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Abstract

Consider a large ecosystem (foodweb) with n species, where the abun-
dances follow a Lotka-Volterra system of coupled differential equations.
We assume that each species interacts with d = dn other species
and that their interaction coefficients are independent random variables.
This parameter d reflects the connectance of the foodweb and the
sparsity of its interactions especially if d is much smaller that n.
We address the question of feasibility of the foodweb, that is the exis-
tence of an equilibrium solution of the Lotka-Volterra system with no
vanishing species. We establish that for a given range of d, namely
d ∝ n or d ≥ log(n) with an extra condition on the sparsity
structure, there exists an explicit threshold depending on n and d
and reflecting the strength of the interactions, which guarantees the
existence of a positive equilibrium as the number of species n gets large.
From a mathematical point of view, the study of feasi-
bility is equivalent to the existence of a positive solution
xn (component-wise) to the equilibrium linear equation:

xn = 1n + Mnxn ,

where 1n is the n × 1 vector with components 1 and Mn is a
large sparse random matrix, accounting for the interactions between
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species. The analysis of such positive solutions essentially relies on
large random matrix theory for sparse matrices and Gaussian con-
centration of measure. The stability of the equilibrium is established.
The results in this article extend to a sparse setting
the results obtained by Bizeul and Najim in [1].

Keywords: Theoretical ecology, Foodwebs, Feasibility and stability,
Lotka-Volterra systems, Large random matrices, Gaussian concentration.
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1 Introduction

Lotka-Volterra system of coupled differential equations.

Large Lotka-Volterra (LV) systems are widely used in mathematical biology
and ecology to model pobulations with interactions [2–4].

For a given foodweb, denote by xn = (xk(t))1≤k≤n the vector of abun-
dances of the various species at time t ≥ 0. In a LV system, the abundances
are connected via the following coupled equations:

dxk(t)

dt
= xk(t)

(
rk − xk(t) +

n∑
`=1

Mk`x`(t)

)
for k ∈ [n] := {1, · · · , n} ,

where Mn = (Mk`) stands for the interaction matrix, and rk for the intrinsic
growth of species k. At the equilibrium dxn

dt = 0, the abundance vector xn =
(xk)k∈[n] is solution of the system:

xk

rk − xk +
∑
`∈[n]

Mk`x`

 = 0 for xk ≥ 0 and k ∈ [n] . (1)

An important question, which motivated recent developments [1, 5], is the
existence of a feasible solution xn to (1), that is a solution where all the xk’s
are positive, corresponding to a scenario where no species disappears. Notice
that in this latter case, the system (1) takes the much simpler form:

xn = rn +Mnxn ,

where rn = (rk).
Aside from the question of feasibility arises the question of stability : for a

complex system, how likely a perturbation of the solution xn at equilibrium
will return to the equilibrium? Gardner and Ashby [6] considered stability
issues of complex systems connected at random. Based on the circular law for
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large random matrices with i.i.d. entries, May [7] provided a complexity/stabil-
ity criterion and motivated the systematic use of large random matrix theory
in the study of foodwebs, see for instance Allesina et al. [8]. Recently, Stone
[9] and Gibbs et al. [10] revisited the relation between feasibility and stability.

In the spirit of May1 and in the absence of any prior information, we
shall model the interactions of matrix Mn as random and in order to simplify
the analysis, we will consider intrinsic growths (ri)i∈[n equal to 1, and the
equations under study will take the following form in the sequel:

dxk(t)

dt
= xk(t)

1− xk(t) +
∑
`∈[n]

Mk`x`(t)

 for k ∈ [n] . (2)

Sparse foodwebs

One of the most important parameters of the complexity of an ecosystem is
its connectance, which is the proportion of interactions between species (see
for instance [11]). This corresponds to the proportion of non-zero entries in
the interaction matrix Mn. May’s complexity/stability criterion asserts that
the instability of an ecosystem increases with the connectance (i.e. the less
sparse Mn is, the more unstable is the ecosystem equilibrium). More specifi-
cally, [12] specifies that the effect of the sparsity depends on the nature of the
interactions (random, predator-prey, mutualistic or competitive). In the case
of random interactions, [13] supports the idea that sparse ecosystems lead to
a stable equilibrium. Based on ecological and biological data (see for instance
[14]), recent studies [15] suggest that foodwebs can actually be very sparse.
In a recent theoretical study, [16] study the properties of sparse ecological
communities in relation with the strength of interactions.

To encode this sparsity in a simple parametric way, we first consider a
directed dn-regular graph with n vertices and its associated n × n adjacency
matrix ∆n = (∆ij):

∆ij =

{
1 if there is an edge pointing from i to j ,

0 otherwise.

In the considered graph, each vertex i has dn edges pointing from a vertex
k ∈ [n] to i, and has dn other edges pointing from i to a vertex ` ∈ [n]. An edge
pointing from i to i is called a loop. In particular, matrix ∆n is deterministic,
has exactly dn non-null entries per row and per column, and n× dn non-null
entries overall.

Denote by An a n × n matrix with independent Gaussian N (0, 1) entries
and consider the Hadamard product matrix ∆n ◦An = (∆ijAij). Let (αn)n≥1

1Beware that May did not consider LV systems but rather used a random matrix model for the
Jacobian at equilibrium of a generic system of coupled differential equations.
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be a positive sequence. We assume that matrix Mn has the following form

Mn =
∆n ◦An
αn
√
dn

. (3)

Let us comment on the normalizing factor 1/(αn
√
dn). Theoretical results on

sparse large random matrices [17] assert that asymptotically∥∥∥∥∆n ◦An√
dn

∥∥∥∥ = O(1) , (n→∞)

where ‖ · ‖ stands for the spectral norm, if the degree dn of the graph satisfies
dn ≥ log(n), a condition that we will assume in the remaining of the article.
In particular, normalization 1/

√
dn guarantees that matrix ∆n ◦An/

√
dn has

a macroscopic effect in the LV system, even for large foodwebs (large n).
The extra normalization 1/αn is to be tuned to get a feasible solution.
Denote by 1n the n× 1 vector of ones and by AT the transpose of matrix

A. In the full matrix case ∆n = 1n1
T
n, [5], based on [18], proved that a feasible

solution is very unlikely to exist if αn ≡ α is a constant. We thus consider
the regime where αn → ∞ and will prove that there is a sharp threshold
αn ∼

√
2 log(n) above which a feasible solution exists (with high probability)

and below which does not. This phase transition has already been established
in [1] for the full matrix case.

One can notice that, in sparse foodwebs (dn < n), the interaction coef-
ficients can be stronger than when the interaction matrix is full (i.e. when
dn = n) in the sense that 1√

dn
> 1√

n
.

Models and feasibility results

The sparse random matrix model under investigation is given in (3). Specifying
the range of dn and the structure of ∆n, we introduce hereafter two models
amenable to analysis.

Model (A): Block permutation matrix.

Let n = d×m. Denote by Sm the group of permutations of [m] = {1, . . . ,m}.
Given σ ∈ Sm, consider the associated permutation matrix

Pσ = (Pij)i,j∈[m] where Pij =

{
1 if j = σ(i),

0 else.

