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Abstract
GC-biased gene conversion (gBGC) is a molecular evolutionary force that favours GC over
AT alleles irrespective of their fitness effect. Quantifying the variation in time and across
genomes of its intensity is key to properly interpret patterns of molecular evolution. In par-
ticular, the existing literature is unclear regarding the relationship between gBGC strength
and species effective population size, Ne. Here we analysed the nucleotide substitution
pattern in coding sequences of closely related species of mammals, thus accessing a high
resolution map of the intensity of gBGC. Our maximum likelihood approach shows that
gBGC is pervasive, highly variable among species and genes, and of strength positively
correlated with Ne in mammals. We estimate that gBGC explains up to 60% of the total
amount of synonymous AT→GC substitutions. We show that the fine-scale analysis of
gBGC-induced nucleotide substitutions has the potential to inform on various aspects
of molecular evolution, such as the distribution of fitness effects of mutations and the
dynamics of recombination hotspots.
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Introduction

GC-biased gene conversion (gBGC) is a recombination-associated transmission bias by which
G and C alleles are favoured over A and T alleles. This evolutionary forcewas discovered in the
2000’s from the analyses of early population genomic data sets (Eyre-Walker, 1999; Galtier,
Piganeau, et al., 2001; Spencer et al., 2006; Webster and NG Smith, 2004), and experimentally
confirmed later on (Mancera et al., 2008; Pratto et al., 2014; Williams et al., 2015). gBGC
manifests itself as a GC-bias that affects both non-functional and functional sequences and
is correlated with the local recombination rate (Galtier and Duret, 2007). gBGC has a strong
impact on patterns of variation genome wide in mammals (Clément and Arndt, 2011; Duret
and Arndt, 2008; Pracana et al., 2020; Romiguier, Ranwez, et al., 2010) and many other taxa
(Clément, Sarah, et al., 2017; Figuet, Ballenghien, Romiguier, et al., 2014; Galtier, Roux, et al.,
2018; Lassalle et al., 2015; Long et al., 2018; Mugal, Arndt, et al., 2013; Nabholz et al., 2011;
Pessia et al., 2012; Wallberg et al., 2015). gBGC can mimic the effect of natural selection and
confound its detection by generating patterns of clustered AT→GC substitutions, distorted
site frequency spectra and altered non-synonymous/synonymous ratios (Bolívar et al., 2018;
Corcoran et al., 2017; Dreszer et al., 2007; Galtier andDuret, 2007; Lartillot, 2012; Ratnakumar
et al., 2010; Rousselle et al., 2019). Importantly, because it favours G and C alleles irrespective
of their fitness effect, gBGC tends to counteract natural selection and increase the deleterious
mutation load (Berglund et al., 2009; Galtier, Duret, et al., 2009; Lachance and Tishkoff, 2014;
Necşulea et al., 2011).

The abundant body of literature reviewed above demonstrates a significant effect of gBGC
in a large number of genomes. Only a few studies, however, have attempted to quantify its
strength - a harder task. gBGC results from a DNA repair bias involving paired chromosomes
at meiosis, and operating in the immediate neighborhood of DNA double strand breaks. The
genome average transmission bias, b, is therefore expected to be proportional to the recom-
bination rate, gene conversion tract length, and repair bias. The effect of gBGC on genome
evolution is also expected to be dependent on the intensity of drift: being a directional force,
gBGC is only effective if stronger than the stochastic component of allele frequency evolu-
tion. The intensity of drift is inversely related to the effective population size Ne, so that the
strength of gBGC is usually measured by theB = 4Neb parameter. Glémin et al. (2015) used
genome-wide resequencing data to estimateB at themegabase scale throughout the human
genome. Fitting various population geneticmodels to polarised GC vs. AT site frequency spec-
tra, Glémin et al. (2015) estimated the genome average B to be in the weak selection range,
around 0.4, with B reaching a value above 5 in 1%-2% of the genome. This variance among
genomic regions in gBGC strength is interpreted as reflecting the existence of recombination
hotpots in humans (Capra et al., 2013; Duret and Arndt, 2008; Spencer et al., 2006).

Similar analyses have been performed in a number of non-human taxa. In the fruit fly
Drosophila melanogaster, no evidence for gBGC has been reported, albeit a weak effect on
the X chromosome (Galtier, Bazin, et al., 2006; MC Robinson et al., 2014). In contrast, Wall-
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berg et al. (2015) estimated the genome averageB to be above 5 in the honey bee Apis mellif-
era, again with substantial variation between low-recombining and high-recombining regions.
Note thatNe is expected to bemuch smaller inHomo sapiens and the eusocial A.mellifera than
in D. melanogaster (Romiguier, Lourenco, et al., 2014). Galtier, Roux, et al. (2018) analysed site
frequency spectrum at synonymous positions in the coding sequences of 30 species of an-
imals. They estimated that the average B at third codon positions varies between 0 and 2
among species, without any significant relationship with Ne-related life history traits. These
comparisons among distantly-related animals revealed substantial variation in the intensity
of gBGC among species, but, somewhat paradoxically, no detectable effect ofNe.

