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Abstract. Training deep convolutional neural networks (CNNs) for air-
way segmentation is challenging due to the sparse supervisory signals
caused by severe class imbalance between long, thin airways and back-
ground. In view of the intricate pattern of tree-like airways, the segmen-
tation model should pay extra attention to the morphology and distri-
bution characteristics of airways. We propose a CNNs-based airway seg-
mentation method that enjoys superior sensitivity to tenuous peripheral
bronchioles. We first present a feature recalibration module to make the
best use of learned features. Spatial information of features is properly in-
tegrated to retain relative priority of activated regions, which benefits the
subsequent channel-wise recalibration. Then, attention distillation mod-
ule is introduced to reinforce the airway-specific representation learning.
High-resolution attention maps with fine airway details are passing down
from late layers to previous layers iteratively to enrich context knowl-
edge. Extensive experiments demonstrate considerable performance gain
brought by the two proposed modules. Compared with state-of-the-art
methods, our method extracted much more branches while maintaining
competitive overall segmentation performance.
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1 Introduction

Extraction of airways from computed tomography (CT) is critical for quantifying
the morphological changes of chest (e.g., bronchial stenosis) and thereby indicat-
ing the presence and stage of related diseases. The intrinsic tree-like structure of
airways demands great efforts for manual delineation and therefore several auto-
matic airway segmentation methods have been proposed [11,12,19,21]. Most of
them employed techniques like thresholding, region growing, and tubular struc-
ture enhancing. Since the intensity contrast between airway wall and lumen
weakens as airways split into thinner branches, these methods often failed to ex-
tract peripheral bronchioles and produced leakage outside wall. Recent progress
of convolutional neural networks (CNNs) [4, 5, 14, 17] has spawned research on
airway segmentation using CNNs [3, 7–9, 13, 15, 18, 20, 22, 25]. 2-D and 2.5-D
CNNs [3, 22] were adopted to refine the initial coarsely segmented bronchi. 3-D
CNNs were developed for direct airway extraction on CT volume in either an
optimized tracking way [13,25] or a sliding window way [8]. Wang et al. [20] pro-
posed recurrent convolution and radial distance loss to capture airways’ topology.
Qin et al. [15] transformed the airway segmentation task into connectivity pre-
diction task for inherent structure comprehension. Graph neural networks [9,18]
were also explored to incorporate nodes’ neighborhood knowledge.

Despite the improved performance by deep learning, there still remain limi-
tations to be overcome. First, severe class imbalance between airways and back-
ground poses a threat to the training of 3-D CNNs. Most of the current CNNs
heavily rely on airway ground-truth as supervisory signals. Unlike bulky or
spheroid-like organs (e.g., liver and kidney), tree-like airways are thin, tenuous,
and divergent. It is difficult to train deep models using such sparse and scat-
tered target labels. Although weighted cross-entropy loss was proposed to focus
on positive samples, single source of supervisory signals from deficient airway
labels still makes optimization ineffective. Second, the characteristics of airways
require the model to utilize both global-scale and local-scale context knowledge
to perceive the main body (trachea and main bronchus) and limbs (peripheral
bronchi). Previous models used 2 or 3 pooling layers and the coarsest resolution
features provide limited long-range context. If more layers are simply piled up,
the increased parameters may cause over-fitting due to inadequate training data.

To address these two concerns, we present a CNNs-based airway segmenta-
tion method with high sensitivity to peripheral bronchioles. Our contributions
are threefold: 1) The recalibration module is proposed to maximally utilize the
learned features. On one hand, to avoid over-fitting of deep CNNs, the number
of feature channels is reduced to limit model complexity. On the other hand,
we do not expect the model’s learning capacity to diminish because of such re-
duction. Under this circumstance, feature recalibration seems to be a reasonable
solution. We hypothesize that spatial information of features is indispensable
for channel-wise recalibration and should be treated differently from position to
position, layer to layer. The average pooling used in [16, 26] for spatial knowl-
edge compression may not well capture the location of various airways in dif-
ferent resolution scales. In contrast, we aim at prioritizing information at key
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positions with learnable weights, which provides appropriate spatial hints to
model inter-channel dependency and thereafter improves recalibration. 2) The
attention distillation module is introduced to reinforce representation learning
of airway structure. Attention maps of different features enable us to poten-
tially reveal the morphology and distribution pattern of airways. Inspired by
knowledge distillation [6, 24], we refine the attention maps of lower resolution
by mimicking those of higher resolution. Finer attention maps (teacher’s role)
with richer context can cram coarser ones (student’s role) with details about
airways and lung contours. The model’s ability to recognize delicate bronchioles
is ameliorated after iteratively focusing on the anatomy of airways. In addition,
the distillation itself acts as auxiliary supervision that provides extra supervi-
sory signals to assist training. 3) With extensive experiments on 90 clinical 3-D
CT scans, our method achieved superior sensitivity to extraction of thin airways
and maintained competitive overall segmentation performance.
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Fig. 1. Overview of the proposed method for airway segmentation.