Denote by Jd = 1d1
T
d the d× d matrix of ones. Assume that

• matrix Mn is given by (3),
• d = dn ≥ log(n),
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• matrix ∆n introduced in (3) is a block-permutation adjacency matrix
given by

∆n = Pσ ⊗ Jd = (PijJd)i,j∈[m] , (4)

where ⊗ is the Kronecker matrix product.

Notice that ∆n still corresponds to the adjacency matrix of a d-regular
graph.

Example 1 To illustrate these definitions, we provide an example. Let n = m × d
with m = 4 and σ ∈ S4 defined by

σ =

(
1 2 3 4
1 4 2 3

)
.

Matrices Pσ, ∆ and ∆ ◦A are respectively given by:

Pσ =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , ∆ =


Jd 0 0 0
0 0 0 Jd
0 Jd 0 0
0 0 Jd 0

 , ∆ ◦A =


A(1) 0 0 0

0 0 0 A(2)

0 A(3) 0 0

0 0 A(4) 0

 ,

where A(µ) (µ ∈ [4]) is a d× d matrix with i.i.d. N (0, 1) entries.

Model (B): d is proportional to n.

Assume that Mn is given by (3) and that d = dn satisfies

lim
n→∞

dn
n

= β > 0 . (5)

We can now state the main result of the article:

Theorem 1 Let An be a n × n matrix with i.i.d. N (0, 1) entries and ∆n given by
Model (A) or (B). Assume that αn −−−−→

n→∞
∞ and denote by

α∗n =
√

2 logn .

Let xn = (xk)k∈[n] be the solution of

xn = 1n +
1

αn
√
dn

(∆n ◦An)xn . (6)

Then

1. If ∃ ε > 0 such that eventually αn ≤ (1− ε)α∗n then

P
{

min
k∈[n]

xk > 0

}
−−−−→
n→∞

0 ,

2. If ∃ ε > 0 such that eventually αn ≥ (1 + ε)α∗n then

P
{

min
k∈[n]

xk > 0

}
−−−−→
n→∞

1 .
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The results of Theorem 1 are illustrated in Fig. 1.

Remarks

1. By taking dn ≥ log(n), we guarantee that the spectral norm of matrix
∆n◦An√

dn
is of order O(1), see [17]. In particular, matrix

(
In − ∆n◦An

αn

√
dn

)
is

invertible and the solution xn can be represented as:

xn =

(
In −

∆n ◦An
αn
√
dn

)−1

1n .

2. An informal first-order expansion of the solution immediatly explains this
phase transition. If we expand the inverse matrix and neglect the remaining
terms, we get

xn ' 1n +
∆n ◦An
αn
√
dn

1n = 1 +
zn
αn

where

zn = (zi) and zi =

n∑
j=1

(∆n ◦An)ij√
dn

.

Notice that the zi’s remain i.i.d. N (0, 1). Going one step further in the
approximation yields

min
i∈[n]

xi ' 1 +
mini∈[n] zi

αn
.

By standard extreme value results, we have mini∈[n] zi ∼ −
√

2 log(n),
hence the phase transition.

3. The component-wise positivity of the solution has been studied in the full
matrix case, i.e. ∆n = 1n1

T
n and dn = n, in [1] where the same phase

transition phenomenon occurs. Proof of Theorem 1 can be handled as in [1]
for Model (B) with non-trivial adaptations that will be specified.

In the case where dn � n, a normalization issue occurs. To say it
roughly, the Euclidian norm of vector 1n/

√
dn is no longer of order O(1)

but of order
√
n/dn and one needs to handle more carefully the sparsity of

matrix ∆n.
In this regard, the block-permutation structure of Model (A) is a tech-

nical and simplifying assumption. The problem of the component-wise
positivity of xn for a general adjacency matrix ∆n of a d-regular graph with
d ≥ log(n) remains open.
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Fig. 1: Let n = 15000 with log(n) ' 9.61. For d = 10 and m = 1500, we first
draw at random a permutation σ ∈ Sm and fix ∆n = Pσ ⊗ 1d1

T
d once for all.

Each point of the solid line represents the proportion of feasible solutions xn
of (6) over 2000 realizations of random matrices An for different values of κ,
with αn =

√
κ log(n). The same simulation is realized with d = 30 over 500

realizations of An (dotted line).

Stability results

A classical property of (2) is the positivity of the orbits2: if x0
n ∈ (R∗+)n, then

xtn ∈ (R∗+)n as well (t > 0).
We first recall definitions related to stability from [19, Chapter 3]. An

equilibrium xn is stable if for any given neighborhood W of xn, there exists
a neighborhood V such that for any initial point x0

n ∈ V , the orbit {xtn; t ≥
0; x0

n ∈ V } stays in W . In addition, if the equilibrium is stable and the orbit
converges to xn, the equilibrium is said asymptotically stable .

In the full matrix case (∆n = 1n1
T
n, dn = n), it has been proved in [1] that

in the regime where feasibility occurs, the system is asymptotically stable in
the sense that the Jacobian matrix J of the LV system (2) evaluated at xn:

J (xn) = diag(xn) (−In +Mn) (7)

has all its eigenvalues with negative real part.
Finally, the equilibrium is globally stable when it is asymptotically stable

and the neighborhood V can be taken as the whole state place (R∗+)n.

2Beware that this property does not prevent some components xi(t) to converge to zero, hence
does not enforce a feasible equilibrium.
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We complement Theorem 1 and prove that feasibility and global stability
occur simultaneously.

Theorem 2 (Global stability, Takeuchi and Adachi [19, Theorem 3.2.1]) Let dn ≥
log(n), αn −−−−→

n→∞
∞, and ∆n the adjacency matrix of a dn-regular graph. Then, with

probability going to one as n→∞, Eq. (1) admits a unique nonnegative solution xn.
Moreover, this solution is a globally stable equilibrium.

Beware that in this theorem, the solution, although unique, is no longer
(component-wise) positive and may have zero components corresponding to
vanishing species. Notice that the assumption over ∆n covers Models (A) and
(B) but is far less restrictive. We illustrate Theorem 2 in Fig. 2.

(a) Feasible equilibrium for αn =√
3 log(n).

(b) Vanishing species for αn =√
log(n).

Fig. 2: LV system with feasible equilibrium (left) and vanishing species (right):
minimum, maximum and mean of the population dynamics (xtn, t > 0) solu-
tion of (2) for n = 5000 (log(n) ' 8.51), d = 10 and ∆n follows Model (A).
In the first figure, αn >

√
2 log(n), the minimum abundance remains positive.

In the second one, αn <
√

2 log(n), the minimum abundance vanishes and the
equilibrium is not feasible.

We now specify Theorem 2 in the case of feasibility.

Proposition 3 (Stability and convergence rate) Let dn ≥ log(n), αn −−−−→
n→∞

∞,

and assume that ∆n is given by Model (A) or (B). Denote by Σn the spectrum of the
Jacobian matrix J (xn) given by (7).

Assume that there exists ε > 0 such that eventually αn ≥ (1 + ε)α∗n. Then:

1. The probability that the equilibrium xn is feasible and globally stable
converges to 1,
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2. The spectrum Σn asymptotically coincides with −diag(xn) in the sense that:

max
λ∈Σn

min
k∈[n]

|λ+ xk|
P−−−−→

n→∞
0 ,

3. Moreover,

max
λ∈Σn

Re(λ) ≤ −(1−`+)+oP (1) where `+ := lim sup
n→∞

α∗n
αn

< 1 . (8)

As a consequence of (8), for any x0
n ∈ (R+∗)n, the orbit xtn converges to

the equilibrium xn at an exponential convergence rate, see Fig. 3-(A).