Another attempt to quantify the strength of gBGC is to get information from between-
species divergence data, instead of within-species polymorphism data. Capra et al. (2013)
simultaneously modelled the effects of purifying selection and gBGC during the divergence
between humans and chimpanzees and estimated that in apes 0.33% of the genome is under-
going gBGC at rate B = 3. This is lower than the estimates provided by Glémin et al. (2015,
see above), presumably because Capra et al. (2013) assumed a constant gBGC rate at any
location of the genome, whereas recombination hotspots are known to be highly dynamic in
apes (Auton et al., 2012; Lesecque et al., 2014). Using amethod that combines polymorphism
and divergence data, De Maio et al. (2013) estimated the averageB to be of the order of 0.3-
0.7 in apes, consistent with Glémin et al. (2015). Lartillot (2013) analysed coding sequence
divergence in 33 species of placental mammals and estimated the among-gene and among-
species variation of B. He found that the average B varied among species from ∼ 0.1 (in
apes) to 3-5 (in bats and lagomorphs), with an among-gene standard deviation of B as high
as twice the mean. Lartillot (2013) detected a significant, negative correlation betweenB and
species body mass. Body mass being strongly and negatively correlated with population den-
sity in mammals (Damuth, 2007), this result suggests that Ne might be a determinant of the
strength of gBGC in mammals, in agreement with theoretical expectations. Elaborating on
the approach of De Maio et al. (2013), Borges et al. (2019) also reported a positive relation-
ship between the population scaled gBGC coefficient and Ne across species/populations of
apes.

So on one hand comparative analyses of site-frequency spectra among animals did not
reveal any effect of Ne on the strength of gBGC, while on the other hand the analysis of the
substitution pattern in mammals is consistent with aNe effect. Also a bit surprisingly, the es-
timated range of variation ofB across mammals (0.1-5, Lartillot, 2013) is wide enough to con-
tain all the estimates ofB reported in any species of animals so far. Lartillot (2013) analysed a
subset of currently annotatedmammalian orthologs (1329 exons in the largest data set), and
importantly, relatively ancient divergences, at the family or order level, thus capturing the av-
erage effect of gBGC across dozens ofmillion years. Herewe analyse a large set of genes from
closely related species in four families of mammals, thus accessing a high-resolution map of
the effect of gBGC on coding sequences, both in time and across the genome. We focus on
two key features of gBGC-drivenmolecular evolution, namely clustered AT→GC substitutions,
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and an excess of AT→GC over GC→AT substitutions compared to the mutation process. Es-
timating B in 40 lineages of mammals, we show that gBGC explains a substantial fraction
of synonymous and non-synonymous AT→GC substitutions, thatNe is a strong predictor of
the intensity of gBGC in mammals, and that large-Ne and small-Ne taxa differ substantially
in how gBGC is distributed among and within genes.

  

Pan troglodytes

Pan paniscus

Homo sapiens

Gorilla gorilla

Pongo abelii

Nomascus leucogenys

Mus spretus

Mus musculus

Mus caroli

Mus pahari

Rattus norvegicus

Meriones unguiculatus

Bos mutus

Bos taurus

Bison bison

Bubalus bubalis

Pantholops hodgsonii

Ovis aries

Capra hircus

Hominidae

Bovidae Muridae

Cercopithecidae

Macaca fascicularis

Macaca mulatta

Macaca nemestrina

Cercocebus atys

Mandrillus leucophaeus

Papio anubis

Rhinopithecus roxelana

Rhinopithecus bieti

Piliocolobus tephrosceles

Colobus angolensis

Chlorocebus sabaeus

5 My

Figure 1. The four families, 32 species and 40 lineages of mammals (green branches) anal-
ysed here. Branch lengths are proportional to the estimated divergence time.

Results

Overview

Weanalysedpatterns of AT→GC (i.e., Weak to Strong, orWS), GC→AT (SW) andGC-conservative
(SSWW) coding sequence nucleotide substitutions in 40 recently diverged lineages (branches)
from four families of mammals (Fig.1), namely Hominidae (humans and apes), Cercopithe-
cidae (old world monkeys), Bovidae (cattle, sheep and allies) and Muridae (mice, rats, ger-
bils). A total of 1,104,917 third codon position synonymous substitutions and 514,552 first or
second codon position non-synonymous substitutions were called. The median number of
substitutions across branches was 24,960, and the minimum was 3927. The overall ratio of
non-synonymous to synonymous substitutions, dN/dS , was 0.233; the family-specific dN/dS
ratio was 0.275, 0.252, 0.228 and 0.213 in Hominidae, Cercopithecidae, Bovidae andMuridae,
respectively. The dN/dS ratio is a marker of Ne in mammals, with small populations experi-
encing a higher substitution load, hence a higher dN/dS (Nikolaev et al., 2007; Popadin et al.,
2007; Romiguier, Figuet, et al., 2012). These results therefore indicate that the four families of
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our data set rank in the Hominidae < Cercopithecidae < Bovidae <Muridae order as far as
Ne is concerned, consistent with previous analyses (Lartillot, 2013; Romiguier, Ranwez, et al.,
2013).

Substitution clustering

Focusing on synonymous substitutions, we calculated Moran’s I (Moran, 1950), a statistics
that measures spatial aurocorrelation and was adjusted to target the 400 bp scale. This in-
dex therefore measures the tendency for substitutions (of a specific sort) having appeared
in a given branch to be located less than 400 bp apart. Fig.2 shows the distribution among
branches of the average centeredMoran’s I , separately for WS and SW synonymous substitu-
tions. The centeredMoran’s I for SW substitutions was very close to zero in all branches from
all four families, indicating very little, if any, clustering of substitutions. WS substitutions be-
haved differently: the centeredMoran’s I was close to zero in Hominidae, perceptibly positive
in Cercopithecidae, and reachedmuch higher values in Bovidae andMuridae, demonstrating
the existence of clusters of synonymous WS substitutions in these two families. This pattern
- clustering of WS but not SW substitutions - is a signature of gBGC (e.g. Dreszer et al., 2007);
its intensity appears to increase withNe across the four families analysed here.

Simulations were performed in order to assess the amount of clustering needed to ex-
plain the observed values of Moran’s I . Our simulation procedure considers two levels of
clustering, one at the 500 bp scale and one at the 40 bp scale, while accounting for the intron-
exon structure and the among-genes variance inmutation rate andGC-content (seeMethods).
In Muridae and Bovidae, we were able to replicate the observed values of Moran’s I when
15-40% of the simulated substitutions appeared in clusters. This percentage was 0-10% in
Cercopithecidae, and non-existent in Hominidae (Supplementary Fig. S1).

