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A B S T R A C T   

Urban areas, where more than 55% of the global population gathers, contribute more than 70% of anthropogenic 
fossil fuel carbon dioxide (CO2ff) emissions. Accurate quantification of CO2ff emissions from urban areas is of 
great importance for formulating global warming mitigation policies to achieve carbon neutrality by 2050. 
Satellite-based inversion techniques are unique among “top-down” approaches, potentially allowing us to track 
CO2ff emission changes over cities globally. However, their accuracy is still limited by incomplete background 
information, cloud blockages, aerosol contamination, and uncertainties in models and priori emission in
ventories. To evaluate the current potential of space-based quantification techniques, we present the first attempt 
to monitor long-term changes in CO2ff emissions based on the OCO-2 satellite measurements of column-averaged 
dry-air mole fractions of CO2 (XCO2) over a fast-growing Asian metropolitan area: Lahore, Pakistan. We first 
examined the OCO-2 data availability at global scale. About 17% of OCO-2 soundings over the global 70 most 
populated cities from 2014 to 2019 are marked as high-quality. Cloud blockage and aerosol contamination are 
the two main causes of data loss. As an attempt to recover additional soundings, we evaluated the effectiveness of 
OCO-2 quality flags at the city level by comparing three flux quantification methods (WRF-Chem, X-STILT, and 
the flux cross-sectional integration method). The satellite/bottom-up emissions (OCO-2/ODIAC) ratios of the 
high-quality tracks with reduced uncertainties in emissions are better agreed across the three methods compared 
to the all-data tracks. This demonstrates that OCO-2 quality flags are useful filters of low-quality OCO-2 retrievals 
at local scales. All three methods consistently suggested that the ratio medians are greater than 1, implying that 
the ODIAC slightly underestimated CO2ff emissions over Lahore. Additionally, our estimation of the a posteriori 
CO2ff emission trend was about 734 kt C/year (i.e., an annual 6.7% increase). 10,000 Monte Carlo simulations of 
the Mann-Kendall upward trend test showed that less than 10% prior uncertainty for 8 tracks (or less than 20% 
prior uncertainty for 25 tracks) is required to achieve a greater-than-50% trend significant possibility at a 95% 
confidence level. It implies that the trend is driven by the prior and not due to the assimilation of OCO-2 re
trievals. The key to improving the role of satellite data in CO2 emission trend detection lies in collecting more 
frequent high-quality tracks near metropolitan areas to achieve significant constraints from XCO2 retrievals.   

1. Introduction 

Carbon dioxide (CO2) alone has contributed to more than 60% of the 
global direct radiative forcing from Greenhouse Gases (GHGs) that has 
increased by 45% from 1990 to 2019 according to the Annual 

Greenhouse Gas Index (AGGI) (NOAA, n.d.. Global fossil fuel CO2 (CO2ff) 
emissions exceeded 38 Gt in 2020 (Crippa et al., 2020) accounting for 
more than 77% of fossil fuel greenhouse gas emissions (Crippa et al., 
2019). Out of the global CO2ff emissions, more than 70% originate from 
cities alone (Birol, 2008; Mitchell et al., 2018), where more than 55% of 
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the global population resides (World Bank, 2014). Urbanization is 
continuously increasing, with no projected decline (World Bank, 2014). 
This makes accurately quantifying CO2ff emissions from urban areas of 
great importance to formulating the global warming mitigation policies 
necessary to achieve carbon neutrality by 2050 (UNFCCC, 2015). 

Two distinct approaches are commonly used to estimate CO2ff 
emissions, i.e., ‘bottom-up’ and ‘top-down’. ‘Bottom-up’ approaches 
estimate CO2ff emissions based on standardized protocols, combining 
activity data such as fuel production and consumption as well as traffic 
monitoring data with pre-calculated emission factors for specific sources 
across different activity sectors (UNFCCC, 2015). Bottom-up approaches 
remain the most common and standardized solutions to quantifying the 
CO2ff emissions used to design climate policies. Recent bottom-up ap
proaches downscale CO2ff emissions to finer resolutions by using either 
spatial proxies like population density (e.g. MIX, Li et al., 2017) or 
nighttime lights (e.g. ODIAC, Oda et al., 2018), or combinations of point 
sources like power plants (e.g. PKU-Fuel, Wang et al., 2013) and line 
sources like on-road emissions (e.g. HESTIA, Gurney et al., 2012) to 
construct high-resolution maps of CO2ff emissions. Uncertainties in 
bottom-up approaches are caused by data gaps, a lack of information on 
energy and fuel use statistics, and outdated or inaccurate emission fac
tors (Andres et al., 1996; Liu et al., 2015; Macknick, 2009) ranging from 
5% in Organization for Economic Co-operation and Development 
(OECD) countries (Marland, 2008), to 15–20% for China (Gregg et al., 
2008), to 50% or more for emerging economies (Andres et al., 2014). 

Top-down approaches partly rely on bottom-up emissions (priors), 
but add information from atmospheric observations collected on the 
ground, airborne platforms, or satellite missions (Bousquet et al., 2000; 
Crowell et al., 2019; Enting et al., 1995). Inverse analysis based on 
satellite data, e.g., GOSAT (J. S. Wang et al., 2020b), OCO-2 (Ye et al., 
2020), TanSat (Liu et al., 2018), offers unique global coverage for 
quantifying the magnitude and distribution of urban CO2ff emissions 
from various metropolitan areas. 

As the atmosphere integrates CO2 signals from various sources and 
sinks, the first and most challenging step in an inverse analysis is 
differentiating the influence of cities from non-CO2ff (e.g., vegetation, 
water bodies) and distant (so-called background) CO2 sources and sinks. 
Unlike in-situ measurements of isotopes, such as Δ14CO2 quantification 
of CO2ff (Graven et al., 2018; Turnbull et al., 2019), satellite-retrieved 
CO2 relies on biogenic models to estimate natural CO2 fluxes (Hu 
et al., 2020; Ye et al., 2020). Various approaches have been developed to 
determine the background for ground-based in-situ measurements. The 
most common involve calculating the CO2 gradients between upwind 
and downwind sites (e.g. Lauvaux et al., 2016) or by solving fluxes over 
a larger domain boundary (Nickless et al., 2019). With satellite data, 
studies have used a constant background column-averaged dry-air mole 
fractions of CO2 (XCO2) over a period, including using the median XCO2 
over a latitudinal band (Hakkarainen et al., 2018), the average XCO2 in 
the surrounding area relatively unaffected by urban emissions (Kort 
et al., 2012), or a linearly-interpolated background derived from a two- 
step linear regression (Ye et al., 2020). The choice of background 
determination method depends on the specificities of each studied city, 
as all are impacted by simplifications that will penalize the estimated 
city emissions (Schuh et al., 2021). 