(a) Population dynamics with starting
abundances equals to 1

2 .

(b) Histogram of the equilibrium abun-
dances.

Fig. 3: Consider the population dynamics (xtn, t > 0) solution of (2) where M
is given by (3) and ∆n follows Model (A) with n = 15000 species, m = 1500
blocks, d = 10 > log(n) ' 9.62 and αn =

√
3 log(n). On the left, we plot

10 species randomly chosen over 15000 with starting abundances equals to 1
2 .

On the right, the histogram of the abundances is represented, and the normal
density with mean 1 and variance 1

α2
n

is fitted. Notice the substantial spread

of the abundances despite the high value of n.

Notations

If v is a vector then ‖v‖ stands for its Euclidian norm; if A is a matrix then

‖A‖ stands for its spectral norm and ‖A‖F =
√∑

ij |Aij |2 for its Frobenius

norm. Let ϕ be a function from some space X (usually R) to R then ‖ϕ‖∞ =

supx∈X |ϕ(x)|. Convergence in probability is denoted by
P−→. When no confusion

can occur, we shall drop n and simply denote A,∆, α, d,x, etc. instead of
An,∆n, αn, dn,xn, etc.
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Organization of the paper

In Section 2, the spectral norm of a sparse matrix and the general strategy of
proof are described. Proof of Theorem 1 is provided in Section 3 for Model (A),
and in Section 4 for Model (B). Theorem 2 is proved in Section 5. In Section
6, we conclude and state an open question.
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2 Spectral norm of the interaction matrix and
strategy of proof

2.1 The spectral norm of ∆n ◦An/
√
d

In the following proposition which proof is based on [17], we provide an esti-
mate of ‖∆◦A/

√
d‖. The fact that A’s entries are N (0, 1) and that dn ≥ log(n)

is crucial.

Proposition 4 Assume that A is a n× n matrix with i.i.d. N (0, 1) entries, that ∆
is a n× n adjacency matrix of a d-regular graph, that d ≥ log(n). Then there exists
a constant κ > 0 independent from n (one can take for instance κ = 22) such that

P
(∥∥∥∥∆ ◦A√

d

∥∥∥∥ ≥ κ) −−−−→n→∞
0 .

In particular, let δ ∈ (0, 1) be fixed and α = α(n) −−−−→
n→∞

∞. Then

P
(∥∥∥∥∆ ◦A

α
√
d

∥∥∥∥ ≤ 1− δ
)
−−−−→
n→∞

1 .

Proof Applying [17, Corollary 3.11] to ∆◦A√
d

with ε = 1
2 , we obtain

P

∥∥∥∥∆ ◦A√
d

∥∥∥∥ ≥ 3 +
15

2
√

log 3
2

×
√

logn√
d

+
t√
d

 ≤ e− t2

2 .

Fix t =
√

logn, then e−
t2

2 = 1√
n
−−−−→
n→∞

0 and t√
d
≤ 1 by assumption. Furthermore,

there exists a rank n1 such that for all n ≥ n1 :

3 +
15

2
√

log(3/2)
×
√

logn

d
+

t√
d
≤ 4 +

15

2
√

log 3
2

< κ := 22 .

Thus, P
(∥∥∥∆◦A√

d

∥∥∥ ≥ κ)→ 0. Since α→∞, the last part of the proposition immedi-

atly follows. �
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2.2 Strategy of proof

Based on the previous control of the spectral norm in probability, we reduce
the problem of feasibility to the control of the extreme values of high order
terms of the resolvent, considered as a Neumann sum, see Lemma 5. This
preliminary step is similar to [1, Section 2.1].

Going back to Eq.(6), we can write
(
I − ∆◦A

α
√
d

)
x = 1. Introducing the

resolvent Q =
(
I − ∆◦A

α
√
d

)−1

which by Proposition 4 exists with probability

tending to one, we obtain the representation

x = (xk)k =

(
I − ∆ ◦A

α
√
d

)−1

1 = Q1

which holds with growing probability. Denote by ek the n × 1 k-th canonical
vector, then xk = eTkx = eTkQ1. Unfolding the resolvent as a Neumann sum,
we obtain

xk = eTkQ1 =

∞∑
`=0

eTk

(
∆ ◦A
α
√
d

)`
1 = 1 +

Zk
α

+
Rk
α2

(9)

where

Zk = eTk

(
∆ ◦A√

d

)
1 and Rk = eTk

∞∑
`=2

1

α`−2

(
∆ ◦A√

d

)`
1 .

Notice that the Zk’s are i.i.d. N (0, 1) random variables and denote by M̌ =
mink∈[n] Zk.

Eq. (9) immediatly yieldsmink∈[n] xk ≥ 1 + 1
αM̌ + 1

α2 mink∈[n]Rk ,

mink∈[n] xk ≤ 1 + 1
αM̌ + 1

α2 maxk∈[n]Rk .
(10)

Let α∗n =
√

2 log n, β∗n = α∗n − 1
2α∗

n
log(4π log n) and denote by G(x) = e−e

−x

the cumulative distribution of a Gumbel distributed random variable. Then it
is well-known, see for instance [20, Theorem 1.5.3], that

P
(
α∗n(M̌n + β∗n) ≥ x

)
−−−−→
n→∞

G(x) . (11)

By taking into account this convergence, we can rewrite (10) as

1 +
α∗n
αn

(
−1 + oP (1) +

mink∈[n]Rk

α∗nαn

)
≤ min
k∈[n]

xk (12)
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≤ 1 +
α∗n
αn

(
−1 + oP (1) +

maxk∈[n]Rk

α∗nαn

)
.

where we used (α∗n)−1(M̌ +β∗n) = oP (1). Theorem 1 will then follow from the
following lemma.

Lemma 5 Under the assumptions of Theorem 1, the following convergence holds

maxk∈[n]Rk

αn
√

2 logn

P−−−−→
n→∞

0 and
mink∈[n]Rk

αn
√

2 logn

P−−−−→
n→∞

0 .

Proof of Lemma 5 relies on a careful analysis of the order of magnitude of
the extreme values of the remaining term (Rk)k∈[n]. The sparse structure of
matrix ∆◦A (either Model (A) or (B)) requires a specific analysis, substantially
different from the one in [1].

3 Proof of Theorem 1 for Model (A)

We assume that ∆n follows Model (A).
In order to prove Lemma 5, we first take advantage of the fact that

‖∆ ◦ A/
√
d‖ is typically lower than κ (see Proposition 4) and replace Rk by

a truncated version R̃k (step 1). We then prove that A 7→ R̃k(A) is Lipschitz

(step 2). The quantity R̃k being Lipschitz, its centered version is sub-Gaussian

if the matrix entries are Gaussian i.i.d. We finally prove that R̃k(A) is uni-
formily integrable (step 3). The conclusion easily follows. Although the general
strategy is similar to the one developed in [1], the proofs are substantially differ-
ent. In particular, proofs of step 2 and 3 heavily rely on the block permutation
structure of the matrices.

