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Abstract 

 

Cancers of unknown primary (CUP) are metastatic cancers for which the primary tumor is not 

found despite thorough diagnostic investigations. Multiple molecular assays have been 

proposed to identify the tissue of origin (TOO) and inform clinical care, however none has 

been able to combine accuracy, interpretability and easy access for routine use. 

We developed a classifier tool based on the training of a variational autoencoder (VAE) to 

predict tissue of origin based on RNA-seq data. We used as training data 20,918 samples 

corresponding to 94 different categories, including 39 cancer types and 55 normal tissues. The 

TransCUPtomics classifier was applied to a retrospective cohort of 37 CUP patients, and to 11 

prospective patients.  

TransCUPtomics showed an overall accuracy of 96% on reference data for TOO prediction. 

The TOO could be identified in 38/48 CUP patients (79%). 8/11 prospective CUP patients 

(73%) could receive first-line therapy guided by TransCUPtomics prediction with responses 

observed in most patients. The VAE added further utility by enabling prediction 

interpretability, and diagnostic predictions could be matched to detection of gene fusions and 

expressed variants. 

TransCUPtomics confidently predicted TOO for CUP and enabled tailored treatments leading 

to significant clinical responses. The interpretability of our approach is a powerful addition to 

improve the management of CUP patients. 
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Introduction 

Cancers of unknown primary (CUP) are heterogeneous metastatic cancers for which the 

primary tumor cannot be identified despite a thorough diagnostic workup. CUP represent 1-

2% of metastatic cancers and remain a diagnostic and therapeutic challenge. Usual first-line 

therapeutic strategy consists of unspecific platinum-based chemotherapy, with the response 

rate and median overall survival remaining below 30% and 9 to 12 months, respectively (1).  

Over the last decades, multiple attempts have been made to characterize the genomic and 

transcriptomic landscapes of CUP in order to identify relevant molecular alterations and gene 

expression signatures that could orientate toward a specific tissue of origin and guide 

therapeutic strategies. Among them, data from microarrays, targeted DNA and RNA 

sequencing, DNA methylation, and whole-genome sequencing  have been used with varying 

success (2). However, those techniques have not yet been widely included in the current 

diagnostic workup of CUP, due to difficulty of access, cost, and lack of standardization. Thus, 

current guidelines for CUP management still rely on extensive clinical and 

immunohistochemical characterization for tissue of origin determination (1), despite which 

most cases remain unclassified and are treated with unspecific systemic drugs. 

The utility of gene expression data to investigate tissue of origin has already been studied 

extensively, with whole-transcriptomic approaches (RNA-seq) being more robust than 

microarrays to identify tumor characteristics and to improve diagnostic accuracy (3, 4). 

However, the amount of data generated by whole transcriptomic sequencing renders their 

analysis difficult within standard diagnostic procedures. Recently, artificial intelligence and 

machine learning approaches have been successfully applied to the analysis of large, high-

dimensional molecular datasets (5-8).  

We hypothesized that such approaches could be applied to analyze high-dimensional RNA-

seq data and trained to identify tissues of origin on datasets of tumors and non-malignant 

tissues. We present here a classifier based on the training of a variational autoencoder (VAE), 

a neural network used in the field of deep learning for dimensionality reduction (9), to predict 

tissue of origin based on RNA-seq data. The TransCUPtomic classifier was trained on an 

unprecedented reference dataset of more than 20,000 tumors and normal tissues. We report 

our experience on 48 CUP patients on which we applied our classifier and evaluated its 

clinical utility by assessing the efficacy of matched therapy. 
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Methods 

 

Patients and tumors 

The retrospective cohort included patients over 18-years-old treated in Institut Curie over the 

last decade for a clinicopathological diagnosis of CUP, as assessed by a multidisciplinary 

tumor board after standard diagnostic workup, and for whom fresh-frozen tissue was 

available. This included patients treated at Institut Curie in the SHIVA 01 clinical trial (10). 

Diagnostic workup included standard biological and radiological procedures to search for the 

primary tumor, as well as appropriate extensive pathological examination and 

immunohistochemistry (IHC) testing. 

The prospective cohort included all new untreated CUP patients referred to Institut Curie from 

June 2019 to August 2020. 

Response rate to first-line therapy was evaluated according to RECIST 1.1 criteria. 

The study was approved by the institutional review board of Institut Curie. All living patients 

provided written informed consent for molecular analysis.  

 

RNA preparation and sequencing 

Total RNA was isolated from fresh-frozen tumor tissue samples using Trizol reagent. Library 

construction was performed following the TruSeq Stranded mRNA LS protocol (Illumina, 

San Diego, CA, USA). Sequencing was performed on Illumina sequencing machines: 

NextSeq 500 (150 nt paired-end) and NovaSeq (100 nt paired-end). Atropos (v1.1.21) was 

used to trim adapters from FASTQ files. Quality controls including RNA concentration, RNA 

integrity number, and standard sequencing criteria of raw read data were performed prior to 

analysis. Reads were aligned to the human reference genome (hg19) with GENCODE version 

19 as the reference gene annotation with the use of STAR, version 2.7.0e and were quantified 

with the GeneCounts algorithm. Raw counts were normalized to transcripts per million 

(TPM).  

 

Reference samples used for training  

To train our classifier, we used public RNA-seq data from fresh-frozen samples of all primary 

tumors in The Cancer Genome Atlas (TCGA) (n=10,201). To allow for contamination of 

samples by normal cells and prevent overfitting in the case of low-tumor content, we also 

included in the training dataset all samples from juxta-tumor normal tissues in TCGA 

(n=746), Genotype-Tissue Expression (GTEx) (n=9,659) and Human Protein Atlas (HPA) 
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(n=200). We excluded categories with fewer than 10 samples available to avoid classes with 

too few samples for training. We divided the TCGA-SARC category into the different 

subtypes of sarcomas, and fused normal tissues from different platforms under the same 

annotation (some tissues such as liver clustered separately on the Uniform Manifold 

Approximation and Projection plot between different platforms, either reflecting true 

biological variability and/or residual batch effect). We also used data from small cell lung 

cancers (SCLC) (n=79, Formalin-Fixed Paraffin-Embedded (FFPE), GEO 

https://www.ncbi.nlm.nih.gov/geo/, accession number GSE60052) (11) and pancreatic 

neuroendocrine tumors (PanNET) (n=33, GEO accession GSE118014) (12). Raw data 

FASTQ files were downloaded from GDC archive (TCGA), SRA (GTEx, SCLC and 

PanNET) and HPA (HPA). In total, our reference dataset contains 20918 samples divided into 

94 “diagnoses”. Supplemental Table S1 lists all diagnoses and sample numbers. 