Estimating B

For each branch we estimated the population gBGC coefficient B = 4Neb and its variation
based on synonymous WS, SW and SSWW synonymous substitution counts. Various models
were fitted to the data via the maximum likelihood (ML) method, assuming that the mutation
process is known (TCA Smith et al., 2018). Model M1 assumes a constant intensity of gBGC,
B, among and within genes. Model M2 considers two categories of genes, each with its own
gBGC intensity, assumed to be shared by all sites within a gene. M2 led to a rejection of M1
by a likelihood ratio test (p− val < 0.05) in 36 branches out of 40. The M3z model assumes
three categories of genes, which we below denote "cold" (B = 0), "mild", and "hot". M3z
rejected M1 in 39 branches out of 40, and M2 in 27 branches. There was, therefore, strong
evidence for a variable B across genes in this data set.

Then we fitted models that assume some variation of B both among and within genes.
Model M3h considers three categories of genes that differ in terms of the prevalence, q, of
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Figure 2. Distribution of centered Moran’s I for WS and SW synonymous substitutions in
four families of mammals. Only branches in which at least 100 genes had at least 3 inferred
substitutions were included.

gBGC hotspots. gBGC is assumed to operate at intensity Bh within hotspots, and zero out-
side hotspots. Model M3sh is a simplified version of M3h obtained when q approaches zero.
Applying these two models led to a dramatic increase in log-likelihood for most branches
(Supplementary Table S1), which is indicative of the existence of substantial within-gene vari-
ation in gBGC intensity. ModelM3h rejectedM3sh by a likelihood ratio test only in one branch
out of 40 (Bison bison terminal branch, Bovidae), consistent with the idea that gBGC hotspots
occupy a small fraction of coding sequence length.

The across-genes average gBGC intensity, B̄, varied among models, with models allowing
for more variation in B usually yielding a higher B̄ (Supplementary Table S1). Below we re-
port estimates of B̄ obtained under the M3sh model. These were very similar to estimates
obtained by averaging B̄ across the M1, M2, M3z, M3sh and M3h models, weighting by the
AIC of each model (Posada and Buckley, 2004, Supplementary Fig. S2).

Fig.3 shows the distribution of B̄ among branches in the four analysed families. The me-
dian B̄ was just below 0.5 in primates, 0.82 in Bovidae and 1.76 in Muridae. We calculated
the across genes relative standard deviation (RSD) of B, which is the ratio of the standard
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Figure 3. Distribution of the average estimated B (M3sh model). One outlying data point is
missing from the figure: the estimated average B was 3.86 in the (Capra hircus, Ovis aries)
ancestral branch (Bovidae).

deviation by the average B. The RSD would be expected to be constant across branches if
the across-genes distribution of the intensity of gBGC only differed among branches by a co-
efficient of proportionality. We found that the RSD was generally rather high (median RSD
across branches: 1.8), and substantially smaller in Muridae (median: 1.2) than in the other
three families (median Bovidae: 1.8; median Hominidae: 1.7; median Cercopithecidae: 2.1).
This suggests that the intensity of gBGC is more evenly distributed among genes in Muridae
than in the other taxa. Of note, this result superficially appears to contradict the analysis il-
lustrated by Fig.2, which shows that the clustering of WS substitutions is maximal in Muridae.
Importantly, the Moran’s I analysis (Fig.2) addresses the within-gene clustering of substitu-
tions, whereas in the RSD analysis we consider the among-gene variation in gBGC intensity.

We estimated in each branch the number of WS substitutions that would be expected in
the absence of gBGC. This was achieved by forcing B = 0 for all categories of genes under
the M3sh model (see Methods). We found that gBGC results in a substantial excess of WS
substitutions, which varies from typically 30% in primates to typically 60% in Muridae (Sup-
plementary Fig. S3). No effect of gBGCon SW substitutions is expected under theM3shmodel
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(see Methods).

  

B

Figure 4. Relationship between the average estimated B and dN/dS (left panel, n = 40
branches) or heterozygosity (right panel, n = 18 species) across 40 mammalian lineages in
log-transformed scales. B was estimated under the M3sh model. Blue: Hominidae; cyan:
Cercopithecidae; green: Bovidae; red: Muridae; black line: regression line for the whole data
set; colored dotted lines: family-specific regression lines

0.1 Correlates of B

We correlated the log-transformed estimated B̄ with log-transformed branch-specific dN/dS
ratio and found a significantly negative relationship (n = 40; r2 = 0.24; p-val=0.0013). The
correlation coefficient of the B̄ vs. dN/dS relationship was also significantly negative when
calculated within Hominidae (n = 7; r2 = 0.83; p-val=0.0043), within Bovidae (n = 9;
r2 = 0.79; p-val=0.0013) andwithinMuridae (n = 7; r2 = 0.57; p-val=0.049). No significant re-
lationship was detected within Cercopithecidae (fig.4, left). Very similar results were obtained
when we correlated the estimated B̄ with dN/dS calculated based on SSWW substitutions
only, i.e., a statistics essentially independent of gBGC: the squared correlation coefficients
were 0.82 (p-val=0.0047), 0.68 (p-val=0.0059) and 0.73 (p-val=0.0139) within Hominidae, Bovi-
dae and Muridae, respectively, and 0.23 (p-val=0.0017) for the whole data set (all variables
log-transformed). A literature search yielded estimates of heterozygosity (i.e., within-species
genetic diversity), π, in 18 species of our data set. The estimated B̄ was positively correlated
with π (r2 = 0.73; p-val=2.1× 10−5; fig.4, right). The sample size was here too small to investi-
gate thewithin-family relationships. B was also found to be negatively correlatedwith species
longevity (r2 = 0.36, p-val=0.0026) and log-transformed body mass (r2 = 0.22, p-val=0.017).
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Substitution clustering conditional on B

