobian matrix J of the LV system (2) evaluated at x n :

J (x n ) = diag(x n ) (-I n + M n ) (7)
has all its eigenvalues with negative real part. Finally, the equilibrium is globally stable when it is asymptotically stable and the neighborhood V can be taken as the whole state place (R * + ) n .

We complement Theorem 1 and prove that feasibility and global stability occur simultaneously. Beware that in this theorem, the solution, although unique, is no longer (component-wise) positive and may have zero components corresponding to vanishing species. Notice that the assumption over ∆ n covers Models (A) and (B) but is far less restrictive. We illustrate Theorem 2 in Fig. 2. In the first figure, α n > 2 log(n), the minimum abundance remains positive. In the second one, α n < 2 log(n), the minimum abundance vanishes and the equilibrium is not feasible.

We now specify Theorem 2 in the case of feasibility.

Proposition 3 (Stability and convergence rate)

Let dn ≥ log(n), αn ----→ n→∞ ∞,
and assume that ∆n is given by Model (A) or (B). Denote by Σn the spectrum of the Jacobian matrix J (xn) given by [START_REF] May | Will a large complex system be stable?[END_REF].

Assume that there exists ε > 0 such that eventually αn ≥ (1 + ε)α * n . Then:

1. The probability that the equilibrium x n is feasible and globally stable converges to 1, 2. The spectrum Σ n asymptotically coincides with -diag(x n ) in the sense that:

max λ∈Σn min k∈[n] |λ + x k | P ----→ n→∞ 0 , 3. Moreover, max λ∈Σn Re(λ) ≤ -(1-+ )+o P (1)
where

+ := lim sup n→∞ α * n α n < 1 . ( 8 
)
As a consequence of ( 8), for any x 0 n ∈ (R + * ) n , the orbit x t n converges to the equilibrium x n at an exponential convergence rate, see Fig. 3-(A).

(a) Population dynamics with starting abundances equals to 1 2 .

(b) Histogram of the equilibrium abundances.

Fig. 3: Consider the population dynamics (x t n , t > 0) solution of (2) where M is given by (3) and ∆ n follows Model (A) with n = 15000 species, m = 1500 blocks, d = 10 > log(n) 9.62 and α n = 3 log(n). On the left, we plot 10 species randomly chosen over 15000 with starting abundances equals to 1 2 . On the right, the histogram of the abundances is represented, and the normal density with mean 1 and variance 1 α 2 n is fitted. Notice the substantial spread of the abundances despite the high value of n.

Notations

If v is a vector then v stands for its Euclidian norm; if A is a matrix then A stands for its spectral norm and A F = ij |A ij | 2 for its Frobenius norm. Let ϕ be a function from some space X (usually R) to R then ϕ ∞ = sup x∈X |ϕ(x)|. Convergence in probability is denoted by P -→. When no confusion can occur, we shall drop n and simply denote A, ∆, α, d, x, etc. instead of

A n , ∆ n , α n , d n , x n , etc.

Organization of the paper

In Section 2, the spectral norm of a sparse matrix and the general strategy of proof are described. Proof of Theorem 1 is provided in Section 3 for Model (A), and in Section 4 for Model (B). Theorem 2 is proved in Section 5. In Section 6, we conclude and state an open question.

Acknowlegments

The authors thank Maxime Clénet, François Massol and Mylène Maïda for fruitful discussions and are grateful to Nick Cook for his insight on the singular values of a sparse random matrix (see Appendix A).

2 Spectral norm of the interaction matrix and strategy of proof

2.1 The spectral norm of ∆ n • A n / √ d
In the following proposition which proof is based on [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF], we provide an estimate of ∆•A/ √ d . The fact that A's entries are N (0, 1) and that

d n ≥ log(n) is crucial. Proposition 4 Assume that A is a n × n matrix with i.i.d. N (0, 1) entries, that ∆ is a n × n adjacency matrix of a d-regular graph, that d ≥ log(n).
Then there exists a constant κ > 0 independent from n (one can take for instance κ = 22) such that

P ∆ • A √ d ≥ κ ----→ n→∞ 0 .
In particular, let δ ∈ (0, 1) be fixed and

α = α(n) ----→ n→∞ ∞. Then P ∆ • A α √ d ≤ 1 -δ ----→ n→∞ 1 . Proof Applying [17, Corollary 3.11] to ∆•A √ d with = 1 2 , we obtain P   ∆ • A √ d ≥ 3 + 15 2 log 3 2 × √ log n √ d + t √ d   ≤ e -t 2 2 . Fix t = √ log n, then e -t 2 2 = 1 √ n ----→ n→∞ 0 and t √ d
≤ 1 by assumption. Furthermore, there exists a rank n 1 such that for all n ≥ n 1 :

3 + 15 2 log(3/2) × √ log n d + t √ d ≤ 4 + 15 2 log 3 2 < κ := 22 .
Thus,

P ∆•A √ d ≥ κ → 0.
Since α → ∞, the last part of the proposition immediatly follows.

