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Abstract—Spectral CT based on photon counting detectors is a 

promising imaging modality since it provides the possibility of 

both obtaining CT images from multi-energy bins with a single X-

ray exposure and allowing low-dose imaging. However, the image 

quality such as spatial resolution reconstructed from multiple 

energy bins is degraded because of the use of narrow energy bins 

in spectral CT. We propose to use deep learning methods for 

super-resolution reconstruction of spectral CT images. To this 

end, we introduce an UNet-ESPC-cascaded model and perform a 

patch-based training to obtain the optimal parameters of the 

model. Experimental results on physical phantom datasets 

demonstrated that our deep learning based reconstruction method 

can reduce the F form error between the reconstructed super-

resolution CT image and the ground truth, by 11.6% and 5.66% 

with respect to respectively bilinear-interpolation-based 

reconstruction and iterative back projection methods. Our 

method achieves best results with a patch size of 20 and a stride of 

15. 

Keywords—Spectral CT, Super Resolution, Deep Learning, UNet, 

ESPC 

I. INTRODUCTION 

Spectral computed tomography (CT) detects photons in all 
energy bins through using photon counting detectors (PCD), 
reconstructs images from multi-energy projection data [4], and 
distinguishes materials either directly from multi-energy 
attenuation coefficients or from multi-energy reconstructed 
spatial images [1, 2]. PCD-based spectral CT, simply named 
spectral in what follows, allows for low-dose imaging while 
achieving material decomposition. However, spectral CT 
suffers from degraded image quality such as low signal-to 
noise ratio (SNR) and unclear images. Especially, when 
distinguishing materials of low atomic numbers, the materials 
tend to disappear in the image because spatial resolution is 
lacking. Super-resolution [3] can provide a solution to this 
problem and is also beneficial to the later use and processing of 
multi-energy CT images. 

At present, dual spectral CT [1] is the main technology in 
medicine, and spectral CT has not been widely used. Since the 
lack of clinical spectral CT data, we choose physical phantoms. 
And the study of phantoms is conducive to grasp the 
characteristics of spectral CT images, and can provide 
theoretical support for the real spectral CT data. 

 
So far, there are mainly three kinds of methods for 

super-resolution image reconstruction: interpolation-based 
methods [5, 6, 7], reconstruction-based methods [8, 9, 10] 
and learning-based methods [11, 12]. Interpolation-based 
methods fill in the missing pixels at high resolution by 
taking use of the pixel information at low resolution. 
Reconstruction-based method first determines a back 
projection filter and then applies a residual-driven approach 
to get high resolution images. Sparse learning methods and 
deep learning methods are both included in learning-based, 
which use data-driven to get the mapping between low and 
high resolution images. 

Deep learning has gained popularity for super-resolution 
interpolation of natural images [13, 14, 15, 16]. Recently, it 
has also been applied to medical image reconstruction [17, 
18, 19, 20]. However, it asks for a prior interpolation of 
samples for training, which means getting the same 
dimensions as the high resolution images, and thus results 
will be affected by different prior interpolations. In this 
paper, we propose an UNet-ESPC-based super-resolution 
model for spectral CT reconstruction, which does not need 
any prior operation. This work mainly contributes in two 
aspects. First, it is a new attempt to apply deep learning 
method to spectral CT image data. Second, Experimental 
results show that the Dual Network structure (i.e., the 
UNet-ESPC-cascaded network) is suitable for super 
resolution reconstruction in spectral CT. 

The rest of the paper is organized as following. Section 
2 describes the details of our method. Section 3 presents the 
experimental results, followed by conclusion and discussion 
in Section 4. 

II. METHODS 

A. Assumption of model 

Assume that a low-resolution image ℒ with a height H 
and a width W is interpolated with a scale factor r  to the 
high resolution image ℋ. The low-resolution image ℒ can 

be obtained by a filter ℱ  and a pool ℳ  from the high-

resolution image ℋ, defined by Eq. (1). 

ℒ = ℳ(ℱ(ℋ)) + ε,          (1) 

where ε is noise.   
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B. Super resolution reconstruction 

a) Interpolation-based methods[5, 6, 7] 

In the present work, we use an interpolation factor r=4, so 

ℒ(k, l) = ℋ(i, j), i = 4k − x, j = 4l − y, (x=0,1,2,3, y=0,1,2,3).  

b) IBP(iterative back projection)-based reconstruction [8, 9, 

10] 

The principle of the reconstruction-based methods can be 
explained by the following algorithm. We designate the 
interpolated low resolution images as ILR and HR and 𝐻𝑅′are 
both initialized as ℒ  . GT represents ground truth. Since the 
spectral CT images collected from machine are high enough, 
we use it as the ground truth in this work and use Eq. (1) to get 
the low resolution images in the algorithm. 

 

1. Get ℒ, ℒ = ℳ(ℱ(GT)); 

2. ILR=Interpolate(ℒ) and HR= ℒ, 𝐻𝑅′= ℒ; 

3. Repeat:  

𝐻𝑅′= Interpolate(ℳ(ℱ(𝐻𝑅′))); 

error=HR-𝐻𝑅′; 

𝐻𝑅′=𝐻𝑅′+𝜎𝐵𝑃 (error); 

until error is lower than a given precision value. 