The XCO2 enhancement caused by urban areas positively relates to 
the size and emissions of the city (Labzovskii et al., 2019). To quantify 
CO2ff emissions from space, recent studies have either 1) assimilated 
observed XCO2 enhancement in a transport model and used the distri
bution and magnitude of emission sources from bottom-up inventories 
as a priori information (e.g., Ye et al., 2020) or 2) directly computed 
CO2ff emissions from the combination of enhancements in XCO2 obser
vations and local wind information (e.g., Nassar et al., 2017; Varon 
et al., 2018). In the first approach, observed column-averaged dry-air 
mole fractions of CO2ff (XCO2ff) are assimilated into a Bayesian inverse 
system to estimate CO2ff emissions (posteriors) (e.g., Pillai et al., 2016). 
Eulerian models (e.g., WRF-Chem, Ye et al., 2020) adopt fixed grid cells 

and simulate XCO2 within the model grid cells by transporting the 
emitted CO2 molecules forward-in-time. In Lagrangian modeling (e.g., 
X-STILT Wu et al., 2018 and WRF-STILT, Nehrkorn et al., 2010), the 
model directly calculates the satellite footprint at the surface and effi
ciently defines the area of influence, and thus possible upwind sources, 
by transporting air parcels backward-in-time from the measurement 
locations. The second approach relies on detecting an enhancement in 
the observations near the intersection of the satellite track and the 
supposed city plume location. The emissions are quantified by 
computing the flux through the plume transect as the product of the 
wind and the integral of the CO2 mass in the detected plume, using 
methods such as flux cross-sectional integration (FCSI) and Gaussian 
plume inversion. The second approach requires less computational time 
and is therefore favourable for analyzing a large number of cities (e.g., 
Zheng et al., 2020) or power plants (e.g., Nassar et al., 2017). While the 
first method can be strongly impacted by model transport errors at the 
local scale, the second method is highly sensitive to assumptions about 
how the effective wind applies to the plume at the satellite transect 
location. Both are impacted by uncertainties in the wind field driving the 
plume from the cities. 

While satellite missions offer unprecedented spatial coverage of CO2 
over the globe, sampling from space is limited by the cloud coverage, 
low solar radiances at high latitudes, the interference caused by aero
sols, and the difficulty of characterizing surface properties through 
retrieval algorithms (O'Dell et al., 2018). Given the pollution around 
urban areas, aerosol-related biases are far from negligible over large 
metropolitan areas (Pillai et al., 2016). The narrow swath of current 
satellite tracks (e.g., OCO-2 retrieves 8 soundings over a 10.3-km across- 
track) often fails to capture the local CO2ff enhancement caused by a city 
if the track is not located downwind of the city or is too far away to 
detect the enhancement. Finally, because of the long revisit time (e.g., 
OCO-2 every 16 days, GOSAT every 3 days), a limited number of the 
satellite overpasses can be collected within a year for a given city, which 
reduces researchers' ability to quantify the large day-to-day variability 
in CO2ff emissions (Zhang et al., 2016). However, this limitation can be 
overcome by next generation satellite missions with increased imaging 
capabilities (e.g., OCO-3, Eldering et al., 2019) that provide more details 
of the CO2 spatial distribution (Kiel et al. 2021) and more frequent ob
servations (e.g. CO2M) (Kuhlmann et al., 2019). 

Despite the pros and cons of current CO2 satellite missions, this study 
focuses on the detection capability of long-term trends in urban CO2ff 
emissions. To evaluate the current potential of space-based quantifica
tion techniques, we present the first attempt to monitor long-term 
changes in CO2ff emissions based on OCO-2 satellite measurements 
over the fast-growing Asian metropolitan area of Lahore, Pakistan. After 
examining the OCO-2 data availability at global scale, we evaluated the 
data quality and its potential use for CO2ff emission estimations over the 
largest cities. We then locally evaluated the OCO-2 data quality flags 
designed for global studies within a multi-model comparison of three 
top-down methods (two based on atmospheric numerical models, WRF- 
Chem and X-STILT, and the FCSI method) for the 25 available tracks 
near Lahore. Finally, we evaluated the capability of OCO-2 to track the 
5-year trend of city-scale CO2ff emissions over Lahore, Pakistan, 
considering both the uncertainties and significance of the trend 
calculation. 

2. Data and method 

2.1. OCO-2 data and quality flags 

The OCO-2 satellite was launched on July 2, 2014 and started col
lecting data on September 4, 2014. It operates in a sun-synchronous 
polar orbit at an altitude of about 705 km, nominally crossing the 
equator at 13:36 local time. OCO-2 collects eight adjacent spatially- 
resolved soundings every 0.333 s (24 samples per second) along a nar
row (0.8◦) swath, with a cross-track resolution of 0.1–1.3 km (Crisp 
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et al., 2010). This results in about 400 soundings per degree of latitude 
per orbit, or ~ 1 million soundings, collected each day over the sunlit 
hemisphere. However, a large fraction of the XCO2 retrievals is inade
quate for inverting CO2ff emissions, due to the data loss associated with 
cloud blockages, aerosol contaminations, or invalid geolocations. To 
investigate the number of usable tracks and determine the causes of data 
loss, we analyzed the available soundings and the quality flags repre
senting sounding quality from 2014 to 2019. We focused on the OCO-2 
nadir and glint modes, excluding the target mode from this study due to 
its limited sampling area. 

The OCO-2 XCO2 soundings are subject to a two-level quality in
spection (L1 and L2). Only soundings that meet all selection criteria in 
the inspection are marked as high-quality soundings in the L2 OCO-2 
quality flags (QF = 0). Soundings failing to meet one or more criteria 
are marked as low-quality soundings (QF = 1). A detailed introduction 
of the two-level quality inspection can be found in Section Text S2. 

2.2. OCO-2 background XCO2 determination 

To constrain CO2ff emissions from cites, we needed to remove the 
large-scale influence (so-called “background”) from the observations 
and only keep the local XCO2 signatures. We used the “two-step linear 
regression” background removal method as described in (Ye et al., 
2020). First, we applied noise canceling by averaging XCO2 soundings 
over one second (covering ~10.32 km × 6.75 km) to reduce the 
instrumental noise in the data. We then assumed that the 1-s averaged 
XCO2 data (XCO2_1s) consisted of two parts: “background samples” and 
“local samples”. Because the “background samples” have less spatial 
variability compared to the “local samples” affected by local urban CO2ff 
emissions, we selected “background samples” from XCO2_1s using the 
criteria: XCO2_detrend < 0.5⋅σdetrend, where XCO2_detrend is the detrended 
XCO2_1s and σdetrend is the standard deviation of XCO2_detrend. XCO2_detrend is 
derived by a linear function: XCO2_1s = a⋅x + b, where x is latitude, and a 
and b are the slope and intercept derived by linear regression. We then 
recalculated the linear regression line, or the “background line,” based 
on the “background samples” representing the background spatial trend. 
Physically CO2ff should all be greater than zero, so some 1-s averaged 
soundings were removed if they were below zero after background 
removal. 