2 Method

In this section, we present the design of the above-mentioned two modules:
feature recalibration and attention distillation. The overview of the proposed
method is illustrated in Fig. 1. For airway segmentation, the CNNs-based predic-
tion can be formulated as P = F(X), where P denotes the predicted probability
of airway at each voxel x of the input volume X. Given the airway label Y , the
objective is to learn an end-to-end mapping F that minimizes the difference be-
tween P and Y by CNNs. Assuming the segmentation model has M convolution
layers in total, we denote the activation output of the m-th convolution feature
as Am ∈ RCm×Dm×Hm×Wm , 1 ≤ m ≤ M . The number of its channel, depth,
height, and width are respectively denoted as Cm, Dm, Hm, and Wm.
Feature Recalibration: We propose the mapping block Z(·) that generates
a channel descriptor Um to recalibrate the learned feature Am. The recalibra-
tion by multiplying Um with Am unearths and strengthens basis channels that
affect most the output decision. Unlike previous recalibration methods [16, 26],
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we integrate spatial information using weighted combination of features along
each spatial dimension. Our hypothesis is that different positions may hold
different degree of importance both within Am and across resolution scales
(e.g., Am−1, Am+1). The operation like adaptive or global pooling is not spa-
tially discriminating for the finest features (containing thin bronchioles that
are easily “erased” by averaging) and the coarsest features (containing mostly
thick bronchi). Therefore, we introduce the following spatial integration method
Zspatial(·) that preserves relatively important regions. It can be formulated as:

Zspatial(Am) = B(ZDepth
spatial(Am)) + B(ZHeight

spatial (Am)) + B(ZWidth
spatial(Am)), (1)

ZDepth
spatial(Am) =

Hm∑
j=1

hj

Wm∑
k=1

wkAm[:, :, j, k],ZDepth
spatial(Am) ∈ RCm×Dm×1×1, (2)

ZHeight
spatial (Am) =

Dm∑
i=1

di

Wm∑
k=1

wkAm[:, i, :, k],ZHeight
spatial (Am) ∈ RCm×1×Hm×1, (3)

ZWidth
spatial(Am) =

Dm∑
i=1

di

Hm∑
j=1

hjAm[:, i, j, :],ZWidth
spatial(Am) ∈ RCm×1×1×Wm , (4)

where indexed slicing (using Python notation) and broadcasting B(·) are per-
formed. The learnable parameters di, hj , wk denote the weight for each feature
slice in depth, height, and weight dimension, respectively. Crucial airway regions
are gradually preferred with higher weights during learning. To model the inter-
channel dependency, we adopt the excitation technique [16] on the compressed
spatial knowledge. Specifically, the channel descriptor is obtained by:

Um = Z(Am) = f2(K2 ∗ f1(K1 ∗ Zspatial(Am))), (5)