Strategy of proof

Based on the previous control of the spectral norm in probability, we reduce the problem of feasibility to the control of the extreme values of high order terms of the resolvent, considered as a Neumann sum, see Lemma 5. This preliminary step is similar to [1, Section 2.1].

Going back to Eq.( 6), we can write

I -∆•A α √ d x = 1. Introducing the resolvent Q = I -∆•A α √ d -1
which by Proposition 4 exists with probability tending to one, we obtain the representation

x = (x k ) k = I - ∆ • A α √ d -1 1 = Q1
which holds with growing probability. Denote by e k the n × 1 k-th canonical vector, then

x k = e T k x = e T k Q1.
Unfolding the resolvent as a Neumann sum, we obtain

x k = e T k Q1 = ∞ =0 e T k ∆ • A α √ d 1 = 1 + Z k α + R k α 2 (9) 
where

Z k = e T k ∆ • A √ d 1 and R k = e T k ∞ =2 1 α -2 ∆ • A √ d 1 .
Notice that the Z k 's are i.i.d. N (0, 1) random variables and denote by M = min k∈[n] Z k . Eq. ( 9) immediatly yields

   min k∈[n] x k ≥ 1 + 1 α M + 1 α 2 min k∈[n] R k , min k∈[n] x k ≤ 1 + 1 α M + 1 α 2 max k∈[n] R k . (10) 
Let

α * n = √ 2 log n, β * n = α * n -1 2α * n log(4π log n)
and denote by G(x) = e -e -x the cumulative distribution of a Gumbel distributed random variable. Then it is well-known, see for instance [20, Theorem 1.5.3], that

P α * n ( Mn + β * n ) ≥ x ----→ n→∞ G(x) . (11) 
By taking into account this convergence, we can rewrite [START_REF] Gibbs | Effect of population abundances on the stability of large random ecosystems[END_REF] as

1 + α * n α n -1 + o P (1) + min k∈[n] R k α * n α n ≤ min k∈[n]
x k (12)

≤ 1 + α * n α n -1 + o P (1) + max k∈[n] R k α * n α n .
where we used (α

* n ) -1 ( M + β * n ) = o P (1)
. Theorem 1 will then follow from the following lemma. Proof of Lemma 5 relies on a careful analysis of the order of magnitude of the extreme values of the remaining term (R k ) k∈ [n] . The sparse structure of matrix ∆•A (either Model (A) or (B)) requires a specific analysis, substantially different from the one in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF].

Proof of Theorem 1 for Model (A)

We assume that ∆ n follows Model (A).

In order to prove Lemma 5, we first take advantage of the fact that ∆ • A/ √ d is typically lower than κ (see Proposition 4) and replace R k by a truncated version R k (step 1). We then prove that A → R k (A) is Lipschitz (step 2). The quantity R k being Lipschitz, its centered version is sub-Gaussian if the matrix entries are Gaussian i.i.d. We finally prove that R k (A) is uniformily integrable (step 3). The conclusion easily follows. Although the general strategy is similar to the one developed in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], the proofs are substantially different. In particular, proofs of step 2 and 3 heavily rely on the block permutation structure of the matrices.

Step 1: Truncation

Toward proving Lemma 5, sub-Gaussiannity is an important property, which follows from Lipschitz properties by standard concentration of measure arguments. Unfortunately A → R k (A) fails to be Lipschitz (simply notice that R k (A) has quadratic and higher order terms). In order to circumvent this issue, we provide a truncated version of R k .

Let κ > 0 as in Prop. 4 (one can take κ = 22), η ∈ (0, 1) and ϕ : R + → [0, 1] a smooth function:

ϕ(x) = 1 if x ∈ [0, κ + 1 -η] , 0 if x ≥ κ + 1 ( 13 
)
strictly decreasing from 1 to 0 for x ∈ (κ + 1 -η, κ + 1). According to Prop. 4,

ϕ d (A) := ϕ ∆ • A √ d
is equal to one with high probability. We introduce the truncated value:

Rk (A) = ϕ d (A)R k (A) .
We have

P max k R k (A) = max k Rk (A) ≤ P ∃k ∈ [n], R k (A) = Rk (A) ≤ P(ϕ d (A) < 1) ≤ P ∆ • A √ d ≥ κ ----→ n→∞ 0 ,
from which we deduce

max k∈[n] R k -max k∈[n] Rk α n √ 2 log n P ----→ n→∞ 0 . ( 14 
)
It is therefore sufficient to prove

max k∈[n] Rk α n √ 2 log n P ----→ n→∞ 0 (15) 
to establish the first part of Lemma 5. The property of the minimum can be proved similarly.

Step 2: Lipschitz property for Rk (A)

For ≥ 2, we introduce the following summand terms:

ρ k, (A) = e T k 1 α -2 ∆ • A √ d 1 and ρk, (A) = ϕ d (A)ρ k, (A) , (16) 
so that R k (A) = ∞ =2 ρ k, (A) and Rk (A) = ∞ =2 ρk, (A).
The following lemma is the main result of this section.