2.3. Case study: Lahore in Pakistan 

Limited by computational resources, we could only select one city to 
serve as a case study to test if OCO-2 can capture the trend of CO2ff 
emissions over urban areas. The idealized sample city should have suf
ficient OCO-2 tracks and a clear growing trend of CO2ff emissions. 
Lahore is the second-largest city in Pakistan in a flat and mostly agri
cultural region of Asia (Punjab region) (World Bank, 2014). The city's 
gross domestic product (GDP) by purchasing power parity (PPP) was 
estimated at $40 billion as of 2008 (PricewaterhouseCoopers, 2009) and 
$65.14 billion as of 2017 (InpaperMagazine, 2018), with a projected 
average growth rate of 5.6%. The population exceeded 11 million in 
2017 with an annual growth rate of 4.07% since 1998 (Pakistan Bureau 
of Statistics, 2017a, 2017b). The ODIAC inventory version 2019 in
ventory suggested that the Lahore whole-city CO2ff emissions increased 
by about 646 kt C/year during October 2014–May 2019, translating into 
a total change of 27% over 2015–2019 (i.e., a mean annual 5.9% in
crease), which is consistent with Pakistan's national emission estimates 
of 5.05% during 2001–2018 (Lei et al., 2020). The fast-growing econ
omy and population over the recent two decades make it ideal for testing 
the potential of detecting trends based on OCO-2 data. 

We selected 25 tracks of OCO-2 over Lahore from 2014 to 2019 that 
meet the following criteria: 

1) must have a sufficient number of retrievals, i.e., more than 150 re
trievals in a 50 × 50 km box around Lahore evenly distributed along 
the track;  

2) located downwind of Lahore;  
3) variations in the 10-m wind field are less than 45◦ to minimize 

transport model errors; 
4) a local enhancement in 1-s average retrievals larger than the back

ground variations. 

The 25 tracks, referred to as all-data tracks, contain all high- and low- 
quality soundings (i.e., quality flags are not considered yet). Only 8 out 
of 25 tracks fit the above criteria, referred to as high-quality tracks, if 
just high-quality soundings are considered. Detailed information about 
the selected tracks is shown in Fig. S1. Due to the lack of ground-based 
XCO2 data, we ensured the robustness of the results by comparing the 
OCO-2 data with outputs of three flux quantification methods, WRF- 
Chem, X-STILT, and the FCSI method. 

The outputs of WRF and X-STILT are XCO2 based on ODIAC, while 
the FCSI method output is CO2ff emissions. We compared the ratios of 
XCO2 from OCO-2 to XCO2 from WRF and X-STILT and the ratios of CO2ff 
emissions from the FCSI method to CO2ff emissions from the ODIAC 
product in Section 3.5 to evaluate the effectiveness of OCO-2 quality 
flags at city scale. The ratios are mathematically equivalent in Bayesian 
inversion, so we call them ratios of satellite/bottom-up-emissions (OCO- 
2/ODIAC) for simplicity. 

2.4. WRF-Chem model setup 

We simulated the XCO2ff mole fractions using WRF-Chem V3.6.1 
(Grell et al., 2005; Skamarock et al., 2008) coupled with CO2 emissions 
and biospheric fluxes in passive tracer mode (Lauvaux et al., 2012), 
following the WRF-Chem setup (domain size, resolution, physics 
schemes) and emission estimation method for “plume city” located in 
relatively flat terrain as described in Ye et al. (2020). 

2.4.1. Atmospheric transport model setup 
This study uses one-way nested domains with resolutions of 9 km and 

3 km centered on Lahore. The outer domain is set to 59.04–89.64◦E, 
15.43–39.97◦N, ~2700 km × 2700 km, which covers part of the Pamir 
Mountains, the Tibetan Plateau, the Indian subcontinent, the Arabian 
Sea, and the Bay of Bengal. It includes the complex meteorology intro
duced by high mountains and vast water bodies. The inner 3 km domain 
is set to 73.55–75.04◦E, 30.88–32.15◦N, a ~ 50 km × 50 km domain 
centered on Lahore covering the large urban area and surrounding rural 
region. 

The hourly ERA5 data (Hersbach et al., 2020) on 0.25◦ × 0.25◦ grids 
are used as the initial and boundary conditions of the meteorological 
and land surface fields. The model levels represent the atmospheric 
column from the surface to 50 hPa using 51 vertical levels. The initial 
and boundary conditions for the CO2 mole fractions are set constant, 
assuming that the long-range transport of CO2 generates only large-scale 
spatial gradients and preserves the local enhancements. The simulations 
run for 4 days starting at 00:00 UTC 3 days before the OCO-2 over
passing day, including a spin-up time of 12 h, producing hourly model 
outputs for each available OCO-2 track. The simulations were nudged to 
ERA5 to minimize the XCO2 errors caused by model transport errors. A 
comparison of XCO2ff distribution between nudged and non-nudged 
simulations is shown in Fig. S7. 

2.4.2. Fossil fuel CO2 emissions 
Fossil fuel CO2 emissions are based on the 1 km × 1 km gridded 

global and monthly product of ODIAC Version 2019 (Oda et al., 2018; 
Oda and Maksyutov, 2011). It disaggregates country-level CO2ff emis
sion estimates based on satellite-observed nightlight data and power 
plant profiles. Here we sum and compare the WRF-Chem and ODIAC 
total emissions over each domain to conserve the total mass of emitted 
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CO2 after re-projection. We then downscaled the monthly ODIAC 
product to hourly resolution, using the Temporal Improvements for 
Modeling Emissions by Scaling (TIMES) model (Nassar et al., 2013) to 
consider diurnal and weekly cycles (scaling factors). 

2.4.3. Biogenic CO2 fluxes 
Biogenic CO2 fluxes are based on a 3-hourly net ecosystem exchange 

(NEE) suite provided by the 15 different global Terrestrial Biogeo
chemical Models (TBMs; 0.5◦ × 0.5◦) in the Multi-scale Synthesis and 
Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 
2013). The 3-hourly fluxes were linearly interpolated to hourly resolu
tion for the simulations. Spatial downscaling followed Ye et al. (2020), 
in which the Moderate Resolution Imaging Spectroradiometer (MODIS) 
climatological Green Vegetation Fraction (GVF) is used to downscale the 
native biogenic fluxes to model grids, under the assumption that vege
tation productivity and respiration scale linearly with canopy coverage 
in each grid cell. 

2.5. X-STILT model setup 

Built upon the Stochastic Time-Inverted Lagrangian Transport 
(STILT) model (Fasoli et al., 2018; Lin et al., 2003), the column version, 
X-STILT (Wu et al., 2018), tracks the movement of air parcels backward 
in time from the same atmospheric column as OCO-2 soundings (“col
umn receptors”). It incorporates averaging kernel and pressure 
weighting functions from OCO-2 to generate source-receptor matrices or 
“column footprints” (ppm / (μmol m-2 s-1), which describe the sensi
tivity of potential upwind emission sources on downwind satellite 
soundings. Specifically, 100 air parcels are released from each of the 
vertical levels, ranging from the surface to 6 km with a vertical spacing 
of 100 m below 3 km and 500 m above. For every track, we sampled 
approximately equally spaced 40 soundings within a 1◦ latitude range of 
Lahore and 20 soundings per degree-latitude outside Lahore. The 
meteorology from Global Data Assimilation System at 0.5◦ grid spacing 
(GDAS0p5, Rolph et al., 2017) is used to drive X-STILT. The sum of the 
convolution of gridded footprints and ODIAC emissions represent the 
CO2 enhancement from fossil fuel emissions, as sampled by air parcels 
arriving at the OCO-2 sounding locations. To have the same represen
tation of the WRF-Chem model setup, only contributions from the near- 
field land (30.88–32.155◦N, 73.55–75.04◦E) were included in the XCO2ff 
calculation. 