 

Variational autoencoder (VAE) and Machine learning classifier 

The VAE encoded high-dimensional transcriptomic profiles into low-dimensional 

representations in a latent space composed of 100 features with interpretable gene weights 

(Supplemental Figure S1A). To design the VAE, we profited from the seminal work of Way 

and Greene (13) who designed a VAE model named "Tybalt" to encode RNA-seq samples 

from TCGA. As this model was already optimized in their work, we elaborated our model 

based on a similar architecture: as input to the VAE, we selected the 5000 most variable 

features after a variance-stabilizing transformation on log-tranformed TPM values 

(SelectVariable Features in R package Seurat v3.1.4). Our encoder neural network was fully 

connected and one layer deep, with an encoding intermediate layer of 100 neurons, and 

decoder network also fully connected and one layer deep. The latent space is therefore 100-

dimensional. Input features were scaled between 0 and 1 before training (divided by 

maximum value of the corresponding feature). The VAE was implemented and trained with 

Keras version 2.2.4 (TensorFlow version 1.14.0), optimized with Adam, batch-normalized. 

Activation was relu (rectified linear unit) for the encoding layer and sigmoid for the decoding 

layer. Learning rate was 0.0005 and we trained the model for 50 epochs with no evidence of 

overfitting. The latent space was visualized with the use of Uniform Manifold Approximation 

and Projection (UMAP) in two dimensions (14). The VAE was trained with all reference 

samples as input, resulting in 100-dimensional encoded representations for each sample, then 

two different machine learning classifiers were trained on these 100 features: one random 

forest (RF) classifier, and another using k-nearest neighbors (KNN). The RF classifier was 
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trained using the RandomForest (v4.6-14) package in R, with 5000 trees, mtry= 10. The KNN 

classifier was trained using the kknn (v1.3.1) package in R, we used weighted 10-nearest 

neighbors with a gaussian kernel.  

 

Cross-validation of the classifier 

To measure the performance of the classifiers on the training dataset, we performed the 

following 3-fold cross-validation procedure: the reference dataset was randomly divided into 

3 equally sized parts, and 3 classifiers were independently trained with 2 out of the 3 parts, the 

third being reserved from the entire training procedure for use as a validation dataset. In this 

way, the cross-validation was entirely "blind" to the training of the classifier, including in the 

feature selection step from the VAE. As each of the reference sample was included in one of 

the 3 validation datasets we could calculate a confusion matrix for the classifier on the entire 

reference dataset, as well as precision and recall values for each of the diagnoses in the 

classifier.  

To account for diagnoses which arise from similar tissues and, as expected, share similar 

transcriptome profiles (as depicted in the UMAP plot), different labels corresponding to 

subtypes of the same normal tissue were grouped together for this procedure, namely: 13 

subtypes of brain tissue, 4 subtypes of gynecologic tissue (cervix, uterus, vagina, fallopian 

tube), 3 subtypes each of artery and esophageal tissues, 2 subtypes each of adipose, colon, 

skin and cardiac tissues. Moreover, tumors with similar clinical management and related 

transcriptome profiles were regrouped as well, namely: 5 subtypes of soft tissue sarcomas 

from the TCGA-SARC project (soft tissue sarcoma), colon and rectum adenocarcinomas 

(colorectal adenocarcinoma), stomach and esophageal carcinomas (gastroesophageal 

carcinoma). 

 

 

Classification of test samples     

CUP transcriptomic profiles were encoded in the 100-dimensional latent space with the VAE 

encoder neural network, and the 100-feature vector was input into RF and KNN classifiers to 

give a prediction of the most probable diagnosis with corresponding scores (Supplemental 

Figure S1B). Each test sample was projected on the original reference UMAP for 

visualization.  

We used two criteria for confidence of the prediction: 1) The same diagnosis is predicted by 

both classifiers; 2) At least one of the diagnoses is predicted with a large score (> 50%). 



8 

 

Thus we could define confidence of prediction as: 1) high: both criteria present; 2) moderate: 

one of the two criteria present; 3) low: both criteria absent, samples are left "unclassified". 

Considering that some diagnoses may overlap and orient towards similar clinical 

management, criteria number one was considered to be fulfilled when a pair of diagnoses of 

the same family were predicted. Specifically, we fused the following pairs of diagnoses in our 

samples: 

- "Kidney renal clear cell carcinoma" and "Kidney renal papillary cell carcinoma" were 

grouped into "Kidney carcinoma"; 

- "Liver hepatocellular carcinoma" and "Cholangiocarcinoma" were grouped into "Liver 

HCC/Cholangiocarcinoma"; 

- "Ovarian serous cystadenocarcinoma" and "Uterine corpus endometrial carcinoma" were 

grouped into "Gynecological carcinoma"; 

- subtypes of soft tissue sarcoma were grouped into "Soft tissue sarcoma"; 

- upper tract gastro-intestinal cancers were grouped into "GI cancer". 

 

Exploration of VAE features for interpretability 

The VAE encodes all samples inside a 100-dimensional latent space with 100 features that 

can be interpreted. For each feature, we calculated mean values for samples of each diagnosis 

to infer diagnoses with high values for this feature. Conversely, an "average" profile could 

also be calculated for each diagnosis by taking the mean value for each of the 100 features. 

Each feature is the result of a non-linear combination of the initial transcriptomic features, and 

the associated weights in the decoder network of the VAE give us an idea of the genes most 

contributing to this feature. We performed GO analysis on the 100 highest-weight genes in 

each feature with the package gprofiler2 v0.7.0 in R. Results of these analyses are in 

Supplemental Table S2. 

 

Analysis of expressed variants and fusion detection 

We used RNA-seq to detect gene fusions and infer expressed variants as described below. 

Fusion gene detection: 

Fusion gene detection was performed by two complementary approaches: 

1/ a targeted analysis using a curated list of known fusion gene sequences to detect well-

documented fusions. 