where K1,K2 are 3-D kernels of size 1×1×1 and “∗” denotes convolution. Con-
volving with K1 decreases the channel numbers to Cm/r and that with K2 re-
covers back to Cm. The ratio r is the compression factor. f1(·) and f2(·) are non-
linear activation functions. We choose Rectified Linear Unit (ReLU) as f1(·) and
Sigmoid as f2(·) in the present study. Multiple channels are recombined through
such channel reduction and increment, with informative ones emphasized and
redundant ones suppressed. The final recalibrated feature Âm = Um � Am is
calculated as element-wise multiplication between Um and Am.
Attention Distillation: Recent studies [6,24] on knowledge distillation showed
that attention maps serve as valuable knowledge and can be transferred layer-by-
layer from teacher networks to student networks. The motivation of our proposed
attention distillation is that activation-based attention maps, which guide where
to look at, can be distilled and exploited during backward transfer. Without
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separately setting two different models, later layers play the role of teacher and
“impart” such attention to earlier layers in the same model. Besides, to tackle
the challenge of insufficient supervisory signals caused by severe class imbal-
ance, the distillation can be viewed as another source of supervision. It produces
additional gradient that helps to train deep CNNs for airway segmentation.
Specifically, the attention distillation is performed between two consecutive fea-
tures Am and Am+1. Firstly, the activation-based attention map is generated
by Gm = G(Am), Gm ∈ R1×Dm×Hm×Wm . Each voxel’s absolute value in Gm

reflects the contribution of its correspondence in Am to the entire segmentation
model. One way of constructing the mapping function G(·) is to compute the

statistics of activation values Am across channel: Gm =
∑Cm

c=1|Am[c, :, :, :]|p. The
element-wise operation |·|p denotes the absolute value raised to the p-th power.
More attention is addressed to highly activated regions if p > 1. Here, we adopt
channel-wise summation

∑Cm

c=1(·) instead of maximizing maxc(·) or averaging
1

Cm

∑Cm

c=1(·) because it is comparatively less biased. The summation operation
retains all implied salient activation information without ignoring non-maximum
elements or weakening discriminative elements. Visual comparison in Fig. 2 ex-
hibits that summation with p > 1 intensifies most the sensitized airway regions.
Secondly, trilinear interpolation I(·) is performed to ensure that the processed
3-D attention maps share the same dimension. Then, spatial-wise Softmax S(·)
is applied to normalize all elements. Finally, we drive the distilled attention Ĝm

closer to Ĝm+1 by minimizing the following loss function:

Ldistill =

M−1∑
m=1

‖Ĝm − Ĝm+1‖2F , Ĝm = S(I(Gm)), (6)

where ‖·‖2F is the squared Frobenius norm. With the current Ĝm iteratively

mimicking its successor Ĝm+1, visual attention guidance is transmitted from
the deepest to the shallowest layer. Note that such distillation process does not
require extra annotation labor and can work with arbitrary CNNs freely. To
ensure that the direction of knowledge distillation is from back to front, we
detach the Ĝm+1 from the computation graph for each m in Eq. 6. Hence, the
backward propagating gradients will not change the value of Ĝm+1.

Summation (p=1) Averaging (p=2) Maximizing (p=2) Summation (p=2)Input

Fig. 2. The difference among mapping functions G(·) for the lattermost attention map.

Model Design: The proposed method employs U-Net [5] architecture. To en-
large the receptive field of CNNs and facilitate the feature learning of long-range
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relationship, four pooling layers are used with five resolution scales. At each
scale, both encoder and decoder have two convolution layers (kernel size 3×3×3)
followed by instance normalization (IN) and ReLU. Feature recalibration is ap-
plied at the end of each resolution scale. Since high-level features in decoder are
also of high-resolution, we perform the decoder-side attention distillation to pass
down the fine-grained details that are missing in previous low-resolution atten-
tion maps. The encoder-side distillation is not favored because low-level features
are more local-scale and not strongly related to airway description. Preliminary
experiments confirmed that such design is optimum for our task.
Training Loss: To deal with hard samples, we use both the Dice [14] and Focal
loss [10] for the segmentation task. Given the binary label y(x) and prediction
p(x) of each voxel x in the volume set X, the combined loss is defined as:

Lseg = −(
2
∑

x∈X p(x)y(x)∑
x∈X(p(x) + y(x)) + ε

)− 1

|X|
(
∑
x∈X

(1− pt(x))2 log(pt(x))), (7)

where pt(x) = p(x) if y(x) = 1. Otherwise, pt(x) = 1− p(x). Parameter ε is used
to avoid division by zero. Together with attention distillation loss, the total loss
function is given by Ltotal = Lseg +αLdistill, where α balances these two terms.