2.6. Flux cross-sectional integration (FCSI) method setup 

Our flux integration technique follows Varon et al. (2018) and we 
applied it to each OCO-2 track city plume transect. To establish the link 
between the flux computed across the plume transect and the city 
emissions, our method assumes steady-state conditions for both emis
sions and wind in the hours preceding the satellite overpass and a 
relatively homogeneous wind field over the area. The method follows 
five successive steps: (i) estimation of the effective wind driving the 
plume from the city, (ii) calculation of the background concentrations, 
(iii) detection of the limits of the plume section, (iv) integration of the 
flux directly derived from the plume enhancements, and (v) determi
nation of the surface footprint of the selected plume. 

The effective wind corresponds to the mean wind seen by the tar
geted CO2 signal, i.e. the mean over the plume of the wind weighted by 
local CO2 mass. Because the CO2 vertical distribution is unknown, the 
effective wind cannot be directly estimated. We used the mean wind in 
the planetary boundary layer (PBL), weighted by the dry air mass 
instead of the unknown CO2 mass. This estimator for the effective wind 
is similar to Kuhlmann et al. (2020) and Zheng et al. (2020), who used a 
specific altitude (500 m above ground level) as the vertical limit. Here, 
we assumed that the observed CO2ff is well-mixed within the PBL 
because OCO-2 transects are located sufficiently far from the sources. 
The effective wind vector is averaged horizontally over the whole WRF- 

Chem 3-km domain to smooth the integrations along the OCO-2 tracks. 
For wind information, we used the high-resolution operational forecasts 
(HRES, available at 0.1◦/1-h resolution) of the Integrated Forecasting 
System of the European Centre for Medium-Range Weather Forecasts 
(ECMWF) (Owens and Hewson, 2018). The estimate of the effective 
wind is a major source of uncertainty in the method (Section Text S1.5). 
Both errors on its speed and its direction generate errors in the emission 
estimates (see Eq. 2). Information on the actual effective wind direction 
could be derived from the direction from Lahore to the detected plume. 
However, as discussed in section 3.4, the inconsistencies between this 
direction and that of the estimate of the effective wind could be linked to 
a misattribution of the detected enhancement. Furthermore, using a 
combination between such a characterization of the effective wind di
rection and the estimate of the effective wind speed from the meteoro
logical analysis may not make more sense than using the full and 
consistent estimate of the effective wind speed and direction from the 
meteorological analysis. The level of coherence between the estimate of 
the effective wind direction and the plume direction is thus taken as a 
qualitative indication on the accuracy of the results but is not exploited 
to adjust the estimate of the effective wind. 

The determination of the background XCO2 over Lahore, the XCO2 due 
to upwind sources and sinks other than the emissions from Lahore, aims 
at isolating the XCO2 enhancement from sources within the urban area of 
Lahore. We used two different estimators for the background, detailed in 
Section Text S1.1. 

XCO2 enhancements (peaks) can appear along the OCO-2 tracks due 
to nearby sources, fine-scale variations in the background caused by 
complex transport patterns, structured errors in the OCO-2 retrievals, 
and/or potential errors in the background determination method. 
Therefore, the next step consists of identifying the enhancement origi
nating from Lahore. Spatial smoothing of the retrievals is applied to the 
background-removed retrievals to filter the noise in the data, separate 
the different enhancements, and identify the most probable plume. 
Multiple smoothing methods are applied (Section Text S1.2), along with 
two peak identification methods (Section Text S1.2). The combination of 
processing steps and two background calculation methods (Section Text 
S1.1) give us a set of emissions estimates for each track. The sets are 
filtered to ensure the coherence between the wind direction from the 
effective wind computation and the direction from Lahore to the plume 
section, as well as verify that the plume section is wide enough to catch a 
representative segment of Lahore emissions (Section Text S1.4). 

The enhancement identified as being the plume from Lahore 
(denoted ΔXCO2Lahore) is then integrated to estimate the flux of CO2 mass 
coming from Lahore through the transect. The enhancement, in ppm, is 
converted in kg/m2 using the following equation: 

∆ΩLahore =
MCO2

Mdryair
∆XCO2Lahore × 106Pdryair(surf)

/

g (1)  

where MCO2 and Mdryair are the CO2 and dry air molar masses, Pdryair(surf) 
is the dry air surface pressure, and g is the gravitational acceleration. 
The flux is then calculated following: 

FOCO− 2 =

∫

x∈plume
∆ΩLahore(x)Ueff

̅̅→ nTrack̅̅̅→dx (2)  

where nTrack
̅̅̅→ is the vector normal to the track and x the along track 

distance and Ueff
̅̅→ is the effective wind vector. A key parameter for OCO-2 

track selection is the angle between the OCO-2 track and the effective 
wind vector, which are ideally normal to each other. Indeed, the impact 
of wind angle errors increases non-linearly with the angle between the 
normal to the track and the wind (Section Text S1.5). 

As the detected plume corresponds to a fraction of the city admin
istrative boundaries or area with significant emissions in and around the 
city, we define the emission zone as the surface area upwind of the 
selected plume (Section Text S1.3). The flux estimate will then be 
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compared to ODIAC emissions within this specific emission zone. 

2.7. CO2ff emission trend detection 

2.7.1. Bayesian inversion framework 
The posterior emission (Em) and its error variance (σe

2) are obtained 
as follows: 

Em = λEi (3)  

σe
2 = σ2Em (4)  

where λ is the scaling factor, Ei is the emission from the priori emission 
inventory and σ2 is the error variance of the scaling factor. Note that λ is 
different from the ratios of satellite/bottom-up-emissions. The Bayesian 
inversion calculated λ by optimizing the satellite/reference ratios with 
uncertainties (Eq. 6). 

Following Ye et al. (2020), the scaling factor (λ) was calculated using 
a Bayesian inversion method. We estimated the error variance in the 
observations (σ2

o) by adding the two terms: 

σ2
o = σ2

satellite +σ2
model (5)  

where σ2
satellite is the satellite measurement error variance and σ2

model is 
the forward model error variance. The estimations of these two terms 
are detailed in Section 2.7.2. 

For each track, scaling factor (λ) and the posterior error variance (σ2) 
can be written as: 

λ = λa + ym σa
2( ym

2 σa
2 + σo

2)− 1
(yo− ym λa) (6)  

σ2 = σa
2 σo

2 ( σo
2 + ym

2 σa
2)− 1 (7)  

where yo and ym represent the integrated XCO2ff along a latitudinal range 
from the satellite and model, respectively and σa is the uncertainty of the 
prior estimate, set as a fraction of the emissions. The prior estimate (λa) 
is set to unity (1). 