2/ an exploratory analysis with 5 fusion-detection tools: 

- Defuse v0.6.0,  
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- StarFusion v2.5.3,  

- Fusion Catcher v1.00, 

- FusionMap Oshell toolkit v10.0.1.50, 

- ARRIBA v1.2.0  

Interpretation combined the results of the targeted fusion analysis and those of the exploratory 

analysis.  

 

Variant Calling:  

Read alignment was performed with STAR on hg19 and read cleaning was done as described 

by GATK good practice recommandations (v3.5). Variant calling was performed on a list of 

499 genes (Cancer Gene Census, COSMIC 24.05.2016) using haplotype Caller (GATK v.3.5) 

and Mutect2 (GATK v.4).  Reads with mapping quality lower than 6 and sequenced bases 

quality lower than 20 were not considered for variant calling. Variants were annotated with 

ANNOVAR (v2018Apr16). Modelization of SNVs belonging to a list of 499 genes (Cancer 

Gene Census, COSMIC 24.05.2016) was afterwards validated using Alamut Visual 2.9.0 

(Interactive BiosoftWare) and annotated for pathogenicity in 5 classes using Varsome 

Educational use v9.3.4 (https://varsome.com) following ACMG recommandations. 

 

Results 

 

Training, performance and interpretation of the classifier 

The TransCUPtomics classifier was trained to predict tissue of origin based on RNA-seq data. 

In total, the reference dataset contained 20,918 samples corresponding to 94 diagnostic 

categories including 39 tumor types and 55 normal tissue types (Supplemental Table S1). 

UMAP visualization of the transcriptomic landscape of the reference dataset captured by the 

VAE showed strong separation of most tumor types according to their clinical and 

pathological diagnosis (Figure 1A). For example, adenocarcinoma from lung (T_LUAD), 

prostate (T_PRAD), and pancreatic (T_PAAD) origins clearly formed separated groups of 

tumors. Moreover, different histological subtypes of tumors developing from the same 

primary site such as kidney tumors (T-KIRC and T-KIRP) could be distinguished, and similar 

tumors of distinct grades such as glioma (T-LGG) and glioblastoma (T-GBM) showed a 

continuous distribution. On the contrary, squamous cell carcinoma of various tissue origins 

including head and neck (T-HNSC), cervix (T-CESC) and lung (T-LUSC) showed partial 

overlap (Figure 1B), in accordance with previous reports (15) . Normal tissues clustered 
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according to their tissue of origin and apart from malignant tumors originating from the same 

organs. Of note, a transcriptomic continuum could be identified between different organs of 

the same embryonal origin (for example between vagina (N-VAG), cervix (N-CER), uterus 

(N-UTER) and fallopian tubes (N-FALLOP)), or across different structures of the same organ 

such as brain (N-BRA) (Figure 1C).    

The 100 VAE features were used to train two machine learning classifiers based on random 

forest (RF) and K-nearest neighbors (KNN) to predict the most probable diagnoses. Cross-

validation showed robust overall accuracy, with predictions matching the true diagnosis in 

96.26% of cases with the RF classifier and in 96.03% of cases with KNN (94.99% for RF and 

94.53% for KNN when restricting the analysis to tumor samples) (Figure 2 and Supplemental 

Figure S2A-C).  

Each of the 100 VAE features was a weighted combination of genes (Table S2), allowing 

biological interpretation of the classification. Gene Ontology (GO) performed on the high-

weight genes of each feature enabled identification of biological processes. This included 

features associated to neural development (VAE_52, highly expressed in all brain samples), 

immune infiltration (VAE_2, 9, 39, 64, highly expressed in all blood samples), or 

keratinization (VAE_10, 21, 23, 65, 78, 85, 95, 98, 99) (Supplemental Table S3). VAE_2 was 

associated with GO terms related to the adaptive immune system, with its highest-weight 

genes including numerous immunoglobulin and T-cell receptor genes. Notably, diagnoses 

associated to VAE_2 were related to T cell-hosting tissues (normal lymph node, diffuse large 

B-cell lymphoma and thymoma), but also included tumor types with frequent T cell 

infiltration and benefit from immunotherapy (kidney carcinoma and skin melanoma).  

 

Classification of CUP 

We then evaluated the performance of the TransCUPtomics classifier to predict the tissue of 

origin in a series of 48 CUP patients, including 37 retrospective cases and 11 prospective 

patients (Table 1). All CUP diagnoses were confirmed by a multidisciplinary tumor board and 

had gone through extensive diagnostic workup as recommended. The median age at diagnosis 

was 57 years (range 30-80) and 60.4% of patients were female. The most frequent metastatic 

sites were the lymph nodes (70.8%), liver (29.1%) and bone (20.8%). The most frequent 

pathological subtypes were adenocarcinoma (47.9%) and undifferentiated carcinoma (29.2%). 

The extensive immunohistochemical (IHC) profile of each sample is described in 

Supplemental Table S4. 
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RNA-seq was performed on fresh-frozen tissue from the diagnostic workup. All samples met 

standard quality controls (Supplemental Table S5). Transcriptomic profiles were encoded in 

the latent space of the VAE trained on the reference dataset. When plotted on the reference 

UMAP representation, every CUP localized within or near a specific diagnosis, with 45 cases 

fitting into a specific tumor group and 3 cases within a normal tissue cluster (Figure 3). The 

most probable tissue of origin was rigorously predicted with both RF and KNN algorithms to 

evaluate robustness of classification. For each sample, a highly confident prediction was 

defined by: 1) a similar diagnosis given by both algorithms, and 2) at least one score of 

prediction over the 50% threshold. Moderate confidence diagnoses referred to cases for which 

only one criteria was present. The remaining cases were considered as unclassified.  

Overall, a predicted diagnosis could be established in 38/48 cases (79%), and matched clinical 

and pathological presentation (Table 2 and Supplemental Table S6). This included 32/48 

(67%) high confidence predictions and 6/48 (12%) moderate confidence predictions. The 

most frequent diagnoses established with high confidence scores were lung adenocarcinoma 

(N=6), bladder urothelial carcinoma (N=3) and breast invasive carcinoma (N=3). In three 

cases, a high confidence prediction was made toward a non-malignant tissue of origin (liver: 

CUP11, CUP43; ovary: CUP44), and was in agreement with pathological review showing 

tumor cellularity below 10% in all three samples.  