Lemma 6 Let κ > 0 as in Proposition 4, δ ∈ (0, 1) and n 0 such that for all n ≥ n 0 ,

κ + 1 αn ≤ 1 -δ .
For ≥ 2 and n ≥ n 0 , the function ρk, :

Mn(R) → R is K -Lipschitz, i.e. ρk, (A) -ρk, (B) ≤ K A -B F , (17) 
where K = K (κ, n 0 , δ) > 0 is a constant independent from k, d and n ≥ n 0 . Moreover, K := ≥2 K < ∞. In particular, the function Rk is K-Lipschitz :

Rk (A) -Rk (B) ≤ K A -B F . (18) 

Feasibility of sparse ecosystems

Given a n × n matrix C, we define its hermitization matrix H(C) by:

H(C) = 0 C C T 0 .
A well-known property of H(C) is its symmetric spectrum and the fact that the singular values of C are the non-negatives eigenvalues of H(C). In particular, C corresponds to the largest eigenvalue of H(C).

In order to prove Lemma 6, we first consider the case where H(∆ • A) has a simple spectrum, a sufficient condition for the differentiability of ∆ • A , we then prove that the Euclidian norm of the gradient of ρk, (A) is bounded : ∇ρ k, (A) ≤ K and finally proceed by approximation to get the general Lipschitz property.

Proof We first consider the case where H(∆ • A) has a simple spectrum. In this case, ∆ • A is equal to the largest eigenvalue of H(∆ • A) which has multiplicity 1 and is thus differentiable. Denote by

∂ ij = ∂ ∂Aij . Notice that if ∆ ij = 0, then for any smooth function f : R n×n → R, ∂ ij f (∆ • A) = 0.
If needed, we will take advantage of this property.

We have :

∇ρ k, (A) = n i,j=1 ∂ ij ρk, (A) 2 ,
and

∂ ij ρk, (A) = ∂ ij ϕ d (A)ρ k, (A) = ∂ ij ϕ d (A) ρ k, (A) + ϕ d (A)∂ ij ρ k, (A) =: S 1,ij + S 2,ij .
In particular,

n i,j=1 ∂ ij ρk, (A) 2 ≤ 2 n i,j=1 S 1,ij 2 + 2 n i,j=1 S 2,ij 2 .
We first evaluate ij |S 1,ij | 2 . Recall that ∆•A being the maximum eigenvalue of H(∆•A) which by assumption is simple, it is differentiable by [START_REF] Horn | Matrix Analysis[END_REF]Theorem 6.3.12]. Let u and v be respectively the left and right normalized singular vectors associated to the largest singular value ∆

• A of ∆ • A. Then H(∆ • A) w = ∆ • A w , where w = u v .
Notice that w 2 = 2. We have

∂ ij ϕ d (A) = 1 √ d ϕ ∆ • A √ d ∂ ij ∆ • A and ∂ ij ∆ • A = 1 w (u T e i e T j v + v T e j e T i u) = u T e i e T j v if ∆ ij = 0 , 0 else. ( 19 
) Let i ∈ [n]. Denote by I i = {j ∈ [n], ∆ ij = 1} ; ( 20 
) notice that card(I i ) = d. We have i,j∈[n] S 1,ij 2 = i∈[n] j∈Ii u T e i e T j vϕ ∆ • A √ d 1 √ d ρ k, (A) 2 , ≤ ϕ ∆ • A √ d 1 √ d ρ k, (A) 2 i∈[n] u T e i 2 j∈[n] e T j v 2 , = ϕ ∆ • A √ d 1 √ d ρ k, (A) 2 .
We now focus on

1 √ d ρ k, (A) 2 = e T k 1 α -2 ∆ • A √ d 1 √ d 2 .
Notice that 1/ √ d = n/d. Since matrix ∆ • A follows Model (A), one can notice that (∆ • A) remains a block matrix with only d nonzero terms per row (and per column as well). This property is fundamental for the remaining estimates and fully relies on the Model (A) assumption.

Denote by

J k, = p ∈ [n], (∆ • A) kp = 0 (21) 
and by 1 J k, the n × 1 vector with zero coordinates except those belonging to J k, , set to 1. In particular,

1 J k, = √ d. Then e T k (∆ • A) 1 = e T k (∆ • A) 1 J k, . We have 1 √ d ρ k, (A) 2 = e T k ∆ • A α √ d -2 ∆ • A √ d 2 1 √ d 2 , = e T k ∆ • A α √ d -2 ∆ • A √ d 2 1 J k, √ d 2 , ≤ e T k 2 ∆ • A α √ d -2 2 ∆ • A √ d 4 1 J k, √ d 2 , ≤ ∆ • A α √ d 2( -2) ∆ • A √ d 4 .
Using the fact that ϕ 4 , and finally