Fig.2 revealed virtually no clustering of WS substitutions in Hominidae, even though the anal-
ysis of substitution counts demonstrated a significant impact of gBGC on coding sequences
in this family (Fig.3). To test whether the spatial distribution of WS substitutions really differs
betweenmammalian families, we analysed substitution clustering conditional onB. For each
branch, we first fitted to WS, SW and SSWW substitution counts a gBGC model, M5f, assum-
ing five categories of genes undergoing distinct gBGC intensities, from B = 0 in the coldest
category toB = 10 in the hottest one. We assigned each gene to one of these gBGC intensity
categories, and calculated the average Moran’s I for WS substitutions separately for the five
categories (Fig.5). This was also done using the hotspot version of this five-category model,
M5shf (Supplementary Fig. S4). The size of dots in Fig.5 and Supplementary Fig. S4 reflects
the proportions of the five classes of genes in each family, genes from distinct branches be-
ing here merged. We found that the average Moran’s I increased with gBGC intensity, as
expected, but varied strongly among families in every gBGC category, with Muridae consis-
tently showing the highest average Moran’s I , and Hominidae the lowest, at all gBGC intensi-
ties. This result indicates that the level of clustering ofWS substitutions differs across families
to an extant that cannot be explained just by differences in average B.

Discussion

Analysing the substitution pattern in coding sequences across four mammalian families, we
checked two predictions of the gBGC model, namely a clustering of WS substitutions and an
excess of WS over SW substitutions compared to the mutation pattern. Both approaches
revealed a conspicuous effect of gBGC in mammalian coding sequences.

Ubiquitous gBGC in mammals

Dreszer et al. (2007) investigated the substitution pattern in the human genome and showed
that clusters or nearby substitutions tend to be enriched in the WS sort. The effect, although
significant, was not particularly strong: the proportion ofWS substitutions in clusters reached
0.55, whereas it was 0.44 on average (their figure 1A). Analyzing exon evolution in apes,
Berglund et al. (2009) and Galtier, Duret, et al. (2009) identified a few dozens of GC-biased
exons, out of >10,000 analyzed exons. Here we applied a distinct but related approach to
mammalian coding sequences, and reveal only a weak, if any, tendency for WS synonymous
substitutions to be clustered in Hominidae, consistent with previous research. The trend,
however, was obvious in Cercopithecidae, and strong in Bovidae andMuridae (Fig.2). Our sim-
ulations suggest that >15%, and maybe up to 40%, of WS synonymous substitutions appear
as clusters in these two families. TheseWS substitution clusters likely reflect a localised effect
of gBGC at recombination hotspots. Here we show that such clusters, although anecdotical
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Figure 5. Average centered Moran’s I as a function of average estimated gBGC strength B.
Each dot is for a class of genes in a family (all speciesmerged). Geneswere assigned to classes
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Blue: Hominidae; cyan: Cercopithecidae; green: Bovidae; red: Muridae.

in humans and apes, are a major component of the substitution pattern in other families of
mammals.

Our estimate of the B parameter, which measures the average intensity of gBGC across
genes, varied between 0.2 and 3.9 among the 40 analysed lineages. In primates, the median
estimated B̄ was ∼ 0.5, i.e., in the range of previously published values: 0.1 in hominoids
(Lartillot, 2013), 0.38 in humans (Glémin et al., 2015), 0.35-0.7 in apes (De Maio et al., 2013).
Our estimates of B̄ in Bovidae (∼ 0.5 − 1) and Muridae (∼ 1 − 2) are also quite similar to
those obtained by Lartillot (2013) in the Bos taurus (Bovidae), Mus musculus and Rattus rattus
(Muridae) lineages. In Bovidae, we found a positive relationship between the estimated B̄
and branch age (in million years), defined as the average between the date of the top and
bottom nodes of a branch (n = 9 branches; r2 = 0.75; p-val=0.003). This is consistent
with the hypothesis of a high ancestralNe in this taxon, as also suggested by fossil data and
dN/dS -based reconstructions (Figuet, Ballenghien, Lartillot, et al., 2017; Figuet, Romiguier,
et al., 2014). Our study could not confirm the report by Romiguier, Ranwez, et al. (2010)
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and Lartillot (2013) of a particularly strong gBGC in bats, tenrecs and lagomorphs due to the
unavailability of fully-sequenced, closely related species in sufficient numbers in these taxa.

The estimated genome average B was in the nearly neutral zone in the four families anal-
ysed here. Even so, gBGCwas found to be pervasive and strongly impact the substitution pro-
cess in coding sequences. Fitting a three-category, hotspot model across genes, we estimate
that 30 to 60% of the WS synonymous substitutions can be attributed to gBGC in mammals.
It should be noted that this estimate, as well as the estimates of B we report in this work,
is dependent on the assumption of a known and constant mutation process. Here we used
the WS, SW, SS andWWmutations rates obtained from TCA Smith et al. (2018), who analysed
>130,000 de novomutations inferred frommother/father/child trios in humans - a very large
data set. Milholland et al. (2017) compared the germlinemutation pattern ofH. sapiens andM.
musculus and did not detect any conspicuous difference between the two species in the pro-
portions of SW, WS and SSWWmutations, and neither didWang et al. (2020) when comparing
Macaca mulatta (Cercopithecidae) to H. sapiens. So the existing literature does not seem to
question our assumption of constant relative mutation rates in mammals - but note that no
such data is available in Bovidae, to our knowledge. Also note that the clustering analysis
(Fig.2) does not make any assumption regarding the mutation process.