10/48 (21%) samples remained unclassified (CUP10, 12 13, 14, 15, 19, 20, 25, 31, 45). These 

samples came from lymph node biopsies or lymphadenectomy specimens in 7/10 cases. 3/10 

of these samples were characterized by an unusually high distance to the nearest neighbor in 

the 100-dimensional latent space (> 99% quantile of all samples in the cohort), suggesting 

that their tumor type of origin may not be represented in the reference dataset (Supplemental 

Table S6).  

 

Molecular alterations 

Gene fusion and variant detection algorithms were applied to all CUP samples. CUP3 showed 

an in-frame HELB-HMGA2 fusion, whereas no relevant gene fusion was detected in the other 

samples. 

Variants in genes of interest in oncogenesis were detected in 46/48 samples (Supplemental 

Tables S7 and S8). The most frequently mutated genes were TP53 (N=19/48) and KRAS 

(N=9/48), and other actionable alterations were mostly detected in genes involved in DNA 

repair and RAS/MAPK pathways, as previously described in CUP (16). Of note, oncogenic 

mutations in KRAS and BRCA1 (CUP43), and TP53 (CUP11) were detected with a low depth 
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of coverage in two samples predicted as normal tissues by TransCUPtomics, in line with their 

poor tumor cellularity (Supplemental Table S8).  

 

Clinical impact of TransCUPtomics classification 

We next evaluated the potential application of TransCUPtomics classification for tailored 

treatment guidance. Among the 37 retrospective cases of CUP patients, 29 had received first-

line unspecific platinum-based chemotherapy, 7 had received a treatment oriented towards a 

putative primary tumor determined by clinical and immunohistochemical characteristics, and 

1 had not received any systemic treatment. The overall response rate to first-line therapy was 

36%, including 4/36 complete responses and 9/36 partial responses. The diagnosis prediction 

given by the TransCUPtomics algorithm could have given therapeutic alternatives to 

platinum-based chemotherapy in 24/37 (64.8%) patients (Table 3). 

Out of 11 prospective cases, eight could receive first-line systemic treatment according to the 

TransCUPtomics predicted tissue of origin. The remaining three patients included one who 

was not treated due to altered performance status and two who were treated according to 

clinical and pathological characteristics due to low tumor cellularity of the sample analyzed 

by RNAseq. Among the 8 patients that could receive TransCUPtomics-tailored first-line 

treatment, there were 2 complete responses and 5 partial responses (Table 3). This included a 

30-year old male (CUP1) with diffuse bone and sub-diaphragmatic lymph nodes metastases, 

whose bone biopsy showed undifferentiated adenocarcinoma with an IHC profile 

(CKAE1/AE3+, CK7-, CK20-, CDX2-, TTF1-, PSA-, CD20-, PAX8+, CD10+, Vimentin+, 

PDL1 3+) compatible with kidney or biliopancreatic primary. TransCUPtomics showed a 

highly confident prediction for kidney carcinoma, further supported by the detection of a 

truncating SMARCA4 rearrangement (17). The patient was included in a clinical trial 

evaluating an anti-PD1 immune checkpoint inhibitor in combination with an anti-angiogenic 

tyrosine kinase inhibitor. First evaluation at 3 months showed a complete response, and at the 

time of this report the patient is still progression-free after 12 months of follow-up. Other 

TransCUPtomics-tailored therapeutic strategies included notably frontline surgery for 

predicted soft tissue sarcoma, oxaliplatin and 5FU-based chemotherapy for predicted 

colorectal carcinoma, and paclitaxel-trastuzumab-pertuzumab for predicted HER2-amplified 

breast carcinoma.  
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Discussion 

 

CUP consist of a heterogeneous group of metastatic tumors, for which the primary cannot be 

identified despite extensive radiological and pathological investigations. This raises critical 

clinical issues, since therapeutic strategies in oncology are primarily based on the 

determination of tissue of origin and treatments tailored to primary site are more effective 

than unspecific chemotherapy (18).   

Pathological analyses are the gold standard approaches for tissue of origin determination, by 

enabling the detection of tissue-specific antigens by IHC. However, IHC faces several limits, 

including unequal access to up-to-date panels, lack of specificity of markers and absence of 

expression of any informative antigen in poorly differentiated tumors. As a result, no precise 

hypothesis of putative tissue of origin can be made after extensive IHC profiling in 

approximately 75% of CUP (19).  

In this study, we used the largest collection of primary cancers and normal tissues assembled 

so far to design a deep learning algorithm to identify tissue of origin based on features derived 

from whole-transcriptomic data. Our classifier reached an overall accuracy of more than 95% 

for cancer type prediction. When applied to a series of CUP patients, TransCUPtomics could 

predict the likely tissue of origin in 79% of cases, which was in line with clinical and 

pathological tumor characteristics. 

Over the last decades, multiple techniques have been developed to identify tumor tissue of 

origin based on molecular data. Transcriptomic profiling has been widely studied, and several 

commercial systems are available to predict primary tumor type using microarrays or RT-

qPCR for targeted mRNA or miRNA quantification (20-22). DNA methylation patterns have 

also been shown to be strongly correlated with tissue of origin and enable the successful 

identification of likely primary tumors in CUP (23). More recently, targeted DNA profiling 

(24) and whole genome sequencing (25) have also been used for primary tumor type 

identification.  

TransCUPtomics combines whole transcriptomic data analysis and deep learning for primary 

tumor prediction and shows several advantages compared to previous methods in addition of 

its high accuracy and proportion of high-confidence predictions for CUP. First, major efforts 

have been made over the last decade to provide collections of RNA-seq data of most tumor 

types, enabling the establishment of an unprecedented reference dataset of 39 different cancer 

types including rare diagnoses. Second, the inclusion of normal tissues in our reference 

dataset minimizes the risk of over-classification of samples based on expression of non-
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malignant cells. Third, RNA-seq contains functional information giving insights into the 

biological mechanisms underlying classification and allowing identification of genetic and 

immune signatures for potential therapeutic applications, as opposed to DNA sequencing, 

targeted RNA sequencing and DNA methylation. Combined with the VAE, a deep learning 

technique with high potential for biomedical big data analysis, it also allows interpretability 

and biological insights into the transcriptomic landscape of cancers. Last, RNA-seq enables 

identification of fusion transcripts and expressed variants useful for primary tumor 

identification and precision medicine. 