∆•A √ d = 0 if ∆•A √ d ≥ κ + 1, we have ϕ ∆ • A √ d 1 √ d ρ k, (A) 2 ≤ ϕ ∆ • A √ d 2 ∆ • A α √ d 2( -2) ∆ • A √ d 4 , ≤ ϕ 2 ∞ (1 -δ) 2( -2) (1 + κ)
n i,j=1 S 1,ij 2 ≤ ϕ 2 ∞ (1 -δ) 2( -2) × (1 + κ) 4 . ( 22 
)
We now evaluate

n i,j=1 S 2,ij 2 = i,j∈[n] ϕ d (A)∂ ij ρ k, (A) 2 .
Recall the definitions of I i and J k introduced in ( 20), [START_REF] Horn | Matrix Analysis[END_REF]. We have

∂ ij ρ k, (A) = 1 α -2 ( √ d) -1 p=0 e T k (∆ • A) p e i e T j (∆ • A) -1-p 1 if j ∈ I i
and zero else. Then

i∈[n] j∈Ii ∂ ij ρ k, (A) 2 ≤ α 2( -2) d   i∈[n] j∈Ii e T k (∆ • A) -1 e i e T j 1 2 + -2 p=0 n i=1 j∈Ii e T k (∆ • A) p e i e T j (∆ • A) -1-p 1 2   , = α 2( -2) d   d i∈[n] [(∆ • A) -1 ] k,i 2 + d -2 p=0 i∈[n] j∈Ii [(∆ • A) p ] k,i e T j (∆ • A) -1-p 1 √ d 2   , ≤ α 2( -2) d -1 (∆ • A) -1 (∆ • A) -1 T k,k (23) 
+ -2 p=0 i∈[n] [(∆ • A) p ] k,i 2 j∈Ii e T j (∆ • A) -1-p 1 √ d 2   .
We concentrate on the term

T = j∈Ii e T j (∆ • A) -1-p 1 √ d 2
and prove that

T ≤ ∆ • A 2( -1-p) . ( 24 
)
Let

I Ii = diag(1 Ii (k); k ∈ [n]})
, where 1 Ii is the n × 1 vector with component 1 if it belongs to I i and zero else, then

T = 1 T √ d (∆ • A) -1-p T I Ii (∆ • A) -1-p 1 √ d . Notice that (∆ • A) -1-p has the form (Pτ ⊗ 1 d 1 T d )
• B for some τ ∈ Sm and some n × n matrix B. In particular, taking into account the matching between the indices of I Ii and (∆ • A) -1-p 's blocs, there exists a d × d bloc of matrix (∆ • A) -p-1 say B i such that matrix 1) .

(∆ • A) -1-p T I Ii (∆ • A) -1-p is zero except a d × d bloc B T i B i on the diagonal and T = 1 T d √ d B T i B i 1 d √ d ≤ B T i B i ≤ B i 2 ≤ (∆ • A) -p-1 2 ≤ ∆ • A 2( -p-
Eq.( 24) is established. Notice in particular that the estimate does not depend on the index i. Plugging this estimate into [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF] yields

i∈[n] j∈Ii ∂ ij ρ k, (A) ≤ α 2( -2) d -1 (∆ • A) -1 2 + -2 p=0 (∆ • A) p * (∆ • A) p kk ∆ • A 2( -p-1)   , ≤ α 2( -2) d -1   ∆ • A 2( -1) + -2 p=0 ∆ • A 2p ∆ • A 2( -p-1)   , = 2 α 2( -2) d -1 ∆ • A 2( -1) = 2 ∆ • A α √ d 2( -2) ∆ • A √ d 2 .
Multiplying by |ϕ d (A)| 2 finally yields the appropriate estimates:

i,j∈[n] S 2,ij 2 ≤ 2 ϕ d,σ (A) 2 ∆ • A α √ d 2( -2) ∆ • A √ d 2 , ≤ 2 (1 -δ) 2( -2) (1 + κ) 2 . ( 25 
)
Combining ( 22) and ( 25), we obtain :

∇ρ k, (A) ≤ 2 n i,j=1 S 1,ij 2 + 2 n i,j=1 S 2,ij 2 , ≤ 2(1 -δ) -2 (κ + 1) 2 ( ϕ ∞ + ) =: K . ( 26 
)
where K does not depend upon k, n, d and is summable. So far, we have established a local estimate over ∇ρ k, (A) for any matrix A such that H(∆ • A) has a simple spectrum. We first establish the Lipschitz estimate [START_REF] Bandeira | Sharp nonasymptotic bounds on the norm of random matrices with independent entries[END_REF] 

; 1 ≤ l ≤ L) : t 0 = 0 < t 1 < • • • < t L < t L+1 = 1. Since H (∆ • A t ) has simple spectrum for t ∈ [0; ) ∪ (1 -; 1], it has simple spectrum for all t / ∈ {t l , l ∈ [L]}. We can now proceed: ρk, (A t1 ) -ρk, (A) = lim τ t1 τ 0 d dt ρk, (A t ) dt = lim τ t1 τ 0 ∇ρ k, (A t ) • d dt (A t )dt , ≤ lim τ t1 τ 0 ∇ρ k, (A t ) × B -A F dt ≤ K t 1 B -A F .
By iterating the process over the intervals (t l-1 , t l ), we get ρk, (B) -ρk, (A)

≤ L+1 l=1 ρk, (A t l ) -ρk, A t l-1 , ≤ L+1 l=1 K (t l -t l-1 ) B -A F = K B -A F .