It should be noted that our estimate of B in this analysis is based on substitution counts
inferred via a parsimony-based approach. This way of counting substitutions is not devoid
of potential problems. Maximum parsimony substitution inference is known to be biased
towards common-to-rare changes (Eyre-Walker, 1998). However, the relatively recent diver-
gence times we are considering presumably keeps this effect to a minimum. Indeed the
longest branch across all four trees (Fig. 1), the Rattus norvegicus terminal branch, has a
length below 0.08 substitutions per site, which is the minimal length for which this problem
was detectable in Eyre-Walker, 1998. Using closely related species, on the other hand, runs
into another potential bias: when closely related species are analysed, there is a risk that
within-species polymorphism contributes a non-negligible fraction of the observed sequence
variation, biasing the estimation of quantities such as the dN/dS ratio (Mugal, Kutschera, et
al., 2020). This bias likely affects the estimation of the relative SW and WS substitution rates
as well, since the expected SW/WS rate ratio differs between polymorphism and divergence
when gBGC is at work. More work would be needed to confirm and quantify the effect of this
bias on our analysis.

A significant effect of the effective population size

Although a significant effect of gBGC was detected in all four analysed families, its intensity
varied conspicuously among families, Muridae being themost strongly impacted, followed by
Bovidae, Cercopithecidae, and Hominidae. It is noticeable that gBGC ranks family in the same
order as Ne, as measured by the family-average dN/dS ratio, this order being consistently
recovered in nearly all the analyses we performed. This is in line with the expectation that
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the intensity of gBGC should be higher in large than in small populations. An effect ofNe was
also detected by correlating B̄ with the dN/dS ratio across branches, andwith heterozygosity
across species (Fig.4). These analyses confirmed the significance of the effect, both among
and within families, thus corroborating the relationship uncovered by Lartillot (2013) at a
deeper phylogenetic scale.

Interestingly, the slope of the log(B̄) vs. log(dN/dS) relationship differed conspicuously
among families in Fig.4. This result might tell something about the strength of selection on
amino-acid changingmutations inmammalian coding sequences. Welch et al. (2008) showed
that, assuming a Gamma distribution of deleterious effects of non-synonymous mutations,
the dN/dS ratio is expected to be proportional to Ne−β , where β is the shape parameter of
the Gamma distribution. So under this assumption, and since B is proportional to Ne, the
slope of the log(B̄) vs. log(dN/dS) relationship should equal −1/β. This rationale yields
estimates of β equal to 0.51 in Hominidae, 0.15 in Bovidae, and 0.09 in Muridae. These fig-
ures differ considerably from estimates obtained by site frequency spectrum analyses, i.e.,
β ∼ 0.15 in Hominidae and ∼ 0.2 in Muridae (Castellano et al., 2019; Galtier and Rousselle,
2020; Huber et al., 2017). More work is needed to understand the origin and meaning of
this discrepancy. At any rate, our results suggest that gBGC analysis could constitute a new
source of information on the variation in Ne among species, and might enrich the ongoing
discussion on this issue (e.g Buffalo, 2021; Galtier and Rousselle, 2020).

The among lineages correlation between the estimated B̄ and the dN/dS ratio we report
here inmammals, which confirms Lartillot (2013)’s results, contrasts with the absence of such
a correlation at the Metazoa scale. Large-Ne fruit flies and marine molluscs, for instance,
are less strongly impacted by gBGC than small-Ne bees and amniotes (Galtier, Roux, et al.,
2018; MC Robinson et al., 2014; Wallberg et al., 2015). The simplest explanation for this is
that b, the transmission bias, probably differs much between distantly related taxa, due to
differences in recombination rate, repair bias and/or conversion tract length. For instance,
the recombination rate is known to be particularly high in honey bees (Wilfert et al., 2007).

Two recent studies experimentally assessed the intensity of gBGC in mice via crosses fol-
lowed by sperm (Gautier, 2019) or progeny (Li et al., 2019) whole genome sequencing. Both
estimated that b is lower in mice than in humans - maybe five times lower, although this fig-
ure requires confirmation. Gautier (2019) invoked purifying selection against gBGC to explain
this result. Indeed, because of its deleterious effects (Berglund et al., 2009; Galtier, Duret, et
al., 2009; Necşulea et al., 2011), gBGC as a process could be counter-selected, and purifying
selection being more effective in large than in small population, this verbal model would pre-
dict a lower b in mice than in human. Adapted to our results, this hypothesis of a negative
correlation between Ne and b would imply that the range of variation in B should be nar-
rower than the range of variation inNe among mammalian lineages. We indeed observed a
narrower variation in the magnitude of the estimated B̄ (standard deviation of log(B̄): 0.63)
than of heterozygosity (standard deviation of log(π): 0.74; same 18 species used in these two
calculations, see Fig.4, right panel). The difference, however, is not particularly pronounced,
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and does not suggest the existence of a strong negative relationship between b and Ne in
mammals. That said, not only Ne influences the variation of π: the mutation rate also mat-
ters. Among-species differences in per generation mutation rate, if any, should be taken into
account for a better assessment of the b vs. Ne relationship (Brevet and Lartillot, 2021).