3 Experiments and Results

Datasets: For evaluation, we conducted airway segmentation experiments on
90 3-D thoracic CT scans collected from two public datasets: 1) 70 scans from
LIDC [1]; 2) 20 scans from the training set of EXACT’09 [12]. For the LIDC
dataset, 70 CT scans whose slice thickness ≤ 0.625 mm were randomly cho-
sen. For the EXACT’09 dataset, 20 training scans were provided without airway
annotation. The airway ground-truth of each CT scan was manually corrected
based on the interactive segmentation results of ITK-SNAP [23]. The acquisi-
tion and investigation of data were conformed to the principles outlined in the
declaration of Helsinki [2]. The axial size of all CT scans was 512×512 pixels
with the spatial resolution of 0.5–0.781 mm. The number of slices in each scan
varied from 157 to 764 with the slice thickness of 0.45–1.0 mm. All 90 CT scans
were randomly split into training set (63 scans), validation set (9 scans), and
testing set (18 scans). In the experiments, model training and hyper-parameter
fine-tuning were performed only on the training set. The model with the best
validation results was chosen and tested on the testing set for objectivity.
Setup: The CT pre-processing included Hounsfield Unit truncation, intensity
normalization, and lung field segmentation [15]. In training phase, sub-volume
CT cubes of size 64×224×304 were densely cropped near airways. Random hor-
izontal flipping, shifting, and voxel intensity jittering were applied as on-the-fly
data augmentation. The Adam optimizer (β1 = 0.5, β2 = 0.999) with the learn-
ing rate 2×10−4 was used and the training converged after 50 epochs. In valida-
tion and testing phases, we performed the sliding window prediction with axial
stride of 48. Results were averaged on overlapping margins and thresholded by
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Table 1. Results (%) of comparison on the testing set (Mean±Standard deviation).

Method BD TD TPR FPR DSC

3-D U-Net [5] 87.2±13.7 73.8±18.7 85.3±10.4 0.021±0.015 91.5±2.9

V-Net [14] 91.0±16.2 81.6±19.5 87.1±13.6 0.024±0.017 92.1±3.6

VoxResNet [4] 88.2±12.6 76.4±13.7 84.3±10.4 0.012±0.009 92.7±3.0

Wang et al. [20] 93.4±8.0 85.6±9.9 88.6±8.8 0.018±0.012 93.5±2.2

Juarez et al. [9] 77.5±20.9 66.0±20.4 77.5±15.5 0.009±0.009 87.5±13.2

Qin et al. [15] 91.6±8.3 82.1±10.9 87.2±8.9 0.014±0.009 93.7±1.9
Juarez et al. [8] 91.9±9.2 80.7±11.3 86.7±9.1 0.014±0.009 93.6±2.2

Jin et al. [7] 93.1±7.9 84.8±9.9 88.1±8.5 0.017±0.010 93.6±2.0

Our proposed 96.2±5.8 90.7±6.9 93.6±5.0 0.035±0.014 92.5±2.0

Table 2. Results (%) of ablation study on the testing set (Mean±Standard deviation).

Method BD TD TPR FPR DSC

Baseline 91.6±9.2 81.3±11.5 87.2±8.6 0.014±0.008 93.7±1.7
Baseline + cSE [26] 95.1±6.2 88.5±8.3 92.4±5.5 0.033±0.015 92.3±1.9

Baseline + PE [16] 95.7±5.1 88.4±7.9 92.3±5.9 0.037±0.019 91.8±2.8

Baseline + FR 96.1±5.9 90.8±7.5 92.9±5.9 0.034±0.016 92.3±2.3

Baseline + AD 94.9±6.9 88.3±8.2 91.8±6.2 0.029±0.014 92.8±1.4

Our proposed 96.2±5.8 90.7±6.9 93.6±5.0 0.035±0.014 92.5±2.0

0.5 for binarization. No post-processing was involved. For the hyper-parameter
setting, we empirically chose α = 0.1, ε = 10−7, p = 2, and r = 2. Such setting
may not be optimum and elaborate tuning may be conducted in future work.

Metrics: Considering clinical practice, only the largest connected component of
segmented airways was kept and five metrics were used: (a) Branches detected
(BD), (b) Tree-length detected (TD), (c) True positive rate (TPR), (d) False
positive rate (FPR), and (e) Dice coefficient (DSC). We referred to [12] for
airway tree-based metric definition (a)–(d) and the trachea region is excluded.
For overall segmentation estimation by DSC, trachea is included in computation.