3.1 Step 1: Truncation

Toward proving Lemma 5, sub-Gaussiannity is an important property, which
follows from Lipschitz properties by standard concentration of measure argu-
ments. Unfortunately A 7→ Rk(A) fails to be Lipschitz (simply notice that
Rk(A) has quadratic and higher order terms). In order to circumvent this issue,
we provide a truncated version of Rk.

Let κ > 0 as in Prop. 4 (one can take κ = 22), η ∈ (0, 1) and ϕ : R+ → [0, 1]
a smooth function:

ϕ(x) =

{
1 if x ∈ [0, κ+ 1− η] ,

0 if x ≥ κ+ 1
(13)

strictly decreasing from 1 to 0 for x ∈ (κ+ 1− η, κ+ 1). According to Prop. 4,

ϕd(A) := ϕ

(∥∥∥∥∆ ◦A√
d

∥∥∥∥)



Feasibility of sparse ecosystems 13

is equal to one with high probability. We introduce the truncated value:

R̃k(A) = ϕd(A)Rk(A) .

We have

P
(

max
k

Rk(A) 6= max
k

R̃k(A)

)
≤ P

(
∃k ∈ [n], Rk(A) 6= R̃k(A)

)
≤ P(ϕd(A) < 1)

≤ P
(∥∥∥∥∆ ◦A√

d

∥∥∥∥ ≥ κ) −−−−→n→∞
0 ,

from which we deduce

maxk∈[n]Rk −maxk∈[n] R̃k

αn
√

2 log n

P−−−−→
n→∞

0 . (14)

It is therefore sufficient to prove

maxk∈[n] R̃k

αn
√

2 log n

P−−−−→
n→∞

0 (15)

to establish the first part of Lemma 5. The property of the minimum can be
proved similarly.

3.2 Step 2: Lipschitz property for R̃k(A)

For ` ≥ 2, we introduce the following summand terms:

ρk,`(A) = eTk
1

α`−2

(
∆ ◦A√

d

)`
1 and ρ̃k,`(A) = ϕd(A)ρk,`(A) , (16)

so that Rk(A) =
∑∞

`=2 ρk,`(A) and R̃k(A) =
∑∞

`=2 ρ̃k,`(A).
The following lemma is the main result of this section.

Lemma 6 Let κ > 0 as in Proposition 4, δ ∈ (0, 1) and n0 such that for all n ≥ n0,

κ+ 1

αn
≤ 1− δ .

For ` ≥ 2 and n ≥ n0, the function ρ̃k,` :Mn(R)→ R is K`-Lipschitz, i.e.∣∣ρ̃k,`(A)− ρ̃k,`(B)
∣∣ ≤ K` ‖A−B‖F , (17)

where K` = K`(κ, n0, δ) > 0 is a constant independent from k, d and n ≥ n0.
Moreover, K :=

∑
`≥2K` < ∞. In particular, the function R̃k is K-Lipschitz :∣∣∣R̃k(A)− R̃k(B)

∣∣∣ ≤ K ‖A−B‖F . (18)
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Given a n× n matrix C, we define its hermitization matrix H(C) by:

H(C) =

(
0 C
CT 0

)
.

A well-known property ofH(C) is its symmetric spectrum and the fact that the
singular values of C are the non-negatives eigenvalues of H(C). In particular,
‖C‖ corresponds to the largest eigenvalue of H(C).

In order to prove Lemma 6, we first consider the case where H(∆ ◦A) has
a simple spectrum, a sufficient condition for the differentiability of ‖∆ ◦ A‖,
we then prove that the Euclidian norm of the gradient of ρ̃k,`(A) is bounded
: ‖∇ρ̃k,`(A)‖ ≤ K` and finally proceed by approximation to get the general
Lipschitz property.

Proof We first consider the case where H(∆◦A) has a simple spectrum. In this case,
‖∆ ◦A‖ is equal to the largest eigenvalue of H(∆ ◦ A) which has multiplicity 1 and
is thus differentiable. Denote by ∂ij = ∂

∂Aij
. Notice that if ∆ij = 0, then for any

smooth function f : Rn×n → R, ∂ijf(∆ ◦ A) = 0. If needed, we will take advantage
of this property.

We have : ∥∥∇ρ̃k,`(A)
∥∥ =

√√√√ n∑
i,j=1

∣∣∂ij ρ̃k,`(A)
∣∣2 ,

and

∂ij ρ̃k,`(A) = ∂ij
(
ϕd(A)ρk,`(A)

)
=
(
∂ijϕd(A)

)
ρk,`(A) + ϕd(A)∂ijρk,`(A) =: S1,ij + S2,ij .

In particular,
n∑

i,j=1

∣∣∂ij ρ̃k,`(A)
∣∣2 ≤ 2

n∑
i,j=1

∣∣S1,ij

∣∣2 + 2

n∑
i,j=1

∣∣S2,ij

∣∣2 .
We first evaluate

∑
ij |S1,ij |2.

Recall that ‖∆◦A‖ being the maximum eigenvalue of H(∆◦A) which by assump-
tion is simple, it is differentiable by [21, Theorem 6.3.12]. Let u and v be respectively
the left and right normalized singular vectors associated to the largest singular value
‖∆ ◦A‖ of ∆ ◦A. Then

H(∆ ◦A)~w = ‖∆ ◦A‖ ~w , where ~w =

(
u
v

)
.

Notice that ‖~w‖2 = 2. We have

∂ijϕd(A) =
1√
d
ϕ′
(
‖∆ ◦A‖√

d

)
∂ij‖∆ ◦A‖

and

∂ij‖∆ ◦A‖ =

{
1
‖w‖ (uTeie

T
j v + vTeje

T
i u) = uTeie

T
j v if ∆ij 6= 0 ,

0 else.
(19)

Let i ∈ [n]. Denote by
Ii = {j ∈ [n], ∆ij = 1} ; (20)
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notice that card(Ii) = d. We have∑
i,j∈[n]

∣∣S1,ij

∣∣2 =
∑
i∈[n]

∑
j∈Ii

∣∣∣∣uTeie
T
j vϕ

′
(∥∥∥∥∆ ◦A√

d

∥∥∥∥) 1√
d
ρk,`(A)

∣∣∣∣2 ,
≤
∣∣∣∣ϕ′(∥∥∥∥∆ ◦A√

d

∥∥∥∥) 1√
d
ρk,`(A)

∣∣∣∣2 ∑
i∈[n]

∣∣∣uTei

∣∣∣2 ∑
j∈[n]

∣∣∣eTj v∣∣∣2 ,
=

∣∣∣∣ϕ′(∥∥∥∥∆ ◦A√
d

∥∥∥∥) 1√
d
ρk,`(A)

∣∣∣∣2 .
We now focus on ∣∣∣∣ 1√

d
ρk,`(A)

∣∣∣∣2 =

∣∣∣∣∣eTk 1

α`−2

(
∆ ◦A√

d

)`
1√
d

∣∣∣∣∣
2

.

Notice that ‖1/
√
d‖ =

√
n/d. Since matrix ∆ ◦A follows Model (A), one can notice

that (∆ ◦ A)` remains a block matrix with only d nonzero terms per row (and per
column as well). This property is fundamental for the remaining estimates and fully
relies on the Model (A) assumption.

Denote by

Jk,` =

{
p ∈ [n],

[
(∆ ◦A)`

]
kp
6= 0

}
(21)

and by 1Jk,` the n× 1 vector with zero coordinates except those belonging to Jk,`,
set to 1. In particular, ‖1Jk,`‖ =

√
d. Then

eTk (∆ ◦A)`1 = eTk (∆ ◦A)`1Jk,` .