Hence the Lipschitz property along the segment [A, B].

To go beyond, we proceed by density and prove that for a given matrix ∆ as in Model (A), the set of matrices (∆ • A) such that H(∆ • A) has a simple spectrum is dense in the set of matrices (∆ • A, A ∈ R n×n ).

Let Pσ be the permutation matrix used to define ∆ in (4) and I d the identity matrix of size d. We define the following n × n matrices

Π = Pσ ⊗ I d and D A = (∆ • A)Π T . (27) 
Notice that Π is a n × n permutation matrix and that D A is a block diagonal matrix with d × d blocks on the diagonal. Since Π Π T = Π T Π = In, we also have

D A Π = ∆ • A .
In the framework of Example 1, matrices Π and D A are given by:

Π =     I d 0 0 0 0 0 0 I d 0 I d 0 0 0 0 I d 0     and D A =      A (1) 0 0 0 0 A (2) 0 0 0 0 A (3) 0 0 0 0 A (4)     
.

An important feature of D A is that ∆ • A and D A have the same singular values: 

D A D T A = (∆ • A) Π T Π (∆ • A) T = (∆ • A)(∆ • A) T , hence H(∆ • A)
A (µ) = U (µ) Λ (µ) V (µ) .
Consider a simultaneous ε-perturbation of the Λ (µ) 's into Λ ε (µ) so that all the Λ ε (µ) 's have distinct diagonal elements, ε-close to the Λ (µ) 's. Denote by

A ε (µ) = U (µ) Λ ε (µ) V (µ) . and let D ε A be the block diagonal matrix with blocks (A ε (µ) ) µ∈[m] . Then H(D ε A ) is arbitrarily close to H(D A ) and has a simple spectrum. Note that D ε A Π is ε-close to ∆ • A, is such that H(D ε
A Π) has a simple spectrum and has the same pattern as ∆ • A in the sense that:

∆ ij = 0 ⇒ D ε A Π ij = 0 .
To emphasize this property, we introduce the n × n matrix A ε defined as

[A ε ] ij = [D ε A Π] ij if ∆ ij = 1 , A ij else so that ∆ • A ε -∆ • A F = A ε -A F ---→ ε→0 0 .
We can now conclude. Let ∆ • A, ∆ • B be given and

D ε A Π = ∆ • A ε and D ε B Π = ∆ • B ε constructed as previously; notice that C → ρk, (C) is continuous. Then ρk, (B) -ρk, (A) ≤ ρk, B ε -ρk, (B) + K B -A F + ρk, (A ) -ρk, (A) , ---→ →0 K B -A F .
This concludes the proof of the Lipschitz property.

Step 3: uniform estimate for E Rk (A)

As a consequence of the Lipschitz property of R k , R k (A) if centered is sub-Gaussian if A is a n×n matrix with i.i.d. N (0, 1) entries. The following estimate easily follows using Tsirelson-Ibragimov-Sudakov inequality ([23, Theorem 5.5]).

Proposition 7 Under the assumptions of Lemma 6, the following estimate holds true:

E max k∈[n]
Rk -E Rk ≤ K 2 log n .

For the proof, see [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF]Proposition 2.3]. The rest of the section is devoted to the control of E R k (A). Denote by 1 (µ) the n×1 vector with ones for the indices (µ i ) i∈[d] and zeros elsewhere.

We have

E Rµ k (A) = 1 d d i=1 E Rµ i (A) = 1 d d i=1 E ϕ d (A)e T µi ∆ • A √ d 2 I - ∆ • A α √ d -1 1 , = 1 d E ϕ d (A)1 (µ)T ∆ • A √ d 2 I - ∆ • A α √ d -1 1 , ≤ E ϕ d (A) 1 (µ)T √ d ∆ • A √ d 2 I - ∆ • A α √ d -1 1 √ d . (28) 
We start by expanding

I -∆•A α √ d -1
:

ϕ d (A) 1 (µ)T √ d ∆ • A √ d 2 I - ∆ • A α √ d -1 1 √ d = ϕ d (A) ∞ =2
Notice that (∆ • A) is a block matrix constituted of m blocks of size d × d. In particular, among the d row

(∆ • A) ij i∈{µ1,••• ,µ d }, j∈[n]
,

there exist ν 1 , • • • , ν d (consecutive) indices such that the only non-null entries are

(∆ • A) ij i∈{µ1,••• ,µ d }, j∈{ν1,••• ,ν d } .
Denote by 1 (ν) the n × 1 vector of ones for the indices (ν i ) i∈[d] and zeroes elsewhere. As a consequence of the previous remark,