Recombination hotspots dynamics

The among-gene variation in gBGC intensity, measured by the relative standard deviation
of B, was found to be substantial in all branches, while lower in Muridae than in the other
three families - a pattern also reported by Lartillot (2013). gBGC seems to be more evenly dis-
tributed across the genome in this taxon, consistent with previous reports that GC3 in murid
rodents has been increasing and was homogenised since the common ancestor of this fam-
ily (Clément and Arndt, 2011; Mouchiroud et al., 1988; M Robinson et al., 1997; Romiguier,
Ranwez, et al., 2010). Muridae appears to be a peculiar group of mammals with this respect
(Romiguier, Ranwez, et al., 2010), and one should keep this in mind when interpreting pat-
terns of gBGC-related evolution in this taxon. Of note, the existing literature does not suggest
that the recombination map is less heterogeneous in mouse or rat than in primates (Brun-
schwig et al., 2012; Jensen-Seaman et al., 2004; McVean et al., 2004).

The within-gene heterogeneity in B, in contrast, was more pronounced in Muridae than
in Bovidae and, particularly, primates (Fig.2), and this was true even when we controlled for
gene-specificB (Fig.5): for any particular intensity of gBGC, WS substitutions tend to bemore
clustered in large-Ne than in small-Ne species. This intriguing result might be interpreted
in relation with the dynamics of recombination hotspots. To result in a cluster of WS sub-
stitutions, a recombination hotspot must be active during a sufficiently long period of time
for several WS alleles to reach a high population frequency. We suggest that in primates
gBGC does not generate a pattern of highly clustered WS substitutions because heterozygos-
ity is low and recombination hotspots are short-lived in this taxon. Indeed, recombination
hotspots are known to be particularly ephemeral in Hominidae, due to a transmission dis-
tortion associated with the Red Queen-like evolution of the major hotspot determining gene
PRDM9 (Auton et al., 2012; Coop and SR Myers, 2007; S Myers et al., 2010). For instance,
Lesecque et al. (2014) showed that denisovians and modern humans did not share the same
recombination hotpots, while the level of divergence between these two genomes is of the
order of one synonymous substitution per gene on average (Meyer et al., 2012). Our results
might suggest that the situation differs in other taxa of mammals, maybe in a way related to
Ne. At any rate, heterozygosity is higher in large-Ne species, which increases the probability
that a given local episode of gBGC results in more than one WS substitutions, irrespective of
recombination hotspot lifespan. A deeper understanding of this result would require to ac-
count for themany factors influencing the turnover time of PRDM9 alleles and recombination
hotspots (Latrille et al., 2017), the length of gene conversion tracts, as well as the population
mutation rate and fixation probability of WS mutations.
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Concluding remarks

Quantifying gBGC in closely related species of mammals, we report a pervasive effect on the
nucleotide substitution process, a positive relationship with Ne, and a complex pattern of
variationwithin and among genes. This work also demonstrates that the analysis of gBGC has
the potential to illuminate various aspects of molecular evolution, including the distribution
of fitness effect ofmutations and the dynamics of recombination hotspots. The apparent lack
of aNe effect on gBGC intensity at the Metazoa scale is an unresolved question that requires
further quantification of the strength of gBGC in non-vertebrate taxa.

Material and Methods

Sequence data

Mammalian coding sequence alignmentswere downloaded from theOrthomamv10database
(Scornavacca et al., 2019). The four families of mammals represented by at least six species
in OrthoMam v10 were selected, namely Hominidae (six species, 11,859 genes), Cercopithe-
cidae (eleven species, 10,834 genes), Bovidae (seven species, 9527 genes), and Muridae (six
species, 11,758 genes). In Bovidae, the Bos indicus sequences were not considered since this
taxon is a subspecies of Bos taurus. In all four families the phylogenetic histories of the sam-
pled species arewell documented, with the exception of the unresolved relationship between
cattle, yak and bison (Fabre, Hautier, et al., 2012; Fabre, Rodrigues, et al., 2009; Hassanin et
al., 2012; Vanderpool et al., 2020, Fig1). Nodes were dated based on the TimeTree website
(http://www.timetree.org/) using the median date estimates.

Substitution mapping

For eachof the four data sets, nucleotide substitutionsweremapped to the resolvedbranches
of the trees using a stringent parsimony approach. For any given branch, an X→Y substitu-
tion was recorded if and only if all species descending from the considered branch carried
state Y, and all other species carried state X. All positions not matching this exact pattern,
including positions with missing data or gaps, were disregarded. Branches connected to the
root of the tree were excluded, as well as branches whose number of descending species
was higher than half the total number of sampled species in the family. A total of 40 distinct
branches were considered - seven in Hominidae and Muridae, nine in Bovidae, 17 in Cerco-
pithecidae (Fig.1). For each branch and each coding sequence, the number and positions of
non-synonymous and synonymous substitutions were recorded, distinguishing the AT→GC
(WS), GC→AT (SW) and GC-conservative (SSWW) sorts. Only synonymous substitutions occur-
ring at third codon positions, and non-synonymous substitutions occurring at first or second
codon positions, were counted. For any given branch, substitutions that mapped to consec-
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utive sites were ignored, and genes in which the per base pair substitution rate was higher
than ten times the across-genes median rate were discarded (implying that the number of
analysed genes could slightly differ among lineages within a family). The last two steps aimed
at diminishing the effect of misaligned regions.

Clustering analysis (synonymous substitutions)

For each branch and each gene of length above 400 bp, we calculatedMoran’s I index (Moran
1950) separately for WS and SW synonymous substitutions. We used a weight matrix defined
as follows: the weight equalled one for any two substitutions distant of 400 bp or less, and
zero for any two substitutions more distant than 400 bp. Window widths of 200 bp and 100
bp gave qualitatively similar results. For each branch and each sort of substitutions, Moran’s
I was averaged across genes, excluding genes with less than three substitutions of the con-
sidered sort. Moran’s I has a negative expectation of−1/(l−1) under the null hypothesis of
no spatial autocorrelation, where l is the number of third codon positions of the considered
gene. Here we used the centered version of the statistics, I + 1/(l − 1), the expectation of
which is zero in the absence of substitution clustering.