 

In the above reconstruction algorithm, HR denotes original 
interpolated low resolution image. HR′  is iterated for several 
times. When it is close to HR, HR′  is close to GT. The 
algorithm is proved to be convergent[9]. 𝜎𝐵𝑃, which is related 
to back projection operator, is a super parameter. It is difficult 
to determine the IBP (iterative back projection) filter 𝜎𝐵𝑃 , 
which projects error onto high resolution images. In the 
literature, empirical judgment is used. 

c) Our Learning-based method: UNet-ESPC-Cascaded super-

resolution reconstruction 

UNet is the most widely used model in medical image 
segmentation [22, 23], with the input data first down-sampled 
and then transposed and convoluted to output data with the 
same size as the input. ESPC network is one of the most 
popular convolutional neural networks used for super-
resolution reconstruction [21]; it does not need any prior 
operation on low-resolution images.  

In the present study, we use the cascade of UNet and ESPC 
as the backbone of our model. The UNet is used as the 
embedding part, ESPC as the inference part, and the final sub-
pixel convolution layer as the reconstruction part. We first 
filter the high-resolution data of spectral CT, and use the down-
sampled images as the low-resolution images to be 
interpolated. Then, we split low-resolution images into patches, 
based on which, our UNet-ESPC-cascaded model is trained 
and tested. This is to avoid the overfitting problem caused by 
lack of data. The interpolated high resolution patches are 
integrated to get the final super-resolution images.  We use a 
Gaussian filter of 55 and a down-sampling factor of 4 in the 
first step. The framework of our proposed method is depicted 
in Fig. 1. Figure 2 and Fig. 3 show the customized UNet and 
ESPC structures of the framework, respectively. 

 

 

Fig. 1. Framework of our proposed UNet-ESPC cascaded model for 
spectral CT super-resolution reconstruction. 

 

Fig. 2. UNet structure in our framework in Fig.1. 5,64,128,256 are channel 
numbers in each layer of the network. 

 

Fig. 3. ESPC structure in our framework in Fig.1. 

Five energy bins in spectral CT are used as five 
channels. These five channels are 4 times interpolated from 
the low resolution images. Using our method, we obtain a 
data of 80 channels of which the first 16 channels will be 
integrated into one channel that corresponds to the 
interpolation results of the first energy bin [21], and the 
integrated 16 to 32 channels correspond to the interpolation 
results of the second energy bin, et cetera. 

The objective function of this model is defined as 
follows: 

𝑚𝑖𝑛 𝐹 = ∑ ∑ ∑ |𝑥𝑒𝑖𝑗 − �̂�𝑒𝑖𝑗|
𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
𝑗=1

𝑝𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
𝑖=1

5
𝑒=1 ,           (2)  

where 𝑥𝑒𝑖𝑗 represents the attenuation coefficient of (i, j) in 

the e-th energy bin, and  �̂�𝑒𝑖𝑗 is the estimate of 𝑥𝑒𝑖𝑗. 

 

III. EXPERIMENTS AND RESULTS 

 

A. Experimental data introduction 

Two phantoms, Phantom1 and Phantom2, were prepared 
and then scanned by Philips Spectral CT under the current 
of 220 mA and the voltage of 120kvp at CREATIS 
laboratory of the National Institute of Applied Sciences in  



 

 

Lyon (INSA Lyon), France. Phantom1 was filled with iodine 
(I) of different concentrations and Phantom2 with gadolinium 
(Gd) of different concentrations, as shown in Fig. 4. Each set 
of data is a four-dimensional data of 90090059, in which 
900 is the image size whose pixels are material attenuation 
coefficients, 5 represents the number of energy bins, and 9 
indicates the number of slices. The X-ray energy bins were set 
as:  30-51 kev, 51-62 kev, 62-72 kev, 72-81 kev and 81-150 
kev. In our experiments, the original high resolution spectral 
CT images of the two phantoms are considered as ground truth. 
We use different methods to reconstruct images with the same 
resolution as the ground truth and then compare their 
performances. 

 

   
Fig.4. Two phantoms filled by different materials with different 

concentrations. Left: Phantom 1 filled by I. Middle: Phantom 2 filled by Gd 
(unit: mg/cc, NA indicates no filled material). Right: Original image of the 

5th slice of Phantom 1 for the 1st energy bin. 

B. Evaluation metrics 

To evaluate the performance of super-resolution 
reconstructions, we calculate the error between the 
reconstructed image and the original image, which is defined 
as F norm, a kind of matrix norm, of the difference between the 
original image and the reconstructed super-resolution image. 

C. Reconstruction results based on traditional methods. 

a) With interpolation-based method 

Figure 5 shows the reconstruction results using a bilinear 
interpolation on each slice. Fig. 5(a) and (b) respectively 
indicates reconstructed super resolution image and the ground 
truth. It is observed blurred boundary and in the reconstructed 
image. 