1 (µ)T (∆ • A) 1 = 1 (µ)T (∆ • A) 1 (ν)
and

1 α -2 1 (µ)T √ d ∆ • A √ d 1 √ d = 1 α -2 1 (µ)T √ d ∆ • A √ d 1 (ν) √ d ≤ 1 α -2 1 (µ) √ d ∆ • A √ d 1 (ν) √ d , ≤ ∆ • A α √ d -2 ∆ • A √ d 2 .
Let κ > 0 as in Proposition 4, δ ∈ (0, 1), n 0 ∈ N as in Lemma 6, then

∞ =2 1 α -2 ϕ d (A) 1 (µ) * √ d ∆ • A √ d 1 √ d ≤ ϕ d (A) ∞ =2 ∆ • A α √ d -2 ∆ • A √ d 2 , = ϕ d (A) ∆ • A √ d 2 ∞ =0 ∆ • A α √ d ≤ (1 + κ) 2 ∞ =2 (1 -δ) , ≤ (1 + κ) 2 δ .
Plugging this estimate into (28) concludes the proof of the estimation of |E Rµ k (A)|. This estimate being uniform over µ 1 , • • • , µ d and over all the blocks (A (µ) ), the proposition is proved.

Proof of lemma 5

Combining Lemma 6, Propositions 7 and 8 one can prove Lemma 5 as in [1, Section 2.3] with minor adaptations.

Proof of Theorem 1 for Model (B)

We assume that ∆ n follows Model (B).

The strategy of proof closely follows the one in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF], with one specific issue to handle: the uniform bound on E R k . An important property exploited in [START_REF] Bizeul | Positive solutions for large random linear systems[END_REF] to establish a uniform bound over E R k was the exchangeability of the R k 's (or block exchangeability in the case of Model (A)). There is not enough structure in Model (B) to guarantee this exchangeability (which might not hold).

We carefully address this issue hereafter. 

E Rk = O α √ d .
Proof of Proposition 9 relies on two important facts.

• The fact that almost surely H(∆ • A) has a simple spectrum, hence the Lipschitz function ∆ • A is almost surely differentiable with an explicit formula for the partial derivatives, see [START_REF] Takeuchi | Global Dynamical Properties of Lotka-Volterra Systems[END_REF]. Details are provided in Appendix A. • The Gaussian integration by parts (i.b.p.) formula: If Z ∼ N (0, 1) then E Zf (Z) = Ef (Z). Interestingly, this formula holds for f Lipschitz. In this case, f is absolutely continuous hence almost surely differentiable (see for instance [START_REF] Hartman | [END_REF]Chap. 7,Thm. 4]) with linear growth at infinity.

Recall that ϕ

d (A) = ϕ ∆•A √ d
, where ϕ is defined in [START_REF] Allesina | Stability criteria for complex ecosystems[END_REF].

Proof In order to get an asymptotic bound over E R k (A), we expand its expression:

E R k (A) = E ϕ d (A)e T k ∆ • A √ d 2 Q1 , = 1 d i∈I k j∈[n] E ϕ d (A)(∆ • A) ki ((∆ • A)Q) ij , = α √ d i∈I k j∈[n] E ϕ d (A)(∆ • A) ki -δ ij + Q ij , = - α √ d i∈I k E [ϕ d (A)(∆ • A) ki ] + α √ d i∈I k j∈[n] E ϕ d (A)(∆ • A) ki Q ij .
At this point, we use the Gaussian i.b.p. formula applied to A → ϕ d (A) which is Lipschitz and a.s. differentiable with explicit derivative (see [START_REF] Takeuchi | Global Dynamical Properties of Lotka-Volterra Systems[END_REF]).

E R k (A) = - α √ d i∈I k E [∂ ki ϕ d (A)] + α √ d i∈I k j∈[n] E ∂ ki ϕ d (A)Q ij , = - α d i∈I k E u k v i ϕ ∆ • A √ d + α d i∈I k j∈[n] E u k v i ϕ ∆ • A √ d Q ij + α √ d i∈I k j∈[n] E ϕ d (A) ∂ ki Q ij , =: T 1 + T 2 + T 3 .
We first handle the term T 1 by Cauchy-Schwarz inequality:

|T 1 | ≤ α d E u k i∈I k v i ϕ ∆ • A √ d , ≤ α d E √ d v ϕ ∆ • A √ d = O α √ d .
We now handle the term T 2 :

|T 2 | ≤ α d E   ϕ i j v i Q ij   , ≤ α d E ϕ • v * Q1 ≤ α √ d n d E ϕ Q = O α √ d .
We finally handle the term T 3 . Notice that

∂ ki Q ij = 1 α √ d Q ik Q ij and denote by ω := (Q ik 1 I k ) i∈[n] . Notice that ω 2 ≤ e * k Q * Qe k hence ω ≤ Q and |T 3 | = 1 d E ϕ d (A)ω * Q1 ≤ 1 d E [ϕ d (A) ω Q 1 ] , ≤ √ n d E ϕ d (A) Q 2 = O 1 √ d .
Combining these asymptotic notations finally yields :

E R k (A) = O α √ d .
Notice that even if the bound obtained in Proposition 9 is weaker than the one obtained in Proposition 8 or in [1, Prop. 2.4], it is still sufficient to establish the feasibility under Model (B).