We have ∣∣∣∣ 1√
d
ρk,`(A)

∣∣∣∣2 =

∣∣∣∣∣eTk
(

∆ ◦A
α
√
d

)`−2(
∆ ◦A√

d

)2
1√
d

∣∣∣∣∣
2

,

=

∣∣∣∣∣eTk
(

∆ ◦A
α
√
d

)`−2(
∆ ◦A√

d

)2
1Jk,`

√
d

∣∣∣∣∣
2

,

≤
∥∥∥eTk∥∥∥2

∥∥∥∥∥
(

∆ ◦A
α
√
d

)`−2
∥∥∥∥∥

2 ∥∥∥∥∆ ◦A√
d

∥∥∥∥4
∥∥∥∥∥1Jk,`

√
d

∥∥∥∥∥
2

,

≤
∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥2(`−2) ∥∥∥∥∆ ◦A√
d

∥∥∥∥4

.

Using the fact that ϕ′
(∥∥∥∆◦A√

d

∥∥∥) = 0 if
∥∥∥∆◦A√

d

∥∥∥ ≥ κ+ 1, we have∣∣∣∣ϕ′(∥∥∥∥∆ ◦A√
d

∥∥∥∥) 1√
d
ρk,`(A)

∣∣∣∣2 ≤ ∣∣∣∣ϕ′(∥∥∥∥∆ ◦A√
d

∥∥∥∥)∣∣∣∣2 ∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥2(`−2) ∥∥∥∥∆ ◦A√
d

∥∥∥∥4

,

≤
∥∥ϕ′∥∥2

∞ (1− δ)2(`−2) (1 + κ)4 ,

and finally
n∑

i,j=1

∣∣S1,ij

∣∣2 ≤ ∥∥ϕ′∥∥2

∞ (1− δ)2(`−2) × (1 + κ)4 . (22)

We now evaluate
∑n
i,j=1

∣∣S2,ij

∣∣2 =
∑
i,j∈[n]

∣∣ϕd(A)∂ijρk,`(A)
∣∣2.
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Recall the definitions of Ii and Jk` introduced in (20), (21). We have

∂ijρk,`(A) =
1

α`−2(
√
d)`

`−1∑
p=0

eTk (∆ ◦A)peie
T
j (∆ ◦A)`−1−p1 if j ∈ Ii

and zero else. Then

∑
i∈[n]

∑
j∈Ii

∣∣∂ijρk,`(A)
∣∣2 ≤ `

α2(`−2)d`

∑
i∈[n]

∑
j∈Ii

∣∣∣eTk (∆ ◦A)`−1eie
T
j 1
∣∣∣2

+

`−2∑
p=0

n∑
i=1

∑
j∈Ii

∣∣∣eTk (∆ ◦A)peie
T
j (∆ ◦A)`−1−p1

∣∣∣2
 ,

=
`

α2(`−2)d`

d ∑
i∈[n]

∣∣∣[(∆ ◦A)`−1]k,i

∣∣∣2

+ d

`−2∑
p=0

∑
i∈[n]

∑
j∈Ii

∣∣∣∣[(∆ ◦A)p]k,i e
T
j (∆ ◦A)`−1−p 1√

d

∣∣∣∣2
 ,

≤ `

α2(`−2)d`−1

([
(∆ ◦A)`−1

(
(∆ ◦A)`−1

)T]
k,k

(23)

+

`−2∑
p=0

∑
i∈[n]

∣∣[(∆ ◦A)p]k,i
∣∣2 ∑
j∈Ii

∣∣∣∣eTj (∆ ◦A)`−1−p 1√
d

∣∣∣∣2
 .

We concentrate on the term T =
∑
j∈Ii

∣∣∣eTj (∆ ◦A)`−1−p 1√
d

∣∣∣2 and prove that

T ≤ ‖∆ ◦A‖2(`−1−p) . (24)

Let IIi = diag(1Ii(k); k ∈ [n]}), where 1Ii is the n× 1 vector with component 1 if
it belongs to Ii and zero else, then

T =
1T√
d

[
(∆ ◦A)`−1−p

]T
IIi(∆ ◦A)`−1−p 1√

d
.

Notice that (∆ ◦A)`−1−p has the form (Pτ ⊗ 1d1
T
d ) ◦B for some τ ∈ Sm and some

n×n matrix B. In particular, taking into account the matching between the indices
of IIi and (∆ ◦A)`−1−p’s blocs, there exists a d×d bloc of matrix (∆ ◦A)`−p−1 say
Bi such that matrix [

(∆ ◦A)`−1−p
]T
IIi(∆ ◦A)`−1−p

is zero except a d× d bloc BT
i Bi on the diagonal and

T =
1Td√
d
BT
i Bi

1d√
d
≤ ‖BT

i Bi‖ ≤ ‖Bi‖
2 ≤

∥∥∥(∆ ◦A)`−p−1
∥∥∥2
≤ ‖∆ ◦A‖2(`−p−1) .

Eq.(24) is established. Notice in particular that the estimate does not depend on the
index i. Plugging this estimate into (23) yields∑

i∈[n]

∑
j∈Ii

∣∣∂ijρk,`(A)
∣∣2
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≤ `

α2(`−2)d`−1

(∥∥∥(∆ ◦A)`−1
∥∥∥2

+

`−2∑
p=0

[(
(∆ ◦A)p

)∗
(∆ ◦A)p

]
kk
‖∆ ◦A‖2(`−p−1)

 ,

≤ `

α2(`−2)d`−1

‖∆ ◦A‖2(`−1) +

`−2∑
p=0

‖∆ ◦A‖2p ‖∆ ◦A‖2(`−p−1)

 ,

=
`2

α2(`−2)d`−1
‖∆ ◦A‖2(`−1) = `2

∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥2(`−2) ∥∥∥∥∆ ◦A√
d

∥∥∥∥2

.

Multiplying by |ϕd(A)|2 finally yields the appropriate estimates:∑
i,j∈[n]

∣∣S2,ij

∣∣2 ≤ `2
∣∣ϕd,σ(A)

∣∣2 ∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥2(`−2) ∥∥∥∥∆ ◦A√
d

∥∥∥∥2

,

≤ `2(1− δ)2(`−2)(1 + κ)2 . (25)

Combining (22) and (25), we obtain :

∥∥∇ρ̃k,`(A)
∥∥ ≤

√√√√2

n∑
i,j=1

∣∣S1,ij

∣∣2 + 2

n∑
i,j=1

∣∣S2,ij

∣∣2 ,
≤ 2(1− δ)`−2(κ+ 1)2(

∥∥ϕ′∥∥∞ + `) =: K` . (26)

where K` does not depend upon k, n, d and is summable.
So far, we have established a local estimate over

∥∥∇ρ̃k,`(A)
∥∥ for any matrix A

such that H(∆ ◦A) has a simple spectrum. We first establish the Lipschitz estimate
(17) for two such matrices A and B.