In this study, we estimated the posterior emissions based on outputs 
of WRF-Chem only, allowing us to include error estimations for both the 
biosphere and the transport model error in the final estimation. The 
inputs include CO2ff prior emission (Ei), prior uncertainty (σa), inte
grated XCO2ff along a latitudinal range from the satellite (yo) and model 
(ym), and satellite and model errors (σsatellite and σmodel). Specially, Ei is 
obtained from ODIAC and yo is derived based on OCO-2 XCO2 after 
removing the background and the Biogenic XCO2 (See Section 2.2 and 
2.4.3), with error determination described in Section 2.7.2. 

2.7.2. Error determination 

2.7.2.1. Prior uncertainty and measurement error. We assumed 3 
different (10%, 20%, and 40%) prior uncertainty levels to test their ef
fect on CO2ff emission inversion. The satellite measurement error 
(σsatellite in eq. (5)) of each XCO2 sounding consists of three parts: a 
random error related to noise, a systematic error, and the uncertainty 
from biogenic flux. Similar to a previous study (Ye et al., 2020), we 
conservatively considered a random error for each XCO2 sounding with a 
standard deviation of 1 ppm, leading to a 0.20–0.45 ppm standard de
viation for the 1-s averaged data calculated with 5–24 soundings (a 
fraction of soundings filtered by the quality flags). Systematic errors are 
ignored as we used bias-corrected data, which is presumably free from 
potential biases. The uncertainty from biogenic fluxes cannot be derived 
from the satellite data. Instead, we used the standard deviations of Bio- 
XCO2 driven with the 15 different global TBMs (also see Section 2.4.3) to 
represent the biogenic flux uncertainty in observed XCO2. 

2.7.2.2. Model error caused by transport error. Following the method 
described in Ye et al. (2020), we determined transport model errors 

using the rotation and stretch of modeled wind fields. We rotated the 
simulated plume c(x, y, t) at a given time (t) by an angle θ about the 
emission center (x0, y0) to get cr(xr, yr, t). The rotated plume was then 
transformed to incorporate random wind speed error (ε) as: 

cr′ (xr′ , yr′ , t) =
u

u + εcr(xr, yr, t) (8)  

where 

xr′ =
u + ε

u
(xr − x0)+ x0, yr′ = yr (9) 

We assumed that errors in wind speed and direction follow the 
normal distributions of N(0, σws) (unit: m/s) and N(0, σwd) (unit: ◦), 
respectively, where σws and σwd are standard deviations of wind speed 
and direction, respectively. The evaluations of σws and σwd are shown in 
Section Text S4. The XCO2 model errors are represented by the standard 
deviations of 10,000 Monte Carlo simulations of transformed plumes. 

3. Results 

3.1. Global view of high-quality OCO-2 tracks 

To understand the potential of OCO-2 satellite data on detecting an 
urban CO2ff emission trend, the global data availability must be quan
tified. Thus, we scanned all the OCO-2 soundings from 2014 to 2019 and 
calculated how many are high-quality soundings, as marked by quality 
flags on 1◦ x 1◦ grids (Fig. 1). Note that the OCO-2 soundings are subject 
to a two-level quality inspection (L1 and L2). The ratios of high-quality 
soundings for each level are shown in Fig. S3. The ratios used in Fig. 1 
were obtained by multiplying the ratios in L1 and L2. Globally, about 
10.82% of soundings are marked as high-quality by OCO-2 quality flags, 
while the high-quality sounding ratio in the low- and mid-latitudes (<
60◦) is 14.61%. The global mean ratio over land (11.47%, excluding 
Antarctica) is similar to the global ocean (11.85%) mean ratio. In the 
low- and mid-latitudes, the mean ratio over land is 14.36% and 14.71% 
over the oceans. The ratios over Asia, Latin America, North America, 
Africa, Europe, and Oceania are 9.82%, 6.99%, 7.39%, 18.57%, 6.10%, 
and 38.07%, respectively. Some areas in the mid-latitude, such as the 
western United States, southern Africa, Australia, North Africa, and the 
Middle East, have ratios higher than 50% while some areas in China, 
Southeast Asia, part of the Sahara Desert, Central Africa, and the 
Amazon forests have ratios lower than 10%. 

3.2. OCO-2 high-quality soundings over the 70 most populated cities 

Since this study focuses on the CO2ff emissions from city areas, we 
scanned all OCO-2 tracks over the 70 most populated cities globally from 
2014 to 2019 to examine how many tracks are valid for CO2ff emission 
inversion calculations. The names of the 70 cities are listed in Fig. S4. 
Considering that cities vary significantly by size, we calculated the ratios 
of OCO-2 high-quality soundings from all soundings within boxes of 

Fig. 1. Global 1◦ x 1◦ OCO-2 high-quality sounding ratios past two-level 
quality inspection. 
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different sizes (from 25- to 200-km border-to-center distance) to account 
for suburban areas and nearby towns (Fig. 2). Like the 1◦ x 1◦ global 
view, the ratios of high-quality soundings over the 70 cities are shown 
more specifically at the L1 and L2 levels in Fig. S5. Overall, the ratio 
remains at about 17%, independent of the box sizes. Further investiga
tion shows that the data loss in OCO-2 measurements is mainly due to 
cloud and aerosol followed by topography (see Section Text S3). We only 
considered the target and glint modes in our study. The numbers of 
soundings in the same-size boxes over different cities are almost equal 
because the soundings are evenly distributed along the tracks (for both 
nadir and glint modes). Assuming that the ratio of useable tracks is 
similar to the fraction of high-quality soundings, on average 3–4 tracks 
per city per year are valid for CO2ff emission inversion, given the 16-day 
OCO-2 revisit period. The ratios of high-quality soundings near cities in 
North America and Africa are higher than for any other continent. Over 
North America, Europe, and Asia the ratios of high-quality soundings 
gradually decrease as the box size increases. There are more high-quality 
soundings within a 25-km box than other sized boxes in Latin America, 
which might relate to the proximity of the coastline (lower retrieval 
density over water). The ratio of good soundings increases significantly 
as the box size increases in Oceania because Sydney, the only selected 
city in Oceania, is on the coast and far from other large cities. The ratio 
of good soundings also increases with box size in Africa from 25 to 100 
km. 