We show here that the TransCUPtomics classifier results in a major clinical impact for CUP 

patients, with an estimated 65% (24/37) of therapeutic alternatives to platinum-based 

chemotherapy in our retrospective cohort, a significant proportion since more than 75% of 

CUP patients are not offered any second-line systemic therapy (19). This included notably 

two cases of soft tissue sarcoma, whose diagnosis may sometimes mimick undifferentiated 

carcinoma due to the expression of cytokeratins by rare tumor cells. Moreover, in 8 

prospective patients that could receive TransCUPtomics-tailored first-line chemotherapy, no 

patient experienced tumor progression and 7/8 showed tumor response at 3 months.  

Prospective clinical trials investigating the efficacy of tissue-specific systemic treatments 

determined by molecular profiling have so far failed to show a survival benefit for CUP 

patients (26, 27), probably due to the heterogeneity and overall poor prognosis of tumor types 

enrolled in these trials. However, initial results on our prospective cohort suggest that using 

TransCUPtomics may improve the prognosis of individual patients, which should be 

confirmed in larger prospective studies. Of note, our results are in agreement with the 

EPICUP study, showing an improved overall survival in CUP patients receiving tumor-type 

specific therapy compared to patients treated with empiric approaches (23). 

Our classifier faces several limits. Despite the attempt to design a reference dataset as 

exhaustive as possible, many rare tumor types are missing which may result in incorrect 

classification or absence of classification of samples as seen in 10 cases. The observation that 

some of these samples were characterized by an unusually high distance to the nearest 

neighbor in the 100-dimensional latent space indeed supports the hypothesis that their tumor 

type of origin may not be represented in the reference dataset. Also, some CUPs may have 

lost most of their differentiation characteristics rendering prediction of tissue of origin 

intrinsically impossible. However, TransCUPtomics algorithms still give a diagnostic 

orientation useful for treatment determination in those cases, and genomic features can help 

refine diagnostic hypotheses.  
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RNA-seq is becoming cost-effective and increasingly used to guide diagnosis and therapeutic 

choices in cancer patients. This technique is widely available, standardized, and rapid: 

sequencing results could be delivered in a few days, and prediction with the trained algorithm 

within minutes. It is currently used in routine in our national reference center. Thus, our 

classifier could be easily applied to prospective cohorts of patients and enriched with diverse 

diagnoses. We emphasize that such a tool will not replace clinical and pathological diagnoses 

but is designed to be an additional element to help in the diagnostic workup and therapeutic 

decision makings, albeit frozen tissue availability is currently restricted to specialized cancer 

centers. However, as frozen tissue allows higher-quality transcriptomic profiling and our 

reference data, including all tumor samples profiled by TCGA, are also from frozen tissue, we 

expected lower performance for classification of FFPE samples due to batch effect and did 

not evaluate them in our study. Developments are therefore needed for applying 

TransCUPtomics to RNA-seq data from FFPE samples.  

Artificial intelligence, including classical machine learning and deep learning techniques, is 

increasingly being used with success for prediction tasks involving high-throughput 

biomedical data. However, interpretability of the vast majority of these approaches is often 

hampered by the “black-box” nature of these algorithms. The VAE used in this study is a 

promising technique to address this shortcoming of artificial intelligence, since it not only 

allows state-of-the-art predictive performance, but also easier interpretation and visualization 

of its decision, as demonstrated in this study for CUP, in comparison to other tools that 

primarily make a prediction without interpretation. Moreover, the VAE enables potential 

discovery of previously unknown biology by extracting relevant non-linear features from 

high-dimensional biological data. It can also be used as a generative model to create realistic 

synthetic data for further purposes. Altogether, the VAE is a powerful technique from 

artificial intelligence that exhibits high potential in multiple biomedical contexts and is 

increasingly being used in tasks as diverse as imaging and pharmacology (28, 29).  

In summary, we present a powerful and interpretable deep learning-based classifier trained on 

RNA-seq data to identify tissue of origin in CUP. We propose to integrate RNA-seq and 

TransCUPtomics in the standard management of CUP as a cost-effective aid to pathologists 

and oncologists, as this widely available and standardized technique may lead to a meaningful 

improvement of their clinical management.  
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Figure legends: 
 