Clustering: simulations

Wedownloaded from the Ensembl database coding sequence annotations in one representa-
tive species per family, namely Homo sapiens (Hominidae),Macaca mulatta (Cercopithecidae),
Bos taurus (Bovidae) and Mus musculus (Muridae), disregarding coding sequences shorter
than 400 bp. Then we simulated substitution data in a hypothetical branch by iteratively
sampling the location of third-codon-position substitutions across coding sequences using
the following method:
(initiation:) randomly sample the location of the first substitution among the third codon po-
sitions of all genes;
(iteration:)
- with probability 1−pclust, randomly sample the location of the (n+1)th substitution among
the third codon positions of all genes;
- with probability pclust, randomly sample the location of the (n + 1)th substitution in the
neighborhood of the nth substitution (clustered substitutions).

More precisely, conditional on the nth and (n+ 1)th substitutions being clustered,
- with probability pCO the (n+ 1)th substitution was randomly sampled in a window of width
lCO centered on the location of the nth substitution, and
- with probability pNCO = 1 − pCO the (n + 1)th substitution was randomly sampled in a
window of width lNCO centered on the location of the nth substitution.
This was intended to represent the fact that gene conversion tracts associated to crossing-
over and non-crossing-over events are of different lengths (Cole, Baudat, et al., 2014). If the
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sampled location of the (n + 1)th substitution reached beyond the boundaries of the exon
carrying the nth substitution, then the (n + 1)th substitution was ignored. Our procedure
also accounted for the existence of variation inmutation rate among exons: we assumed that
one half of the exons had a mutation rate γ times as high as the other half. We separately
simulatedWS and SW substitution data, accounting for the distribution of GC-content at third
codon positions - hence, the availability of W and S sites - in the four groups. A gene with
GC3=90% was 10 times more likely to host a SW substitution than a gene with GC3=10% in
our simulations.

Two parameters of the simulation procedure were varied among conditions, namely the
per third codon position density of substitutions (taking values in {0.0003, 0.001, 0.003, 0.01,
0.03}) and the probability pclust for two successive substitutions to be clustered (taking val-
ues in {0, 0.1, 0.2, 0.3, 0.4}). The other parameters were fixed to constant values estimated
from the literature. Parameters lCO and lNCO were set to 500 and 40 bp, respectively (Cole,
Baudat, et al., 2014; Jeffreys and May, 2004; Li et al., 2019; Williams et al., 2015). Parameter
γ was set to 3, ensuring an among-exon mutation rate relative standard deviation of 0.5, in
agreement with figure 4 in TCA Smith et al. (2018). Finally, parameter pCO was set to 0.86, ac-
cording to the following rationale: the CO/NCO odds ratio for the first substitution to occur in
a gene conversion tracts is (lCOnCO)/(lNCOnNCO), where nCO and nNCO are the number
of crossing-over and non crossing-over events, respectively; the CO/NCO odds ratio for the
second substitution to occur in the same gene conversion tract is lCO/lNCO; so the CO/NCO
odds ratio for the occurrence of a pair of clustered substitutions is the product, p, of the two
terms above, and pCO = p/(1 + p). Using nCO/nNCO = 0.1 (Baudat and Massy, 2007; Cole,
Kauppi, et al., 2012), lCO = 500 and lNCO = 40 we obtain pCO = 0.86.

Maximum likelihood estimation of gBGC strength

For each branch and each gene, we counted the numbers of inferred WS, SW and SSWW syn-
onymous substitutions at third codon positions. Then we fitted mutation/gBGC/drift models
to these observations in the maximum likelihood framework.

Consider a coding sequence of length l evolving in a panmictic diploid population of con-
stant size Ne under neutrality during a period T of time. The expected number of substitu-
tions, n∗, depends on the mutation rate µ and fixation probability f :

n∗ = 2NelµfT (1)

Assuming a homogeneous gBGC intensity of b, the fixation probability ofWS, SWand SSWW
mutations can be written as:

f1 =
2b

1− e−4Neb
(2)
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f2 =
2b

e4Neb − 1
(3)

f3 = 1/2Ne (4)

Here and below, subscript 1, 2 and 3 respectively refer to the WS, SW and SSWW sorts of
change. Substituting in equation 1 and only considering third codon positions, we get the
expected number of synonymous substitutions of the three sorts:

n∗1 = lWµWS
B

1− e−B
T (5)

n∗2 = lSµSW
B

e−B − 1
T (6)

n∗3 = (lWµWW + lSµSS)T (7)

where B = 4Neb, lW and lS are the number of AT- and GC-ending codons, respectively,
in the considered coding sequence, and µWS , µSW , µSS and µWW are the corresponding
mutation rates.

Assuming that the number of WS substitutions is Poisson distributed, the probability of
observing nWS substitutions given B and T is given by the following function:

φ1(n|B, T ) =
n∗1

n

n!
e−n

∗
1 (8)

and similarly for SW and SSWW substitutions:

φ2(n|B, T ) =
n∗2

n

n!
e−n

∗
2 (9)

φ3(n|B, T ) =
n∗3

n

n!
e−n

∗
3 (10)

We modelled the variation of B among genes using discrete distributions. Assume there
are k categories of genes, with each category including a fraction pk of the genes and charac-
terised by a population-scaled gBGC intensity Bk , assumed to be constant within genes. For
a gene at which n1, n2, and n3 substitutions of the three sorts are observed, the likelihood
can be written as:

L =
∑
k

pkφ1(n1|Bk, T )φ2(n2|Bk, T )φ3(n3|Bk, T ) (11)

We considered various models that differ in howB varies across genes. Under model M1,
a constantB across genes is assumed. Model M2 defines two categories of genes, each with
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its own gBGC intensity. Model M3z (for zero) has three categories of genes, among which one
has a gBGC intensity of zero, the other two being free parameters. Model M5f (for fixed) has
five categories of genes with fixed gBGC intensities equal to B1 = 0, B2 = 0.333, B3 = 1,
B4 = 3.333 and B5 = 10, respectively. In all four models the proportions of genes in the
various categories were free to vary, T was assumed to be shared among genes and the
relative mutation rates µWS , µSW , µSS and µWW were set to empirical estimates obtained
from Smith et al. (2018), i.e., µWS = 5.21, µSW = 10.90, µSS = 2.07 and µWW = 1.