3.3. Comparison of modeled and observed local XCO2ff enhancement over 
Lahore 

The XCO2ff enhancement is defined as the enhancement in XCO2 due 
to local fossil fuel emissions. Fig. 3 shows two sample comparisons be
tween modeled and observed XCO2ff enhancements. On Apr 2, 2017, the 
OCO-2 1-s averaged data showed a 0.68 ppm XCO2ff enhancement peak 
at 31.57◦ E latitude. WRF-Chem captured a similar 0.58 ppm peak, but 
the position shifted slightly south. X-STILT showed a 0.29 ppm peak, 
much lower than OCO-2 and WRF-Chem, located between the OCO-2 
and WRF-Chem peaks. On Jan 15, 2018, OCO-2 1-s averaged data 
showed a 0.22 ppm peak at 31.43◦ E latitude. WRF-Chem also shows a 
peak at that position, but the enhancement is about 1.77 times higher 
than the OCO-2 peak at 0.39 ppm. X-STILT showed a similar 0.38 ppm 

peak as WRF-Chem, but located at 31.22◦ E latitude. It is notable that the 
modeled peak enhancement and position are sensitive to the modeled 
wind field. For example, the WRF-Chem and X-STILT peaks on Jan 15, 
2018, not overlapping but show a similar enhancement (Fig. 3d), 
implying that the wind directions slightly differ in the two models. 

The comparison of 25 all-data tracks is shown in Fig. S9 and the 
comparison of the 8 high-quality tracks is shown in Fig. S10. Overall, the 
OCO-2 data in the all-data tracks showed greater variations of XCO2ff and 
greater discrepancies with the two models than the high-quality tracks. 
The XCO2 enhancement peaks of the two models are more consistent 
with each other than with those in the OCO-2 data, in terms of both 
position and magnitude. 

3.4. FCSI method emission ratios 

Fig. 4 shows two representative examples of plume transects by OCO- 
2 and illustrates the application of the different steps of the FCSI method. 
The first example (Fig. 4ab) corresponds to favourable conditions on 
Jan. 15, 2018 with a near-perfect match between the maximum 
enhancement and the projected wind vector, while the second example 
illustrates the more challenging conditions on May 15, 2015. Note that 
favourable condition is a stricter condition than high-quality tracks. 
Tracks with favourable conditions are much fewer than high-quality 
tracks, not enough to evaluate the performance of the FSCI method. In 
the second example, the mismatch between the location of the detected 
plume section and the estimate of the effective wind direction can be 
explained by either (i) uncertainties in the wind field from the meteo
rological re-analysis product used to estimate the effective wind, (ii) 
uncertainties in the derivation of the effective wind due to a lack of 
knowledge on the vertical distribution of CO2 (especially when CO2 
accumulates near the surface), or (iii) the fact that the detected plume 
section could actually correspond to a signal from CO2 sources other 
than the city of Lahore. A lack of coherence between the detected plume 
direction characterized by the location of the detected plume section 
and the effective wind direction estimate highlights a major error in the 
estimate of the effective wind that applies to both direction and speed or 
misattribution of the enhancement. To determine the corresponding 
surface area influencing the OCO-2 retrievals, a mask is applied to 
ODIAC based on the effective wind direction of the plume (computed 

Fig. 2. Regional ratios of OCO-2 high-quality soundings from all soundings over the most populated 70 cities within boxes of 25-, 50-, 75-, 100-, and 200-km border- 
to-center distance (the red dots are city locations). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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from the plume center instead of the ECMWF HRES wind vector for 
consistency). 

3.5. Evaluation of OCO-2 quality flags at the city-level 

The OCO-2 quality flags were originally designed for global-scale 
studies. Although there are some TCCON sites located in urban areas 
(http://www.tccon.caltech.edu/site-locations/index.html), its effec
tiveness at city scale has not been fully evaluated. Because the soundings 
filtered out by the quality flags in the L1 product have no corresponding 
XCO2 values, we could only examine the XCO2 soundings in the L2 data. 
Due to the lack of ground-based XCO2 data, we evaluated the relevance of 
quality flags in L2 products based on the three methods. This multi- 
model evaluation is independent of model-specific assumptions, espe
cially the meteorological conditions: WRF driven by ERA-5, X-STILT 
driven by GDAS, and FCSI with ECMWF HRES. 

Fig. 5 shows the satellite/bottom-up-emissions (OCO-2/ODIAC) ra
tios for the 25 all-data tracks (in red) and 8 high-quality tracks (in blue). 
We compared the ratios rather than the differences because the CO2ff 
emission scaling factors are based on the satellite/bottom-up-emissions 
ratios. For simplicity, Fig. 5 is a boxplot without outliers (see Fig. S11 for 
outliers). The ratios of the high-quality group converge closer to 1 
compared to the all-data group. The high-quality tracks produce rela
tively few outliers while the 25-track ratios show large outliers (>10; 
Fig. S11). For high-quality tracks, WRF-Chem and X-STILT have similar 
reported error bars but the error bar of the FCSI method is greater. All 3 
models consistently suggest that the median ratios are greater than 1, 
which implies that the ODIAC slightly underestimates the CO2ff emis
sions over Lahore. The possible reasons for underestimation could be 

unreported sources or inaccurate emission factors over fast-growing 
areas like Lahore. For the FCSI method, the mean of high-quality cases 
is not similar to the other methods, but the spread is much smaller than 
the all-data estimate. Based on the reduced spreads of high-quality 
tracks, we conclude that the OCO-2 quality flags are useful filters to 
identify low-quality OCO-2 retrievals producing unlikely emission 
values over Lahore. Hence, quality flags should be considered in city- 
scale studies. The larger uncertainties of the FCSI method might be 
caused by the variability in the surface footprint, which is difficult to 
accurately determine due to uncertainties in the identification of the city 
plume and vertical distribution of CO2 (with well-mixed conditions 
assumed in the wind calculation). The high-quality track ratios from X- 
STILT seem to converge more (smaller range) than WRF-Chem. Given 
that only 8 high-quality tracks are used for comparison, more tracks are 
needed to confirm which model is optimal for CO2ff inversion. The large 
spread in low-quality OCO-2 tracks across the three methods confirms 
the relevance of the quality flags in urban emission quantification. 

3.6. Emission trend detection over Lahore 

We calculated the CO2ff emissions using our Bayesian inversion 
system applied to the 8 high-quality tracks simulated by WRF-Chem 
(Fig. 6). We estimated the posterior (optimal) emissions only using 
WRF-Chem, as it is the only model for which both biosphere fluxes and 
transport errors have been quantified here. To better understand the 
impact of prior emissions and observations (defined as σa and σo in eqs. 
(5), (6), and (7)), we ran our Bayesian inversion system with various 
uncertainty levels. In a previous study (Ye et al., 2020), prior un
certainties over cities other than Los Angeles were estimated as 40% of 