Figure 1: Transcriptomic landscape of the reference dataset captured by the VAE  
 
A. In total, the reference dataset contains 20,918 samples corresponding to 94 diagnostic 
categories including 39 different tumor types and 55 normal tissue types. The VAE was 
trained to encode all reference samples in a 100-dimensional space of latent features and later 
encoded in two dimensions with UMAP. B. Enlarged view of the transcriptomic profiles of 
lung, head and neck and cervical squamous cell carcinoma showing partial overlap. C. 
Enlarged view of non-malignant brain structures showing a transcriptomic continuum 
between cortex and basal ganglia structures. Abbreviations: N correspond to normal tissues, T 
to tumor types. N_ADP-SC: Adipose - Subcutaneous; N_ADP-VSC: Adipose - Visceral 
(Omentum); N_ADRNL: Adrenal gland; N_ART-AO: Artery - Aorta; N_ART-CRN: Artery - 
Coronary; N_ART-TIB: Artery - Tibial; N_BLAD: Bladder; N_BRA-ACC:  Brain - Anterior 
cingulate cortex (BA24); N_BRA-AMY: Brain - Amygdala; N_BRA-CAU: Brain - Caudate 
(basal ganglia); N_BRA-CER: Brain - Cerebellum; N_BRA-CERH: Brain - Cerebellar 
hemisphere; N_BRA-CTX: Brain - Cortex; N_BRA-FCTX: Brain - Frontal cortex (BA9); 
N_BRA-HIP: Brain - Hippocampus; N_BRA-HYP: Brain - Hypothalamus; N_BRA-NA: 
Brain - Nucleus accumbens (basal ganglia); N_BRA-PUT: Brain - Putamen (basal ganglia); 
N_BRA-SN: Brain - Substantia nigra; N_BRA-SPI: Brain - Spinal cord (cervical c-1); 
N_BREAST: Breast; N_CERV: Cervix; N_CLN-SIG: Colon - Sigmoid; N_CLN-TRA: Colon 
- Transverse; N_CML-CL: Leukemia cell line (CML); N_EBV-LYM: EBV-transformed 
lymphocytes; N_ESO-GEJ: Esophagus - Gastroesophageal junction; N_ESO-MUC: 
Esophagus - Mucosa; N_ESO-MUS: Esophagus - Muscularis; N_FALLOP: Fallopian tube; 
N_HN: Head and neck normal tissue; N_HRT-AA: Heart - Atrial appendage; N_HRT-LV: 
Heart - Left ventricle; N_KDN-CTX: Kidney - Cortex; N_LIVER: Liver; N_LN: Lymph 
node; N_LUNG: Lung; N_MSG: Minor salivary gland; N_MUS-SKE: Muscle - Skeletal; 
N_NERV-TIB: Nerve - Tibial; N_OVARY: Ovary; N_PANC: Pancreas; N_PITUI: Pituitary; 
N_PROST: Prostate; N_SI-TI: Small intestine - Terminal ileum; N_SKIN-NS: Skin - Not sun 
exposed (Suprapubic); N_SKIN-S: Skin - Sun exposed (Lower leg); N_SPLE: Spleen; 
N_STOM: Stomach; N_TEST: Testis; N_TFIB: Transformed fibroblasts; N_THYR: Thyroid; 
N_UTER: Uterus; N_VAG: Vagina; N_WB: Whole blood; T_ACC: Adrenocortical 
carcinoma; T_BLCA: Bladder urothelial carcinoma; T_BRCA: Breast invasive carcinoma; 
T_CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; T_CHOL: 
Cholangiocarcinoma; T_COAD: Colon adenocarcinoma; T_DDLPS: Dedifferentiated 
liposarcoma; T_DLBC: Diffuse large B-cell lymphoma; T_ESCA: Esophageal carcinoma; 
T_GBM: Glioblastoma multiforme; T_HNSC: Head and neck squamous cell carcinoma; 
T_KICH: Kidney renal chromophobe cell carcinoma; T_KIRC: Kidney renal clear cell 
carcinoma; T_KIRP: Kidney renal papillary cell carcinoma; T_LAML: Acute myeloid 
leukemia; T_LGG: Brain lower grade glioma; T_LIHC: Liver hepatocellular carcinoma; 
T_LMS: Leiomyosarcoma; T_LUAD: Lung adenocarcinoma; T_LUSC: Lung squamous cell 
carcinoma; T_MESO: Mesothelioma; T_MPNST: Malignant peripheral nerve sheath tumor; 
T_OV: Ovarian serous cystadenocarcinoma; T_PAAD: Pancreatic adenocarcinoma; 
T_PANET: Pancreatic neuroendocrine tumor; T_PCPG: Pheochromocytoma and 
paraganglioma; T_PRAD: Prostate adenocarcinoma; T_READ: Rectum adenocarcinoma; 
T_SCLC: Small cell lung cancer; T_SKCM: Skin cutaneous melanoma; T_SS: Synovial 
sarcoma; T_STAD: Stomach adenocarcinoma; T_TGCT: Testicular germ cell tumors; 
T_THCA: Thyroid carcinoma; T_THYM: Thymoma; T_UCEC: Uterine corpus endometrial 
carcinoma; T_UCS: Uterine carcinosarcoma; T_UPS: Undifferentiated pleomorphic sarcoma; 
T_UVM: Uveal melanoma. 
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Figure 2: Performance of the TransCUPtomics classifier for tissue of origin detection 

Confusion matrix showing the accuracy of the Random Forest tool of classification for tumor 

type prediction and evaluated according to a three-fold cross-validation procedure. The 

reference dataset was randomly divided in three equally sized parts, and three classifiers were 

independently trained with two out of the three parts, the third part being left aside from the 

entire training procedure as a validation dataset. Rows correspond to the predicted diagnoses 

and columns to the true diagnoses. Recall and precision are shown at the top and right sides of 

the matrix. Abbreviations: T_COREAD: Colorectal adenocarcinoma; T_GESCA: 

Gastroesophageal carcinoma; T_SARC : Soft tissue sarcoma. The rest are similar to Figure 1. 

 

 

 

Figure 3: Detection of tissue of origin in CUP patients 

RNA-seq was performed on fresh-frozen biopsies from the diagnostic workup of each CUP 

patient (CUP1 to CUP48). Transcriptomic profiles were encoded in the 100-dimensional 

latent space of the VAE trained on the reference dataset, and then plotted on the reference 

UMAP representation. Each CUP sample is highlighted by a red dot with its corresponding 

identity number.  
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Tables 

Characteristic CUP cohort (N= 48) 

Median age - yr (range) 57 (30-80) 
Female sex - N. (%) 29 (60.4) 
Prospective - N. (%) 11 (22.9) 
Site of metastases - N. (%)   
lymph node 34 (70.8) 
liver 14 (29.1) 
bone 10 (20.8) 
lung 6 (12.5) 
peritoneum 7 (14.6) 
brain 3 (6.2) 
other 15 (31.2) 
Histology - N. (%)   
adenocarcinoma 23 (47.9) 
squamous cell carcinoma 5 (10.4) 
undifferentiated carcinoma 14 (29.2) 
other 6 (12.5) 
IHC - N. (%)   
CK7+ CK20- 32 (66.7) 
CK7+ CK20+ 5 (10.5) 
CK7- CK20+ 1 (2) 
CK7- CK20- 10 (20.8) 
Suspected clinicopathological 

diagnosis - N. (%) 

  

Unknown primary 30 (62.5) 
GI cancer 8 (16.6) 
Breast cancer 4 (8.3) 
Lung cancer 3 (6.3) 
Gynecological cancer 3 (6.3) 
 

 

 

Table 1: Characteristics of CUP patients 

The clinicopathological diagnosis refers to the suspicion of tissue of origin that could be made 

based on clinical presentation and pathological analysis. Abbreviations: IHC: 

immunohistochemical CK7 and CK20 profiles; GI: gastrointestinal; yr: years; N: number. 
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Patient 