The models above assume a homogeneous rate of gBGC among positions within a gene.
To account for the existence of hotspots of gBGC, we modelled the within-gene variation of
B by assuming that only a fraction q of the positions undergo gBGC at rate Bh, the other
positions evolving neutrally. Under this assumption, the expected number of WS and SW
substitutions are given by:

n∗1 = lWµWS [(1− q) +
qBh

1− e−Bh
]T (12)

n∗2 = lSµSW [(1− q) +
qBh

eBh − 1
]T (13)

while n∗3 is given by equation 7.
Equations 12 and 13 simplify if q is assumed to be much smaller than 1 and Bh much

higher than 1; under these assumptions, we have:

n∗1 = lWµWS(1 + qBh)T (14)

n∗2 = lSµSWT (15)

Parameters q and Bh only appear as a product in equations 14 and 15, saving one de-
gree of freedom. The simplified equation 15 exhibits the main difference between hotspot
and gene-homogeneous models, which concerns SW substitutions. In gene-homogeneous
models, the expected number of SW substitutions is decreased in genes experiencing strong
gBGC, whereas hotspot models predict nearly no influence of gBGC on the SW substitution
rate if q is sufficiently small.

The among-gene variation in gBGC strength was here modeled via categories of genes
that differed with respect to the prevalence of hotspots, q, while sharing the same intensity
of gBGC within hotspots, Bh. Specifically, we considered a three-category model in which
the "coldest" category had no hotspot, i.e., q1 = 0. The fraction of hotspots in the other two
categories, q2 and q3, and the relative prevalence of the three categories, p1, p2 and p3, as well
as T and Bh, were free to vary. This model was called M3h (for hotspot); its predictions are
given by equations 12, 13 and 7. A simplified hotspot model, M3sh (for simplified hotspot),
was also implemented by instead using equations 14, 15 and 7. M3sh is a special case of
M3h assuming that the fraction of sites affected by gBGC within a gene is small. We also
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considered a simplified five-category hotspot model, M5shf, with fixed values for the qkBh
product equal to 0, 0.333, 1, 3.33 and 10, respectively.

The overall likelihood was obtained bymultiplying the likelihoods of distinct genes. Param-
eters were estimated in the maximum likelihood (ML) framework. Likelihood maximization
was achieved via home-made C++ programs using the Bio++ library (Guéguen et al., 2013).

The across gene categories average estimated intensity of gBGC was computed as

B̄ =
∑
k

p̂kB̂k (16)

under gene-homogeneous models and

B̄ =
∑
k

p̂kq̂kB̂h (17)

under hotspot models, where the k index is for gene categories and the hat denotes ML
estimate. The across genes standard deviation of the intensity of gBGC was calculated simi-
larly.

Akaike’s Information Criterion (AIC) was calculated for all models, the number of estimated
parameters being 2, 4, 5, 5, 5, 5 and 6, respectively, for M1, M2, M3z, M5f, M3sh, M5shf
and M3h. AIC weights (Posada and Buckley, 2004) were used to calculate an across-model
estimate of the B parameter. The parametrisation of the various models is recapitulated in
Table 1.

For each gene, the expected number of WS substitutions in the absence of gBGC was esti-
mated as:

m∗
1 = lWµWS T̂ (18)

and the excess WS substitutions due to gBGC were estimated as (n∗1 − m∗
1)/m∗

1. No de-
pletion of SW substitutions is expected under M3sh (compare equations 15 and 18). Finally,
each genewas assigned to one of the gBGC categories by selecting the category kmaximising
the following posterior probability:

φ1(n1|Bk, T )φ2(n2|Bk, T )φ3(n3|Bk, T ) (19)

All these calculations were achieved separately for the 40 branches of the data set.

Additional variables

For every branch, the numbers of non-synonymous substitutions of the WS, SW and SSWW
sorts at first and second codon positions were computed, summed across genes, and used
to calculate branch-specific dN/dS ratios. A literature survey was conducted in search for
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model cat.a nb fixedb fixedc nb optimisedd optimisede

allf µWS , µSW , µSS , µWW T
M1 1 4 2 B
M2 2 4 4 B1,B2,p1
M3z 3 5 B1 5 B2,B3,p1,p2
M5f 5 9 B1-B5 5 p1-p4
M3h 3 5 q1 6 q2,q3,Bh,p1,p2
M3sh 3 5 q1Bh 5 q2Bh,q3Bh,p1,p2
M5shf 5 9 q1Bh-q5Bh 5 p1-p4

Table 1. Parametrisation of the models used in this analysis. a : number of categories of
genes; b: number of fixed parameters; c: list of fixed parameters; d: number of optimised
parameters; e: list of optimised parameters; f : parameters shared by all models

genome-wide estimates of within-species diversity, or heterozygosity, π. Such estimateswere
collected in 18 of the analysed species, as reported in Supplementary Table S2. Data on
species longevity and body mass were obtained from the AnAge data base (Magalhães and
Costa, 2009) and are also reported in Supplementary Table S2.

Data accessibility, Supplementary material

All the data sets, programs and scripts used in this study are available from:
https://osf.io/fx54q/?view_only=1109ca2f66e74ad99f0d76ac93d40fc5
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