Let A, B such that H(∆ ◦A) and H(∆ ◦B) have simple spectrum and consider
the interpolation matrix

At = (1− t)A+ tB

for t ∈ [0; 1] . The continuity of the eigenvalues implies that there exists ε > 0
sufficiently small such that H (∆ ◦At) has a simple spectrum for t ≤ ε and t ≥ 1− ε.
By an argument in [22, Chapter 2.1], the number of eigenvalues ofH (∆ ◦At) remains
constant for t ∈ [0, 1], except maybe for a finite number of points (tl; 1 ≤ l ≤ L)
: t0 = 0 < t1 < · · · < tL < tL+1 = 1. Since H (∆ ◦At) has simple spectrum for
t ∈ [0; ε) ∪ (1 − ε; 1], it has simple spectrum for all t /∈ {tl, l ∈ [L]}. We can now
proceed:∣∣ρ̃k,` (At1)− ρ̃k,` (A)

∣∣ =

∣∣∣∣ lim
τ↗t1

∫ τ

0

d

dt
ρ̃k,` (At) dt

∣∣∣∣
=

∣∣∣∣ lim
τ↗t1

∫ τ

0
∇ρ̃k,` (At) ◦

d

dt
(At)dt

∣∣∣∣ ,
≤ lim

τ↗t1

∫ τ

0

∥∥∇ρ̃k,` (At)
∥∥× ‖B −A‖F dt ≤ K` t1 ‖B −A‖F .

By iterating the process over the intervals (tl−1, tl), we get

∣∣ρ̃k,` (B)− ρ̃k,` (A)
∣∣ ≤ L+1∑

l=1

∣∣ρ̃k,` (Atl)− ρ̃k,`
(
Atl−1

)∣∣ ,
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≤
L+1∑
l=1

K` (tl − tl−1) ‖B −A‖F = K` ‖B −A‖F .

Hence the Lipschitz property along the segment [A,B].
To go beyond, we proceed by density and prove that for a given matrix ∆ as in

Model (A), the set of matrices (∆ ◦A) such that H(∆ ◦A) has a simple spectrum is
dense in the set of matrices (∆ ◦A, A ∈ Rn×n).

Let Pσ be the permutation matrix used to define ∆ in (4) and Id the identity
matrix of size d. We define the following n× n matrices

Π = Pσ ⊗ Id and DA = (∆ ◦A)ΠT . (27)

Notice that Π is a n×n permutation matrix and that DA is a block diagonal matrix
with d× d blocks on the diagonal. Since Π ΠT = ΠTΠ = In, we also have

DA Π = ∆ ◦A .
In the framework of Example 1, matrices Π and DA are given by:

Π =


Id 0 0 0
0 0 0 Id
0 Id 0 0
0 0 Id 0

 and DA =


A(1) 0 0 0

0 A(2) 0 0

0 0 A(3) 0

0 0 0 A(4)

 .

An important feature of DA is that ∆◦A and DA have the same singular values:

DAD
T
A = (∆ ◦A) ΠT Π (∆ ◦A)T = (∆ ◦A)(∆ ◦A)T ,

hence H(∆◦A) and H(DA) have the same eigenvalues and their spectrum, if simple,
is simultaneously simple. Denote by (A(µ))µ∈[m] the m diagonal d × d blocks of
matrix DA and consider their SVD

A(µ) = U(µ)Λ(µ)V(µ) .

Consider a simultaneous ε-perturbation of the Λ(µ)’s into Λε(µ) so that all the Λε(µ)’s
have distinct diagonal elements, ε-close to the Λ(µ)’s. Denote by

Aε(µ) = U(µ)Λ
ε
(µ)V(µ) .

and let DεA be the block diagonal matrix with blocks (Aε(µ))µ∈[m]. Then H(DεA) is

arbitrarily close to H(DA) and has a simple spectrum. Note that DεAΠ is ε-close to
∆ ◦ A, is such that H(DεAΠ) has a simple spectrum and has the same pattern as
∆ ◦A in the sense that:

∆ij = 0 ⇒
(
DεAΠ

)
ij

= 0 .

To emphasize this property, we introduce the n× n matrix Aε defined as

[Aε]ij =

{
[DεAΠ]ij if ∆ij = 1 ,

Aij else

so that
‖∆ ◦Aε −∆ ◦A‖F = ‖Aε −A‖F −−−→

ε→0
0 .

We can now conclude. Let ∆ ◦ A, ∆ ◦ B be given and DεAΠ = ∆ ◦ Aε and
DεBΠ = ∆ ◦ Bε constructed as previously; notice that C 7→ ρ̃k,`(C) is continuous.
Then∣∣ρ̃k,`(B)− ρ̃k,`(A)

∣∣ ≤
∣∣ρ̃k,` (Bε)− ρ̃k,`(B)

∣∣+K` ‖Bε −Aε‖F +
∣∣ρ̃k,` (Aε)− ρ̃k,`(A)

∣∣ ,
−−−→
ε→0

K` ‖B −A‖F .

This concludes the proof of the Lipschitz property. �
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3.3 Step 3: uniform estimate for ER̃k(A)

As a consequence of the Lipschitz property of R̃k, R̃k(A) if centered is sub-
Gaussian if A is a n×nmatrix with i.i.d.N (0, 1) entries. The following estimate
easily follows using Tsirelson-Ibragimov-Sudakov inequality ([23, Theorem
5.5]).

Proposition 7 Under the assumptions of Lemma 6, the following estimate holds
true:

E max
k∈[n]

(
R̃k − ER̃k

)
≤ K

√
2 logn .

For the proof, see [1, Proposition 2.3].

The rest of the section is devoted to the control of ER̃k(A).

Proposition 8 Under the assumptions of Theorem 1, there exists n1 ∈ N and a
constant C > 0 such that for all n ≥ n1,

sup
k∈[n]

∣∣∣ER̃k(A)
∣∣∣ ≤ C .

Proof Recall that n = d × m and that ∆ ◦ A is a block permutation matrix with
m blocks (A(µ))µ∈[m] of size d × d. We choose a given block A(µ) and denote by

µ1, · · · , µd the d indices corresponding to the rows of block A(µ) in ∆ ◦ A. By
exchangeability, we have

∀k ∈ [d] , ER̃µk (A) = ER̃µ1(A) .

Denote by 1(µ) the n×1 vector with ones for the indices (µi)i∈[d] and zeros elsewhere.
We have∣∣∣ER̃µk (A)

∣∣∣ =

∣∣∣∣∣1d
d∑
i=1

ER̃µi(A)

∣∣∣∣∣
=

∣∣∣∣∣1d
d∑
i=1

E

(
ϕd(A)eTµi

(
∆ ◦A√

d

)2(
I − ∆ ◦A

α
√
d

)−1

1

)∣∣∣∣∣ ,
=

∣∣∣∣∣1dE
(
ϕd(A)1(µ)T

(
∆ ◦A√

d

)2(
I − ∆ ◦A

α
√
d

)−1

1

)∣∣∣∣∣ ,
≤ E

∣∣∣∣∣ϕd(A)
1(µ)T

√
d

(
∆ ◦A√

d

)2(
I − ∆ ◦A

α
√
d

)−1
1√
d

∣∣∣∣∣ . (28)

We start by expanding
(
I − ∆◦A

α
√
d

)−1
:∣∣∣∣∣ϕd(A)

1(µ)T

√
d

(
∆ ◦A√

d

)2(
I − ∆ ◦A

α
√
d

)−1
1√
d

∣∣∣∣∣ =

∣∣∣∣∣ϕd(A)

∞∑
`=2

1(µ)T

α`−2
√
d

(
∆ ◦A√

d

)`
1√
d

∣∣∣∣∣ .
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Notice that (∆ ◦ A)` is a block matrix constituted of m blocks of size d × d. In
particular, among the d row([

(∆ ◦A)`
]
ij

)
i∈{µ1,··· ,µd}, j∈[n]

,

there exist ν1, · · · , νd (consecutive) indices such that the only non-null entries are([
(∆ ◦A)`

]
ij

)
i∈{µ1,··· ,µd}, j∈{ν1,··· ,νd}

.