ID 

Cohort Clinico-

pathological 

diagnosis 

Tissue Predicted diagnosis Confidence 

CUP1 Prospective CUP bone biopsy Kidney carcinoma High 

CUP4 Prospective CUP retroperitoneal 
biopsy 

Head and neck squamous cell 
carcinoma 

High 

CUP37 Prospective CUP muscular biopsy Soft tissue sarcoma (UPS/LMS) High 

CUP39 Prospective CUP/NET liver biopsy Pancreatic neuroendocrine tumor High 

CUP41 Prospective CUP/BrCa liver biopsy Breast invasive carcinoma High 

CUP42 Prospective CUP peritoneal biopsy Soft tissue sarcoma (UPS/DDLPS) Moderate 

CUP43 Prospective ACUP/Lca/PDAC liver biopsy Liver High 

CUP44 Prospective ACUP/GaCa ovarian biopsy Ovary High 

CUP46 Prospective ACUP/CRC peritoneal biopsy Colon adenocarcinoma Moderate 

CUP47 Prospective ACUP/CRC/GaCa peritoneal biopsy Colon adenocarcinoma High 

CUP48 Prospective ACUP/CRC/GaCa peritoneal biopsy GI cancer High 

CUP2 Retrospective CUP muscular biopsy Undifferentiated pleomorphic 
sarcoma 

Moderate 

CUP3 Retrospective ACUP subcutaneous 
biopsy 

Bladder urothelial carcinoma High 

CUP5 Retrospective CUP/Lca lung biopsy Lung squamous cell carcinoma High 

CUP6 Retrospective CUP/LCa inguinal lymph 
node biopsy 

Cervical squamous cell carcinoma 
and endocervical adenocarcinoma 

High 

CUP7 Retrospective CUP/PDAC bone biopsy Lung adenocarcinoma High 

CUP8 Retrospective ACUP/PDAC liver biopsy Liver HCC / Cholangiocarcinoma High 

CUP9 Retrospective CUP/GyCa/BrCa cervical 
lymphadenectomy 

Ovarian serous cystadenocarcinoma High 

CUP10 Retrospective ACUP cervical 
lymphadenectomy 

Unclassified Low 

CUP11 Retrospective ACUP liver biopsy Liver High 

CUP12 Retrospective CUP retroperitoneal 
lymphadenectomy 

Unclassified Low 

CUP13 Retrospective CUP/GaCa cavum biopsy Unclassified Low 

CUP14 Retrospective CUP nephrectomy Unclassified Low 

CUP15 Retrospective ACUP/PDAC cervical lymph 
node biopsy 

Unclassified Low 

CUP16 Retrospective CUP cervical 
lymphadenectomy 

Lung adenocarcinoma High 

CUP17 Retrospective CUP cervical 
lymphadenectomy 

Uterine corpus endometrial 
carcinoma 

Moderate 

CUP18 Retrospective ACUP/Lca cervical 
lymphadenectomy 

Lung adenocarcinoma High 

CUP19 Retrospective CUP/NET axillary 
lymphadenectomy 

Unclassified Low 

CUP20 Retrospective CUP sub-clavicular 
lymphadenectomy 

Unclassified Low 

CUP21 Retrospective ACUP cervical 
lymphadenectomy 

Bladder urothelial carcinoma High 

CUP22 Retrospective ACUP/BrCa axillary 
lymphadenectomy 

Breast invasive carcinoma High 

CUP23 Retrospective ACUP lymph node biopsy Colon adenocarcinoma High 

CUP24 Retrospective CUP  axillary 
lymphadenectomy 

Lung squamous cell carcinoma High 

CUP25 Retrospective CUP/HNCa cervical 
lymphadenectomy 

Unclassified Low 

CUP26 Retrospective ACUP/GyCa inguinal 
lymphadenectomy 

Gynecological carcinoma  High 

CUP27 Retrospective CUP/BrCa lymph node biopsy Breast invasive carcinoma High 

CUP28 Retrospective ACUP liver biopsy Cholangiocarcinoma High 

CUP29 Retrospective CUP lymph node biopsy Lung adenocarcinoma High 
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CUP30 Retrospective ACUP kidney biopsy Bladder urothelial carcinoma High 

CUP31 Retrospective CUP/OvCa retroperitoneal 
biopsy 

Unclassified Low 

CUP32 Retrospective ACUP cervical 
lymphadenectomy 

Lung adenocarcinoma High 

CUP33 Retrospective ACUP lymph node biopsy Gynecological carcinoma  High 

CUP34 Retrospective CUP/BrCa cervical 
lymphadenectomy 

Pancreatic neuroendocrine tumor High 

CUP35 Retrospective ACUP cervical 
lymphadenectomy 

Lung adenocarcinoma Moderate 

CUP36 Retrospective ACUP lymph node biopsy Kidney carcinoma High 

CUP38 Retrospective CUP lymph node biopsy Skin cutaneous melanoma Moderate 

CUP40 Retrospective ACUP/KyCa bone biopsy Lung adenocarcinoma High 

CUP45 Retrospective ACUP/BrCA cervical 
lymphadenectomy 

Unclassified Low 

 

 

Table 2: Results of TransCUPtomics prediction for all CUP patients 

The most probable tissue of origin was predicted with both RF and KNN machine learning 

classifiers to evaluate robustness of classification. For each test sample, a highly confident 

prediction was defined by: 1) a similar diagnosis given by both machine learning algorithms 

and 2) at least one score of prediction over the 50% threshold. Moderate confident diagnoses 

referred to cases for which only one criteria was present. The remaining cases were 

considered as unclassified. Abreviations: CUP: carcinoma of unknown primary; ACUP: 

adenocarcinoma of unknown primary; NET: neuroendocrine tumor; BrCa: breast carcinoma; 

LCa: lung carcinoma; PDAC: pancreatic ductal adenocarcinoma; GaCa: gastric carcinoma; 

CRC: colorectal carcinoma; GyCa: gynecological carcinoma; HNCa: head and neck 

carcinoma; OvCa: ovarian carcinoma; KyCa: kidney carcinoma; UPS: undifferentiated 

pleomorphic sarcoma; LMS: leiomyosarcoma; DDLPS: dedifferentiated liposarcoma; GI: 

gastrointestinal; HCC: hepatocellular carcinoma.  
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Patient 

ID 

Cohort Predicted diagnosis 1st line treatment at 

diagnosis 

Tumor 

response 

at 1st line 

(3months) 

Potential therapeutic 

alternative with VAE 

(retrospective cases) 