Fig. 3. Comparison between modeled and observed XCO2ff enhancements of two sample high-quality tracks over Lahore. Panels (a) and (c) show the simulated XCO2ff 
from WRF-Chem and the observed XCO2ff obtained from the OCO-2 data (background and biosphere XCO2 have been subtracted). The vectors represent 10-m wind 
from WRF-Chem with the reference vector standing for a wind speed of 5 m/s. Panels (b) and (d) show the OCO-2 XCO2ff (grey diamond marks represent high-quality 
(QF = 0) soundings, with background and biosphere XCO2 subtracted), 1-s averaged OCO-2 XCO2ff (Orange dotted line), simulated XCO2ff by WRF-Chem (red dotted 
line), and X-STILT (black dot line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the net emissions at the daily time scale. We also defined our initial prior 
emission uncertainty as 40% of city emissions. However, the observation 
uncertainty varies by track; see Section 2.7.2 and Table S2 for details of 
observation uncertainty estimation. The baseline (red line in Fig. 6a) 
uses a prior uncertainty of 40% of emissions and observation uncertainty 
as indicated in Table S2. We tested the impact of prior uncertainties by 
assigning different values, from 10% to 20% and 40% of emissions 
(Fig. 6a), as well as the impact of observation uncertainties by 
decreasing the variances down to 10%, 20%, and 40% of the original 
estimation (Fig. 6b). The inversion inputs are listed in Table S2. Note 
that the 8 high-quality tracks are sampled at different times of the year. 
We adjusted the individual posterior emissions by their prescribed 
monthly and weekday scaling factors to remove the effects of sub-annual 
variability. Monthly scaling factors are the ratios of monthly emissions / 
monthly averaged emissions in corresponding years from ODIAC. 
Weekday scaling factors were obtained from the Temporal Improve
ments for Modeling Emissions by Scaling (TIMES) model (Nassar et al., 
2013). In future studies, these adjustments should be based on economic 
activity data (e.g., energy production/consumption, traffic, industrial 
activities) instead of a prescribed climatology of fossil fuel emission. 

The trend in the posterior emission baseline case is about 734 kt 
Carbon per year (or 6.7%) independent of prior uncertainty. However, 

the emission trend decreases as the level of confidence in the OCO-2 data 
(and the WRF-Chem model) increases (i.e., observation uncertainty 
decreases) (cf. Table 1). Based on the Mann-Kendall test (Lei et al., 2018, 
2019), we evaluated the trend significant probability at various prior 
uncertainty levels. We calculated the possibility of p-values less than 
0.05 from 10,000 Monte Carlo simulations of the Mann-Kendall upward 
trend test. The possibility significantly increases as prior uncertainty 
decreases, while significantly decreasing as observation uncertainty 
decreases. We conclude here that for the 8 high-quality tracks, the trend 
is mostly driven by prior emissions while the track-to-track variability is 
too large to identify the positive trend based solely on OCO-2 data. To 
understand the effect of the number of valid satellite tracks, we also ran 
idealized simulations of p-values for 25 high-quality tracks (with the 
same dates as the 25 all-data tracks) assuming that posterior emissions 
and uncertainties are equal to the prior. The probability of detecting the 
positive trend with 25 tracks increases to 98.71%, 60.20%, and 25.25% 
when prior uncertainties are set at 10%, 20%, and 40%, respectively. 
The possibility is significantly higher than using 8 high-quality tracks. 
To achieve a greater-than-50% significance possibility at the 95% con
fidence level, less than 10% prior uncertainty for 8 tracks (or less than 
20% prior uncertainty for 25 tracks) is required. This implies that the 
trend is driven by prior and not optimized emissions, even with 25 valid 

Fig. 4. XCO2 retrievals and their corresponding surface footprints on Jan 15, 2018 (a and b) and May 15, 2015 (c and d). Panels (a) and (c) show the OCO-2 XCO2 
sounding over the ODIAC inventory (in the WRF inner domain), with the calculated emission zone (white shading) and estimated effective wind direction (red 
arrow). Panels (b) and (d) show the along-track background-removed raw OCO-2 XCO2 data (grey dots) with the smoothed data inside (blue line) and outside (orange 
line) the detected plume. The blue area highlights the integrated area used for emission calculation. The variations of the XCO2 signal outside the detected limits of the 
plume originate from other sources excluded by our emission mask and are thus not used for the emission calculation. In all panels, black dots represent the plume 
detected limits and the red dots are the wind axis–track axis intersection. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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tracks over 5 years. 

4. Discussion 

We calculated the number of usable tracks based on the ratios of 
OCO-2 high-quality soundings compared to all available soundings. We 
also found that the number of usable tracks varies significantly among 
cities when searching for tracks with over 150 high-quality soundings. 
For example, 7–9 high-quality tracks per year are found over Los 
Angeles and 14–16 high-quality tracks per year are found over Mexico 
City, but we found less than 1 high-quality track per year over Beijing 
and Washington DC. On the other hand, the number of high-quality 
tracks is limited by factors such as downwind location of the track, 
wind homogeneity, sounding distribution, magnitude of XCO2 enhance
ment, city size, and aerosol contamination. 

We selected Lahore in Pakistan as a case study. In theory, its size and 
fast-growing economy should make it easier to capture the annual CO2ff 
emission trend from satellite data. For cities with slowed growth or 
reduced fossil fuel consumption under climate policies, a longer time 
window is needed until the total changes in emissions that can be sta
tistically confirmed are greater than sub-annual variations. Currently, 
the number of high-quality satellite tracks is not sufficient to capture 
sub-annual variations. Forthcoming satellite missions will provide 
additional observations potentially able to capture urban emission 
trends (e.g. GeoCarb, CO2M). Another solution is to refine the sounding 

selection criteria for cities. We examined the thresholds of selection 
criteria that trigger the quality flags and found the default thresholds in 
the OCO-2 L2 product are slightly over-cautious for Lahore (Section Text 
S5). Adjusting the thresholds for cities may bring more high-quality 
tracks from current satellites (OCO-2/3). Note that the impact of local 
topography on dispersion varies between plume city and base city (Ye 
et al., 2020), which might lead to large differences in sounding selection 
criteria due to aerosol accumulation. 

The signal-to-noise ratio is also a notable problem. The XCO2ff en
hancements derived from 1-s averaged data (Fig. 3 and Fig. S10) are 
usually less than 1 ppm, but the variation in non-average data can be as 
high as 1.5 to 2.0 ppm in the 1-s interval. Thus, satellite data with higher 
precision would be beneficial to better constrain CO2ff emissions. 

Observing System Simulation Experiments (OSSEs) (Y. Wang et al., 
2020a; Ye et al., 2020) could constrain the monthly emission un
certainties with multiple valid tracks at higher temporal frequency, 
thanks to the absence of any significant bias in model errors. If multiple 
tracks were made available each month, the CO2ff emission trend could 
be captured by satellite observations independently of priori emission 
trends. 

The cost-efficiency ratios of the models must be considered for future 
expansions of this study to more cities. The FCSI method is the least CPU 
demanding but its satellite/bottom-up-emissions ratios of suitable tracks 
seem to converge less than for WRF and X-STILT. However, more valid 
tracks would be needed to confirm this result. X-STILT requires mid- 
level computational resources among three approaches and its derived 
ratios of high-quality tracks converged more than the other two 
methods. Given that only 8 high-quality tracks were examined over 
Lahore in this study, no definitive conclusion can be drawn whether X- 
STILT or WRF-Chem is an optimal solution with the highest cost- 
effectiveness. Additional comparisons between these approaches using 
more tracks and over different cities are required in the future. 