Denote by 1(ν) the n×1 vector of ones for the indices (νi)i∈[d] and zeroes elsewhere.
As a consequence of the previous remark,

1(µ)T(∆ ◦A)`1 = 1(µ)T(∆ ◦A)`1(ν)

and

1

α`−2

∣∣∣∣∣1(µ)T

√
d

(
∆ ◦A√

d

)`
1√
d

∣∣∣∣∣ =
1

α`−2

∣∣∣∣∣1(µ)T

√
d

(
∆ ◦A√

d

)`
1(ν)

√
d

∣∣∣∣∣
≤ 1

α`−2

∥∥∥∥∥1(µ)

√
d

∥∥∥∥∥
∥∥∥∥∆ ◦A√

d

∥∥∥∥`
∥∥∥∥∥1(ν)

√
d

∥∥∥∥∥ ,
≤
∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥`−2 ∥∥∥∥∆ ◦A√
d

∥∥∥∥2

.

Let κ > 0 as in Proposition 4, δ ∈ (0, 1), n0 ∈ N as in Lemma 6, then

∞∑
`=2

1

α`−2

∣∣∣∣∣ϕd(A)
1(µ)∗
√
d

(
∆ ◦A√

d

)`
1√
d

∣∣∣∣∣ ≤ ϕd(A)

∞∑
`=2

∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥`−2 ∥∥∥∥∆ ◦A√
d

∥∥∥∥2

,

= ϕd(A)

∥∥∥∥∆ ◦A√
d

∥∥∥∥2 ∞∑
`=0

∥∥∥∥∆ ◦A
α
√
d

∥∥∥∥`

≤ (1 + κ)2
∞∑
`=2

(1− δ)` ,

≤ (1 + κ)2

δ
.

Plugging this estimate into (28) concludes the proof of the estimation of |ER̃µk (A)|.
This estimate being uniform over µ1, · · · , µd and over all the blocks (A(µ)), the
proposition is proved.

�

3.4 Proof of lemma 5

Combining Lemma 6, Propositions 7 and 8 one can prove Lemma 5 as in [1,
Section 2.3] with minor adaptations.

4 Proof of Theorem 1 for Model (B)

We assume that ∆n follows Model (B).
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The strategy of proof closely follows the one in [1], with one specific issue

to handle: the uniform bound on ER̃k. An important property exploited in [1]

to establish a uniform bound over ER̃k was the exchangeability of the R̃k’s (or
block exchangeability in the case of Model (A)). There is not enough structure
in Model (B) to guarantee this exchangeability (which might not hold).

We carefully address this issue hereafter.

4.1 A uniform bound over ER̃k for Model (B)

Proposition 9 Under the assumptions of Theorem 1, uniformly in k ∈ [n],

ER̃k = O
(
α√
d

)
.

Proof of Proposition 9 relies on two important facts.

• The fact that almost surely H(∆ ◦ A) has a simple spectrum, hence the
Lipschitz function ‖∆ ◦ A‖ is almost surely differentiable with an explicit
formula for the partial derivatives, see (19). Details are provided in Appendix
A.

• The Gaussian integration by parts (i.b.p.) formula: If Z ∼ N (0, 1) then
EZf(Z) = Ef ′(Z). Interestingly, this formula holds for f Lipschitz. In this
case, f is absolutely continuous hence almost surely differentiable (see for
instance [24, Chap. 7, Thm. 4]) with linear growth at infinity.

Recall that ϕd(A) = ϕ
(
‖∆◦A‖√

d

)
, where ϕ is defined in (13).

Proof In order to get an asymptotic bound over ER̃k(A), we expand its expression:

ER̃k(A) = E

[
ϕd(A)eTk

(
∆ ◦A√

d

)2

Q1

]
,

=
1

d

∑
i∈Ik

∑
j∈[n]

E
[
ϕd(A)(∆ ◦A)ki ((∆ ◦A)Q)ij

]
,

=
α√
d

∑
i∈Ik

∑
j∈[n]

E
[
ϕd(A)(∆ ◦A)ki

(
−δij +Qij

)]
,

= − α√
d

∑
i∈Ik

E [ϕd(A)(∆ ◦A)ki] +
α√
d

∑
i∈Ik

∑
j∈[n]

E
[
ϕd(A)(∆ ◦A)kiQij

]
.

At this point, we use the Gaussian i.b.p. formula applied to A 7→ ϕd(A) which is
Lipschitz and a.s. differentiable with explicit derivative (see (19)).

ER̃k(A) = − α√
d

∑
i∈Ik

E [∂kiϕd(A)] +
α√
d

∑
i∈Ik

∑
j∈[n]

E
[
∂ki
(
ϕd(A)Qij

)]
,

= −α
d

∑
i∈Ik

E
[
ukviϕ

′
(
‖∆ ◦A‖√

d

)]
+
α

d

∑
i∈Ik

∑
j∈[n]

E
[
ukviϕ

′
(
‖∆ ◦A‖√

d

)
Qij

]
+
α√
d

∑
i∈Ik

∑
j∈[n]

E
[
ϕd(A)

(
∂kiQij

)]
,
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=: T1 + T2 + T3 .

We first handle the term T1 by Cauchy-Schwarz inequality:

|T1| ≤
α

d
E

∣∣∣∣∣∣uk
∑
i∈Ik

viϕ
′
(
‖∆ ◦A‖√

d

)∣∣∣∣∣∣ ,
≤ α

d
E
[√

d ‖v‖
∣∣∣∣ϕ′(‖∆ ◦A‖√

d

)∣∣∣∣] = O
(
α√
d

)
.

We now handle the term T2 :

|T2| ≤
α

d
E

∣∣ϕ′∣∣
∣∣∣∣∣∣
∑
i

∑
j

viQij

∣∣∣∣∣∣
 ,

≤ α

d
E
[∣∣ϕ′∣∣ · ∣∣v∗Q1

∣∣] ≤ α√
d

√
n

d
E
[∣∣ϕ′∣∣ ‖Q‖] = O

(
α√
d

)
.

We finally handle the term T3. Notice that ∂kiQij = 1
α
√
d
QikQij and denote by

ω := (Qik1Ik )i∈[n]. Notice that ‖ω‖2 ≤ e∗kQ
∗Qek hence ‖ω‖ ≤ ‖Q‖ and

|T3| =
1

d

∣∣E [ϕd(A)ω∗Q1
]∣∣ ≤ 1

d
E [ϕd(A)‖ω‖ ‖Q‖ ‖1‖] ,

≤
√
n

d
E
[
ϕd(A) ‖Q‖2

]
= O

(
1√
d

)
.

Combining these asymptotic notations finally yields :

ER̃k(A) = O
(
α√
d

)
.