5 Proofs of Theorem 2 and Proposition 3 We now rely on the asymptotic spectral properties of M n to study the Volterra-Liapunov stability of M n -I n . We drop the subscript n in the sequel. Take D = I then

D(M -I) + (M -I) T D = M + M T -2I
is an hermitian matrix. This matrix is negative definite if all its eigenvalues are negative. Given that M + M T is also hermitian, we just have to check that the spectral radius ρ M + M T < 2. According to Proposition 4:

P ρ M + M T < 2 ≥ P ( M < 1) -----→ n→+∞ 1.
Thus, the probability that M -I is Volterra-Liapunov stable converges to 1 as n → ∞. By [START_REF] Takeuchi | Global Dynamical Properties of Lotka-Volterra Systems[END_REF]Th. 3.2.1], this implies that the probability that the LV system (2) has a unique nonnegative and globally stable equilibrium converges to 1 as n → ∞.

Proof of Proposition 3

We first prove the first part of the proposition. By Theorem 2, there exists a unique nonnegative globally stable equilibrium to [START_REF] Gopalsamy | Global asymptotic stability in volterra's population systems[END_REF]. If there exists > 0 such eventually α n ≥ (1 + )α * n where α * n = √ 2 log n, then this equilibrium x n is positive by Theorem 1 with overwhelming probability as n → ∞.

The rest of the proof closely follows the proof of [1, Corollary 1.4] and is omitted.

Conclusion

In this article we study the feasibility and stability of sparse large ecosystems modelled by a large Lotka-Volterra system of coupled differential equations:

d x n dt = x n (1 n -x n + M n x n ) .
Our work is motivated by recent research [START_REF] Busiello | Explorability and the origin of network sparsity in living systems[END_REF] which suggests that in the light of many ecological and biological datasets living networks are often sparse. It also illustrates the interest to study feasibility in relation with the normalization of the interaction matrix's entries beyond the non-sparse full i.i.d. models, and opens perspectives to study models with more structure such as elliptic interactions or patch models.

In the model under investigation, the interaction matrix M n is a sparse random matrix, where the sparsity is encoded by a patterned matrix ∆ n based on an underlying d n -regular graph, and the randomness by i.i.d. random variables (matrix A n ) for non-null entries. The single parameter d n of the regular graph provides an easy one-dimensional parametrization of the connectance of the foodweb.

Our main conclusion is that beyond the standard normalization 1/ √ d n of the interaction matrix ∆ • A, which guarantees a bounded norm

∆ • A √ d = O P (1) ,
an extra factor 1/α n with α n → ∞ is needed to reach feasibility. The interaction matrix finally writes

M n = ∆ n • A n α n √ d n
and a sharp phase transition occurs at α * n = 2 log(n). Interestingly, the same phase transition as in the non-sparse case occurs. In the sparse setting log(n) ≤ d n n, we rely on an extra block-structure assumption over matrix ∆ n , namely Model (A), to establish the feasibility and the phase transition. Our method of proof crucially relies on this technical assumption which somehow concentrates the non-null entries of the sparse interaction matrix (and its powers) into localized blocks.

However simulations (cf. Fig 4) suggest that this block structure assumption is not necessary and could be relaxed. Hence the following: Is it true that the same phase transition as in Theorem 1 holds?

Example 1

 1 where ⊗ is the Kronecker matrix product.Notice that ∆ n still corresponds to the adjacency matrix of a d-regular graph. To illustrate these definitions, we provide an example. Let n = m × d with m = 4 and σ ∈ S 4 defined by

Fig. 1 :

 1 Fig. 1: Let n = 15000 with log(n) 9.61. For d = 10 and m = 1500, we first draw at random a permutation σ ∈ S m and fix ∆ n = P σ ⊗ 1 d 1 T d once for all. Each point of the solid line represents the proportion of feasible solutions x n of (6) over 2000 realizations of random matrices A n for different values of κ, with α n = κ log(n). The same simulation is realized with d = 30 over 500 realizations of A n (dotted line).

Theorem 2 (

 2 Global stability, Takeuchi and Adachi [19, Theorem 3.2.1]) Let dn ≥ log(n), αn ----→ n→∞ ∞, and ∆n the adjacency matrix of a dn-regular graph. Then, with probability going to one as n → ∞, Eq. (1) admits a unique nonnegative solution xn. Moreover, this solution is a globally stable equilibrium.

  (a) Feasible equilibrium for αn = 3 log(n). (b) Vanishing species for αn = log(n).