CUP1 Prospective Kidney carcinoma clinical trial anti-PD1 + 
VEGF inhibitor 

CR   

CUP4 Prospective Head and neck squamous cell 
carcinoma 

Carboplatin PR   

CUP37 Prospective Soft tissue sarcoma (UPS/LMS) surgery CR   

CUP39 Prospective Pancreatic neuroendocrine tumor Carboplatin-Etoposide PR   

CUP41 Prospective Breast invasive carcinoma Paclitaxel-Trastuzumab-
Pertuzumab 

PR   

CUP42 Prospective Soft tissue sarcoma 
(UPS/DDLPS) 

palliative care NA   

CUP43 Prospective Liver 5FU-folinic acid-
oxaliplatin* 

SD   

CUP44 Prospective Ovary 5FU-folinic acid-
oxaliplatin* 

PD   

CUP46 Prospective Colon adenocarcinoma 5FU-folinic acid- 
irinotecan-cetuximab 

PR   

CUP47 Prospective Colon adenocarcinoma 5FU-folinic acid-
oxaliplatin-bevacizumab 

PR   

CUP48 Prospective GI cancer 5FU-folinic acid-oxaliplatin SD   

CUP2 Retrospective Undifferentiated pleomorphic 
sarcoma 

Pembrolizumab PD adriamycin, ifosfamide, 
VEGFR inhibitors 

CUP3 Retrospective Bladder urothelial carcinoma Carboplatin-Paclitaxel PD immune checkpoint 
inhibitors 

CUP5 Retrospective Lung squamous cell carcinoma Vinorelbin PD immune checkpoint 
inhibitors 

CUP6 Retrospective Cervical squamous cell carcinoma 
and endocervical adenocarcinoma 

Cisplatin- Vinorelbin PD immune checkpoint 
inhibitors 

CUP7 Retrospective Lung adenocarcinoma 5FU-folinic acid-
oxaliplatin-irinotecan 

PD immune checkpoint 
inhibitors 

CUP8 Retrospective Liver HCC / Cholangiocarcinoma Gemcitabin-Oxaliplatin PD Cisplatin, 5FU, sunitinib, 
clinical trials 

CUP9 Retrospective Ovarian serous 
cystadenocarcinoma 

Carboplatin-Paclitaxel CR bevacizumab, PARP 
inhibitors 

CUP10 Retrospective Unclassified Carboplatin-Paclitaxel PR 0 

CUP11 Retrospective Liver Cisplatin-Gemcitabine PD NA 

CUP12 Retrospective Unclassified Cisplatin-Gemcitabine PD 0 

CUP13 Retrospective Unclassified Carboplatin-Paclitaxel PR 0 

CUP14 Retrospective Unclassified Cisplatin-Gemcitabine SD 0 

CUP15 Retrospective Unclassified Cisplatin-Gemcitabine PR 0 

CUP16 Retrospective Lung adenocarcinoma Cisplatin-5FU-Epirubicine PD immune checkpoint 
inhibitors 

CUP17 Retrospective Uterine corpus endometrial 
carcinoma 

Cisplatin-Docetaxel SD 0 

CUP18 Retrospective Lung adenocarcinoma Cisplatin-Docetaxel PR immune checkpoint 
inhibitors 

CUP19 Retrospective Unclassified Cisplatin-Etoposide NA 0 

CUP20 Retrospective Unclassified Gemcitabin-Oxaliplatin CR 0 

CUP21 Retrospective Bladder urothelial carcinoma Cisplatin-5FU-Epirubicine PR immune checkpoint 
inhibitors 

CUP22 Retrospective Breast invasive carcinoma 5FU-Epirubicin-
Cyclophosphamide/ 
Docetaxel 

NA 0 

CUP23 Retrospective Colon adenocarcinoma Carboplatin-Paclitaxel PD 5FU, oxaliplatin, 
irinotecan 

CUP24 Retrospective Lung squamous cell carcinoma Cisplatin-5FU-Cetuximab PR immune checkpoint 
inhibitors 

CUP25 Retrospective Unclassified Carboplatin-Paclitaxel PR 0 

CUP26 Retrospective Gynecological carcinoma  Carboplatin-Paclitaxel CR bevacizumab, PARP 
inhibitors 

CUP27 Retrospective Breast invasive carcinoma Adriamycin-
Cyclophosphamide 

SD eribulin, PARP inhibitors, 
immune checkpoint 
inhibitors 

CUP28 Retrospective Cholangiocarcinoma Carboplatin-Paclitaxel SD Cisplatin, 5FU, sunitinib, 
clinical trials 
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CUP29 Retrospective Lung adenocarcinoma Carboplatin-Paclitaxel PR immune checkpoint 
inhibitors 

CUP30 Retrospective Bladder urothelial carcinoma palliative care NA immune checkpoint 
inhibitors 

CUP31 Retrospective Unclassified Carboplatin-Paclitaxel PD 0 

CUP32 Retrospective Lung adenocarcinoma Carboplatin-Gemcitabin PD immune checkpoint 
inhibitors 

CUP33 Retrospective Gynecological carcinoma  Cisplatin-Gemcitabin CR bevacizumab, PARP 
inhibitors 

CUP34 Retrospective Pancreatic neuroendocrine tumor Adriamycin-
Cyclophosphamide 

PR etoposide, oxaliplatin, 
sunitinib 

CUP35 Retrospective Lung adenocarcinoma Cisplatin-5FU-Etoposide-
Adriamycin 

PD immune checkpoint 
inhibitors, RET inhibitors 

CUP36 Retrospective Kidney carcinoma Carboplatin-Paclitaxel PD immune checkpoint 
inhibitors 

CUP38 Retrospective Skin cutaneous melanoma Cisplatin-Etoposide PD immune checkpoint 
inhibitors 

CUP40 Retrospective Lung adenocarcinoma Carboplatin-Paclitaxel PD immune checkpoint 
inhibitors 

CUP45 Retrospective Unclassified Epirubicin-
Cyclophosphamide 

PD 0 

 

 

Table 3: Therapeutic applications of TransCUPtomics prediction 

For retrospective cases, the response to first-line therapy guided by clinical and pathological 

suspicion is indicated, as well as potential therapeutic alternatives that could have been made 

based on TransCUPtomics predictions. For prospective case, TransCUPtomics-tailored 

treatments and responses are indicated. Abreviations: CR: complete response; PR: partial 

response; SD: stable disease: PD: progression disease; NA: not applicable. * treatment based 

on clinical and pathological characteristics due to low tumor cellularity of the tumor sample 

analyzed by RNA-seq. 
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