�

Notice that even if the bound obtained in Proposition 9 is weaker than
the one obtained in Proposition 8 or in [1, Prop. 2.4], it is still sufficient to
establish the feasibility under Model (B).

5 Proofs of Theorem 2 and Proposition 3

5.1 Proof of Theorem 2

The proof is a combination of Takeuchi and Adachi’s theorem [19, Theorem
3.2.1] and Proposition 4. We first recall the definition of Volterra-Liapunov
stability, see for instance [19, Section 3.2]: Let B be a n× n real matrix. B is
Volterra-Liapunov stable if there exists a n × n positive definite diagonal
matrix D such that DB +BTD is negative definite.

Going back to Eq. (2), according to Takeuchi and Adachi’s theorem [19, Th.
3.2.1], this LV system has a unique nonnegative and globally stable equilibrium
if Mn − In is Volterra-Liapunov stable.

We now rely on the asymptotic spectral properties of Mn to study the
Volterra-Liapunov stability of Mn− In. We drop the subscript n in the sequel.
Take D = I then

D(M − I) + (M − I)TD = M +MT − 2I
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is an hermitian matrix. This matrix is negative definite if all its eigenvalues
are negative. Given that M +MT is also hermitian, we just have to check that
the spectral radius ρ

(
M +MT

)
< 2. According to Proposition 4:

P
(
ρ
(
M +MT

)
< 2
)
≥ P (‖M‖ < 1) −−−−−→

n→+∞
1.

Thus, the probability that M − I is Volterra-Liapunov stable converges to 1
as n → ∞. By [19, Th. 3.2.1], this implies that the probability that the LV
system (2) has a unique nonnegative and globally stable equilibrium converges
to 1 as n→∞.

5.2 Proof of Proposition 3

We first prove the first part of the proposition. By Theorem 2, there exists a
unique nonnegative globally stable equilibrium to (2). If there exists ε > 0 such
that eventually αn ≥ (1 + ε)α∗n where α∗n =

√
2 log n, then this equilibrium xn

is positive by Theorem 1 with overwhelming probability as n→∞.
The rest of the proof closely follows the proof of [1, Corollary 1.4] and is

omitted.

6 Conclusion

In this article we study the feasibility and stability of sparse large ecosystems
modelled by a large Lotka-Volterra system of coupled differential equations:

dxn
dt

= xn(1n − xn +Mnxn) .

Our work is motivated by recent research [15] which suggests that in the
light of many ecological and biological datasets living networks are often sparse.
It also illustrates the interest to study feasibility in relation with the nor-
malization of the interaction matrix’s entries beyond the non-sparse full i.i.d.
models, and opens perspectives to study models with more structure such as
elliptic interactions or patch models.

In the model under investigation, the interaction matrix Mn is a sparse
random matrix, where the sparsity is encoded by a patterned matrix ∆n based
on an underlying dn-regular graph, and the randomness by i.i.d. random vari-
ables (matrix An) for non-null entries. The single parameter dn of the regular
graph provides an easy one-dimensional parametrization of the connectance of
the foodweb.

Our main conclusion is that beyond the standard normalization 1/
√
dn of

the interaction matrix ∆ ◦A, which guarantees a bounded norm∥∥∥∥∆ ◦A√
d

∥∥∥∥ = OP (1) ,
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an extra factor 1/αn with αn → ∞ is needed to reach feasibility. The
interaction matrix finally writes

Mn =
∆n ◦An
αn
√
dn

and a sharp phase transition occurs at α∗n =
√

2 log(n). Interestingly, the same
phase transition as in the non-sparse case occurs.

Fig. 4: Let n = 15000, d = 10 (notice that d ≥ log(n) ' 9.61). Matrix ∆n is
drawn at random once for all among the adjacency matrices of d-regular graphs
(and a priori does not follow Model (A)). Each point of the curve represents
the proportion of feasible solutions xn of Eq. (6) over 1500 realizations of
random matrices An for different values of κ, with αn =

√
κ log(n). The phase

transition resemble those of Figure 1.

In the sparse setting log(n) ≤ dn � n, we rely on an extra block-structure
assumption over matrix ∆n, namely Model (A), to establish the feasibility and
the phase transition. Our method of proof crucially relies on this technical
assumption which somehow concentrates the non-null entries of the sparse
interaction matrix (and its powers) into localized blocks.

However simulations (cf. Fig 4) suggest that this block structure assump-
tion is not necessary and could be relaxed. Hence the following:

Open question 10 Let ∆n the adjacency matrix of a deterministic dnregular graph,
with dn ≥ log(n), and An a random matrix with i.i.d. N (0, 1) entries. Consider the
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equation

xn = 1n +
∆n ◦An
αn
√
dn

xn , αn →∞ .

Is it true that the same phase transition as in Theorem 1 holds?

Appendix A With probability one, the
singular values of a sparse
random matrix are distinct

We establish hereafter that with probability one the singular values of matrix
∆ ◦ A are distinct, a key argument in the proof of Proposition 9 to compute
the partial derivatives of A 7→ ‖∆ ◦A‖.

The lemma below and its proof are inspired by Nick Cook [25], whom we
thank for his help.

Lemma 11 (Cook [25]) Let n ≥ 1, An a n × n matrix with i.i.d. N (0, 1) entries
and ∆n the adjacency matrix of a d-regular graph. Then with probability one, all the
singular values of ∆n ◦An are distinct.

Remark

The original statement of Cook is slightly more general: matrix An entries
only need a distribution with positive density, and the deterministic matrix
∆n only needs a generalized diagonal, i.e. (∆iσ(i); i ∈ [n]) for some σ ∈ Sn,
with n− 1 non null entries.

Proof Let E∆ be the set of matrices with entries supported on the nonzero entries of
∆,

E∆ =
{

∆ ◦X ; X = (Xij) ∈ Rn×n
}
.

Thus, E∆ is the support of the law of ∆ ◦ A. Besides, E∆ is a variety as a subspace
of Rn×n.

Let R denote the set of matrices with a repeated singular value. It is the set
of n × n matrices X for which the characteristic polynomial p of XTX has zero
discriminant (ρ), see for instance [26, Section 3.3.2].

R =
{
X ∈ Rn×n ; ρ

(
p
(
XTX

))
= 0
}

=
{
X ∈ Rn×n ; P (X) = 0

}
,

where P : Rn×n → R defined by P (X) = ρ(p(XTX)) is a polynomial in the entries
of X. It follows that R is an algebraic variety in Rn×n.

Hence, E∆ ∩ R is either equal to E∆, or a subvariety of E∆ of zero Lebesgue
measure (under the product measure on E∆).

For the claim, it suffices to show that E∆ 6⊂ R hence to exhibit Y ∈ E∆
with distinct singular values. By Birkhoff’s theorem [21, Theorem 8.7.2], the doubly
stochastic matrix ∆/d writes

∆

d
=
∑
σ∈Sn

aσPσ , aσ ≥ 0 and
∑
σ∈Sn

aσ = 1 ,
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where Pσ is the permutation matrix associated to σ ∈ Sn. There exists in particular
σ∗ with aσ∗ > 0 and Pσ∗ ∈ E∆. Let Pσ∗ = (Pij)i,j∈[n] then matrix Y = (iPij)i,j∈[n]

has distinct singular values (1, · · · , n). This completes the proof.
�
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