Quantitative results: Since we adopted U-Net as backbone, comparison ex-
periments were performed with other encoder-decoder CNNs: the original 3-D
U-Net [5], its variants V-Net [14], and VoxResNet [4]. We also compared our
method with five state-of-the-art methods: Wang et al. [20], Juarez et al. [9],
Qin et al. [15], Juarez et al. [8], and Jin et al. [7]. All these methods were re-
implemented in PyTorch and Keras by ourselves and fine-tuned on the same
dataset. Table 1 shows that our method achieved the highest BD, TD, and TPR
with a compelling DSC. The first three metrics directly reflect that our model
outperformed the others in the detection of airways, especially distal parts of
thin branches. Its superior sensitivity also comes with a side effect of slight per-
formance decline in FPR and DSC. This may be ascribed to: 1) Our model
successfully detected some true thin airways that were too indistinct to be anno-
tated properly by experts. When calculating the evaluation metrics, these real
branches were counted as false positives and therefore causing higher FPR and
lower DSC. 2) A little leakage was produced at bifurcations where the contrast
between airway lumen and wall was fairly low. In this situation, the segmenta-
tion model was inclined to predict voxels as airway due to the reinforced feature
learning of tiny branches. However, it is clinically worthwhile that much more
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branches were segmented at such a trivial loss. Furthermore, we conducted ab-
lation study to investigate the validity of each component in our method. The
model trained without feature recalibration (FR) and attention distillation (AD)
was indicated as baseline. Two very recently proposed recalibration methods
(cSE [26] and PE [16]) were introduced into our baseline for comparison. As
shown in Table 2, FR brings more performance gain than cSE and PE under the
same experiment setting, confirming the importance of reasonably integrating
spatial knowledge for recalibration. All components (cSE, PE, FR, and AD) in-
creased the baseline model’s sensitivity of detecting airways and also produced
more false positives. In view of the metrics BD, TD, and TPR, both modules of
FR and AD do contribute to the high sensitivity of our model.
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Fig. 3. Rendering of segmentation results of (a) easy and (b) hard testing cases.

Qualitative results: Segmentation results are shown in Fig. 3 to demonstrate
the robustness of our method on both easy and hard cases. In line with Ta-
ble 1, all methods performed well on extracting thick bronchi. Compared with
state-of-the-art methods, more visible tiny branches were reconstructed by the
proposed method with high overall segmentation accuracy maintained. In Fig.
3 (a) and (b), some false positives were identified as true airways after ret-
rospective evaluation of labels. These branches were unintentionally neglected
due to annotation difficulty. Moreover, to intuitively assess the effect of atten-
tion distillation, attention maps from decoder 1–4 are visualized in Fig. 4. After
distillation, the activated regions become more distinct and the task-related ob-
jects (e.g., airway, lung) are enhanced accordingly. The improved attention on
airways and lung boundary explains that the model comprehended more con-
text and therefore achieved higher sensitivity to intricate bronchioles. Another
interesting finding is that although the last attention map is not refined in distil-
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lation, it still gets polished up because better representation learned at previous
layers in turn affects late-layer features.

Decoder 3 Attention Decoder 4 AttentionDecoder 2 AttentionDecoder 1 Attention

B
efo

re D
istillatio

n
A

fter D
istillatio

n

Input

B
efo

re D
istillatio

n
A

fter D
istillatio

n

Input

Decoder 3 Attention Decoder 4 AttentionDecoder 2 AttentionDecoder 1 Attention

B
efo

re D
istillatio

n
A

fter D
istillatio

n
B

efo
re D

istillatio
n

A
fter D

istillatio
n

Colormap Jet
0 1

Fig. 4. Pseudo-color rendering of attention maps (decoder 1–4) before and after distil-
lation process. These maps are min-max scaled and rendered with Jet colormap.

4 Conclusion

This paper proposed a highly sensitive method for CNNs-based airway segmen-
tation. With the spatial-aware feature recalibration module and the gradually-
reinforced attention distillation module, feature learning of CNNs becomes more
effective and relevant to airway perception. Extensive experiments showed that
our method detected much more bronchioles while maintaining competitive over-
all segmentation performance, which corroborates its superior sensitivity over
state-of-the-art methods and the validity of the two constituent modules.
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