 
(a) 

 
(b) 

Fig. 5. Bilinear interpolation based reconstruction of the 6th slice of Phantom 2 

for the 3rd energy bin. 

b) With IBP 

The IBP based reconstruction result of the 6
th

 slice of 
Phantom2 for the 3

rd
 energy bin is shown in Fig. 6(a). 

Serration and the blurred boundary are observed in the 
filling areas. 

The F form errors are calculated for slice4-slice6 of 
Phantom2 for the 5 energy bins for both bilinear-
interpolation-based and IBP-based reconstructions, as 
shown in Fig. 7. We see that the error of IBP-based 
reconstruction is obviously smaller than that of bilinear-
interpolation-based reconstruction. 

 
(a) 

 
(b) 

Fig. 6. Iterative back projection results. 

 

Fig. 7. Comparison of interpolation and iterative back projection error in 
slice4-slice6 of Phantom2. The x-axis indicates the energy bin number, and 
y-axis indicates the F form error. 

D. Deep Learning method 

For our UNet-ESPC-based method, we first decide the 
patch size and stride by experiments, and then use data 
augmentation to reduce the F form error. 

a) Determine patch size 

Extracted patches from the nine slices of Phantom1 are 
used as training set and those from Phantom2 as testing set. 
By setting the stride as 5, we compare three patch sizes of 

15×15, 20×20 and 25×25, and the F norm error of the 

slice4-slice6 of Phantom 2 for the 5 energy bins is given in 
Fig. 8. We see that the lowest error is achieved with patch 
size 20×20 on the 4-6 slices. The third energy bin get the 
minimal error. Fig. 9 shows the qualitative results of the 
reconstructed images with different patch sizes.  



 

 

 

 

Fig. 8. Patch size comparison in slice4-slice6 of Phantom2. The x-axis 
indicates the energy bin number, and y-axis indicates the F form error 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 9. Deep learning based super-resolution reconstruction of the sixth slice in 
of Phantom2 for the third energy bin. (a) Reconstruction result with patch size 
15×15. (b) Reconstruction result with patch size 20×20. (c) Reconstruction 
result with patch size 25×25. (d) Ground truth. 

b) Determine the stride 

By fixing the patch size as 20×20, we compare the results 

with three different strides 5, 10 and 15. We use the extracted 
patches from 15 slices (9 slices of Phantom1 and slices 4 to 9 
of Phantom2) for as training set. With the strides of 5, 10 and 
15, so 26460, 6615 and 2940 patches are generated for each 
channel, respectively. Figure 10 shows the F form error with 
different strides in slice2 of Phantom2, having similar result 
with slice1 and slice3. We observe that the stride 15 achieves 
the smallest error.

 

 

Fig. 10. Stride comparison on the slice2 of Phantom2 for the 5 energy bins. 
The x-axis indicates the energy bin number, and y-axis indicates the F 
form error. 

c) Data augmentation 

Since only 2940 patches can be obtained for training 
when the stride is 15, we perform a data augmentation by 
rotating patches of 90, 180 and 270 degrees respectively. As 
a result, 8610 patches are finally obtained for training. Fig. 
11 plots the F form error of slice2 in the testing data for the 
five energy bins. Besides, the results of the slice1 and slice3 
with augmentation are effective than those without 
augmentation. It is observed that the F form error of our 
model with data augmentation is reduced about 8.71% on 
average, compared to that without augmentation. 

 
Fig. 11. Error comparison on slice2 of Phantom2 for the 5 energy bins 
between with and without data augmentation. The x-axis indicates the 
energy bin number, and y-axis indicates the F form error.  



 

 

 

E. Comparison of all methods 

 
Fig. 12. Error comparison on slice2 of Phantom2 for the 5 energy bins 
among all methods. The x-axis indicates the energy bin number, and y-axis 
indicates the F form error. 

IV. DISCUSSION AND CONCLUSION 

 
In this paper, we proposed a UNet-ESPC-cascaded model 

for super-resolution reconstruction in spectral CT. Our model 
does not ask for prior interpolation for training, and minimizes 
the serration and blurring phenomenon during reconstruction. 
Experimental results showed that our model can reduce the F 
form error by 11.6% and 5.66% compared to the bilinear-
interpolation-based reconstruction and IBP-based 
reconstruction, respectively. In addition, since deep learning 
based reconstruction is a data-driven method, it does not ask 
for any prior operation such as the determination of filter in 
IBP-based method. 

When fine-tuning the parameters of our model, we found 
that the first and ninth slices of Phantom2 have the largest error 
in the testing data. This is due to the fact that the filling areas 
of the 9th slice are too large to be reconstructed. We also found 
that the third energy bin contributes to the smallest error, while 
the first and the fifth energy bins contribute to the highest. This 
may be due to the fact that the photon numbers of the first bin 
is at the lowest level and the fifth energy bin at the highest 
level. Consequently, the image of gadolinium / iodine at the 
same concentration is dark (in the first energy bin) / bright (in 
the fifth energy bin), far from the third energy bin in the middle 
level. 
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