Fig. 2 :

 2 Fig. 2: LV system with feasible equilibrium (left) and vanishing species (right): minimum, maximum and mean of the population dynamics (x t n , t > 0) solution of (2) for n = 5000 (log(n) 8.51), d = 10 and ∆ n follows Model (A).In the first figure, α n > 2 log(n), the minimum abundance remains positive. In the second one, α n < 2 log(n), the minimum abundance vanishes and the equilibrium is not feasible.

Lemma 5

 5 Under the assumptions of Theorem 1, the following convergence holds max k∈[n] R k

  and H(D A ) have the same eigenvalues and their spectrum, if simple, is simultaneously simple. Denote by (A (µ) ) µ∈[m] the m diagonal d × d blocks of matrix D A and consider their SVD

Proposition 8

 8 Under the assumptions of Theorem 1, there exists n 1 ∈ N and a constant C > 0 such that for all n ≥ n 1 ,sup k∈[n] E Rk (A) ≤ C . Proof Recall that n = d × m and that ∆ • A is a block permutation matrix with m blocks (A (µ) ) µ∈[m] of size d × d.We choose a given block A (µ) and denote by µ 1 , • • • , µ d the d indices corresponding to the rows of block A (µ) in ∆ • A. By exchangeability, we have ∀k ∈ [d] , E Rµ k (A) = E Rµ1 (A) .

4. 1 AProposition 9

 19 uniform bound over E R k for Model (B) Under the assumptions of Theorem 1, uniformly in k ∈ [n],

Fig. 4 :

 4 Fig. 4: Let = 15000, d = 10 (notice that d ≥ log(n) 9.61). Matrix ∆ n is drawn at random once for all among the adjacency matrices of d-regular graphs (and a priori does not follow Model (A)). Each point of the curve represents the proportion of feasible solutions x n of Eq. (6) over 1500 realizations of random matrices A n for different values of κ, with α n = κ log(n). The phase transition resemble those of Figure 1.

Open question 10

 10 Let ∆n the adjacency matrix of a deterministic dnregular graph, with dn ≥ log(n), and An a random matrix with i.i.d. N (0, 1) entries. Consider the equation xn = 1n + ∆n • An αn √ dn xn , αn → ∞ .

  The proof is a combination of Takeuchi and Adachi's theorem[START_REF] Takeuchi | Global Dynamical Properties of Lotka-Volterra Systems[END_REF], Theorem 3.2.1] and Proposition 4. We first recall the definition of Volterra-Liapunov stability, see for instance [19, Section 3.2]: Let B be a n × n real matrix. B is Volterra-Liapunov stable if there exists a n × n positive definite diagonal matrix D such that DB + B T D is negative definite. Going back to Eq. (2), according to Takeuchi and Adachi's theorem [19, Th. 3.2.1], this LV system has a unique nonnegative and globally stable equilibrium if M n -I n is Volterra-Liapunov stable.

	5.1 Proof of Theorem 2

Beware that this property does not prevent some components xi(t) to converge to zero, hence does not enforce a feasible equilibrium.

(µ)T α -2 √ d ∆ • A √ d 1 √ d .

Appendix A With probability one, the singular values of a sparse random matrix are distinct

We establish hereafter that with probability one the singular values of matrix ∆ • A are distinct, a key argument in the proof of Proposition 9 to compute the partial derivatives of A → ∆ • A .

The lemma below and its proof are inspired by Nick Cook [START_REF] Cook | Multiplicity of singular values for patterned gaussian matrices[END_REF], whom we thank for his help.

Lemma 11 (Cook [25]) Let n ≥ 1, An a n × n matrix with i.i.d. N (0, 1) entries and ∆n the adjacency matrix of a d-regular graph. Then with probability one, all the singular values of ∆n • An are distinct.

Remark

The original statement of Cook is slightly more general: matrix A n entries only need a distribution with positive density, and the deterministic matrix ∆ n only needs a generalized diagonal, i.e. (∆ iσ(i) ; i ∈ [n]) for some σ ∈ S n , with n -1 non null entries.

Proof Let E ∆ be the set of matrices with entries supported on the nonzero entries of ∆,

Thus, E ∆ is the support of the law of ∆ • A. Besides, E ∆ is a variety as a subspace of R n×n . Let R denote the set of matrices with a repeated singular value. It is the set of n × n matrices X for which the characteristic polynomial p of X T X has zero discriminant (ρ), see for instance [START_REF] Cohen | A Course in Computational Algebraic Number Theory[END_REF]Section 3.3.2].

where P : R n×n → R defined by P (X) = ρ(p(X T X)) is a polynomial in the entries of X. It follows that R is an algebraic variety in R n×n .

Hence, E ∆ ∩ R is either equal to E ∆ , or a subvariety of E ∆ of zero Lebesgue measure (under the product measure on E ∆ ).

For the claim, it suffices to show that E ∆ ⊂ R hence to exhibit Y ∈ E ∆ with distinct singular values. By Birkhoff's theorem [21,