The next generation Orbiting Carbon Observatory satellite, OCO-3, 
was launched in May 2019, providing a novel viewing mode dedi
cated to denser data collection over cities. The Snapshot Area Map 
(SAM) mode of OCO-3 yields a raster of data by scanning wider areas 
over cities compared to OCO-2, reducing the possibility that the tracks 
miss the plumes from cities. The Bayesian inversion framework should 
be adjusted to fit the wider spatial coverage. OCO-2 continues to collect 
observations even after the launch of OCO-3, allowing us to study the 
difference between the two satellites and whether the SAM mode im
proves CO2ff emission inversion. In addition, more CO2 monitoring 
satellites (e.g. GeoCarb and CO2M) will be launched in the coming 
years. Reconciling various satellite products will remain challenging 
with noticeable differences between XCO2 retrievals from the different 
satellites, but this constellation also represents an opportunity to 
leverage a large volume of satellite-derived XCO2 data to better under
stand urban carbon emissions. 

Fig. 5. Comparison of satellite/bottom-up-emissions (OCO-2/ODIAC) ratios for 
the 25 all-data tracks and 8 high-quality tracks. The ratios of WRF-Chem and X- 
STILT correspond to the ratios of the integrals of XCO2ff along the OCO-2 tracks. 
The ratios of the FCSI method correspond to the ratios of CO2ff emissions over 
the areas identified as plumes. For each box, the central line indicates the 
median while the bottom and top edges of the box indicate the 25th and 75th 
percentiles (q1 and q3), respectively. Outliers greater than q3 + 2 × (q3 − q1) 
or less than q1–2 × (q3 − q1) are omitted for simplicity and can be found in 
Fig. S11. The whiskers extend to the most extreme value that is not an outlier. 

Fig. 6. Posterior CO2ff emissions over Lahore at various uncertainty levels: a) fix obeservation uncertainty (σo) as 100% of derived from OCO-2 and WRF-Chem as 
well as set prior uncertainty (σa) as 10%, 20%, and 40%; b) fix prior uncertainty (σa) as 40% and set obeservation uncertainty (σo) as 10%, 20%, and 40% of derived 
from OCO-2 and WRF-Chem. Note: To avoid overlapping error bars, we offset 20% and 40% error bars by 1.5 and 3 months, respectively. The dash lines represent the 
least-squares linear regression of the medians. 
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5. Conclusions 

In this study, we examined the number of valid OCO-2 tracks over 
the 70 most populated cities globally by examining the ratios of high- 
quality soundings. About 17% of OCO-2 soundings are marked as 
high-quality by the current flagging procedure. Given the 16-day OCO-2 
revisit period, this produces 3–4 valid tracks per year per city on 
average. The occurrence of sounding selection criteria shows that cloud 
blockage and aerosol contamination are the two main causes of data 
loss. 

The OCO-2 quality flags were originally designed for global-scale 
studies. We for the first time evaluated their effectiveness at the city 
level. We selected Lahore in Pakistan as a case study and compared 
satellite/bottom-up-emissions ratios from WRF-Chem, X-STILT, and the 
FCSI method using 25 all-data tracks and 8 high-quality tracks. The 
ratios of the high-quality group with significantly lower uncertainties 
converge closer to 1 compared to the all-data group. Thus, OCO-2 
quality flags defined at the global level are useful filters for removing 
low-quality OCO-2 retrievals in city-scale studies. All three models 
consistently suggest that the ratio medians are greater than 1, implying 
that the ODIAC product may be slightly underestimating CO2ff emissions 
over Lahore. 

We estimated the posterior (optimal) CO2ff emissions over Lahore 
using a Bayesian inversion system at various prior and observation un
certainty levels and adjusted posterior emissions by monthly and 
weekday scaling factors. The prior CO2ff emissions from ODIAC suggest 
that the Lahore 2014–2019 trend was about 646 kt C/year (i.e., an 
annual 5.9% increase), while the baseline of posterior CO2ff emission 
trend was about 734 kt C/year (i.e., an annual 6.7% increase). The trend 
significant probability of posterior emissions was independent of prior 
uncertainty but decreases as the observation uncertainty decreases. This 
suggests that the emission trend is mostly driven by ODIAC emissions. 
To understand the effect of the number of valid satellite tracks, we also 
ran idealized simulations of p-values for 25 tracks assuming that pos
terior emissions and uncertainties equal to the prior values. The 10,000 
Monte Carlo simulations of the Mann-Kendall upward trend test showed 
that less than 10% prior uncertainty for 8 tracks (or less than 20% prior 
uncertainty for 25 tracks) is required to achieve a greater-than-50% 
trend significant possibility at a 95% confidence level. It implies that the 
trend is driven primarily by the prior emissions and not the OCO-2 ob
servations, with either 8 or 25 valid tracks over 5 years. The key to 
improving the role of satellites and models in emission trend detection is 
to obtain more valid tracks. This requires additional satellite measure
ments with an increased sampling frequency, wider swaths of satellite 
tracks, a better understanding of XCO2 retrievals over cities, and a par
allel improvement of CO2ff emission inversion methods. 

Data availability 

The following data in this study is available from public sources: 
NCAR Upper Air Database: https://rda.ucar.edu/datasets/ds370.1/ 
NCEP ADP Global Surface Observational Weather Data: https://rda. 

ucar.edu/datasets/ds461.0/ 
CO2ff emission from ODIAC: http://db.cger.nies.go.jp/dataset/ODIA 

C/DL_odiac2019.html 
TIMES temporal scaling factors: https://cdiac.ess-dive.lbl.gov/ftp/ 

Nassar_Emissions_Scale_Factors/ 
MsTMIP Biogenic CO2 Fluxes: https://nacp.ornl. 

gov/MsTMIP_products.shtml#datasets 
OCO2_L2_Lite_FP: https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite 

_FP_9r/summary 
ERA5 climate reanalysis: https://climate.copernicus.eu/climate-r 

eanalysis 
GDAS0p5: ftp://arlftp.arlhq.noaa.gov/archives/gdas0p5/ 
All analysis code will be made available on request. 
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Table 1 
Least-squares linear regression equations of posterior CO2ff emissions over 
Lahore and trend significant probabilities at various uncertainty levels. Note: the 
trend significant probabilities are defined as the possibilities that the p-values of 
the Mann-Kendall upward trend test less are than 0.05 derived by 10,000 Monte 
Carlo simulation.  

Prior 
uncertainty 
(σa) 

Observation 
uncertainty (σo) 

Linear regression 
equation 

Trend significant 
probability 

10%  
y = 7.37 × 105 ×

− 1.48 × 109, R2 =

0.86 
57.37% 

20% 100% σo 

y = 7.37 × 105 ×

− 1.48 × 109, R2 =

0.86 
23.04% 

40%  
y = 7.34 × 105 ×

− 1.47 × 109, R2 =

0.83 
10.26%  

10% σo 

y = 3.23 × 105 ×

− 6.41 × 108, R2 =

0.01 
0.01% 

40% 20% σo 

y = 5.62 × 105 ×

− 1.12 × 109, R2 =

0.09 
3.87%  

40% σo 

y = 7.00 × 105 ×

− 1.40 × 109, R2 =

0.44 
9.49%  
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