
HAL Id: hal-03434905
https://hal.science/hal-03434905

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of MBSE to model Hierarchical AI Planning
problems in HDDL

Jasmine Rimani, Charles Lesire, Stéphanie Lizy-Destrez, Nicole Viola

To cite this version:
Jasmine Rimani, Charles Lesire, Stéphanie Lizy-Destrez, Nicole Viola. Application of MBSE to model
Hierarchical AI Planning problems in HDDL. ICAPS 2021, Aug 2021, Virtual event, China. pp.0.
�hal-03434905�

https://hal.science/hal-03434905
https://hal.archives-ouvertes.fr

�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	��
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/28519

Rimani, Jasmine and Lesire, Charles and Lizy-Destrez, Stéphanie and Viola, Nicole Application of MBSE to model

Hierarchical AI Planning problems in HDDL. (2021) In: ICAPS 2021, 2 August 2021 - 13 August 2021 (Virtual event,

China).

Application of MBSE to model Hierarchical AI Planning problems in HDDL

Jasmine Rimani, Charles Lesire, Stéphanie Lizy-Destrez, Nicole Viola
Politecnico di Torino, Torino, Italy

jasmine.rimani@polito.it, nicole.viola@polito.it
ONERA/DTIS, University of Toulouse, France

Charles.Lesire@onera.fr
ISAE-SUPAERO, Toulouse, France

Stephanie.lizy-destrez@isae-supaero.fr

Abstract

The recent improvements of hierarchical AI planning open
the path to new and exciting application in different areas
of expertise. One domain with daring and complex planning
and scheduling problems is the definition of operations for
space exploration systems. For this specific application, the
Hierarchical Definition Domain Language (HDDL) may be
the most suitable AI planning language to be adopted. How-
ever, the design and writing of problems and domain files
for HDDL is a complex task. They require a skilful designer
to write and check the consistency of the syntax. Moreover,
sharing and modifying HDDL files can be a complicated task,
and it may lack traceability of the modifications, making the
overall process prone to errors. On the other hand, planning
languages like HDDL and PDDL are hardly ever studied in
the university curricula by most space systems engineers, the
architects of the concepts of operations of space systems. The
work proposed in this paper contributes to filling the gap be-
tween space operations engineers and the AI planning poten-
tialities to solve planning and scheduling problems applied
to space exploration systems. The problem and domain files
typical of HDDL are built up from the formalism of SysML,
a general-purpose architecture modelling language for Sys-
tem Engineering. SysML is effectively used as modelling
language in Model-Based System Engineering (MBSE) to
study and design the mission architecture of a space mission.
The methodology presented is applied to an analogue space
robotic mission, where a collaborative drone and a rover need
to explore an unknown environment. The final aim of the
method is to transfer the ”human knowledge” in the planning
problem and showing the capabilities of MBSE applied to
Knowledge Engineering (KE) of AI planning problems.

Introduction
Regardless of the strengths and capabilities of Artificial In-
telligence (AI) planning, it still fails to be used as a rou-
tine planner for complex scenarios, like space missions.
As evoked in (Strobel and Kirsch 2014), possible reasons
can be found in the complexity of the domain and prob-
lem file redaction. The predicates, types, methods, tasks,
and actions do not scale up easily as the considered prob-
lem becomes more and more complex. Another significant
throwback is linked to the knowledge of the engineers that

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

take care of scheduling and planning operations: their back-
ground usually lies in space system engineering. Therefore,
formalisms linked to PDDL (Planning Domain Definition
Language) (Fox and Long 2003) and HDDL (Hierarchi-
cal Domain Definition Language) (Höller et al. 2020) are
not usually well known or heard during the university cur-
riculum regardless of their powerful applications. Moreover,
complex problems to be analysed by the AI planners need
skilful engineers to capture and pass their knowledge of the
problem..

Usually, HDDL files are created with a bottom-up ap-
proach. Given a series of possible actions that the system can
execute, they are organised together to write methods that
can accomplish the tasks based on the designer expertise.
However, thanks to the use of System Modeling Language
(SysML) formalisms, it is possible to simplify the redaction
of HDDL problem and domain files for complex scenarios
with a top-down approach. SysML is the base architecture of
Model Base System Engineering (MBSE), a well-known de-
sign process for system engineers. This paper focuses on the
”functional layer”, called logical architecture, of the MBSE,
where functions are used to describe the behaviours of the
systems under study.

In this study, two MBSE standard schemes will be used
to write the domain and problem files: the Enchanted Func-
tional Flow Block Diagram (EFFBD) and the IDEF0 (Icam
DEFinition for Function Modeling, where Icam stands for
Integrated Computer-Aided Manufacturing). The first high-
lights the succession of events when designing methods of
HDDL, and the second helps to visualize the flow of the
predicates, inputs and outputs of actions, methods and tasks.
The main objective of this methodology is to facilitate the
transfer of information from the designer to the HDDL file
straightforwardly using a well-known and routed methodol-
ogy. Vitech Genesys (Corporation 2020), have been used as
a modelling tool for the MBSE analysis. The benchmarks
of the IPC2020 (Behnke et al. 2021) for hierarchical plan-
ning have been used as a starting point to define the pred-
icates, tasks, actions and method in a consistent and cor-
rect formalism. The case study for this paper is an ana-
logue mission organised by Space Innovation in Switzerland
called IGLUNA1. The objective of the ISAE-SUPAERO

1https://space-innovation.ch/igluna/

team, CoRoDro2, is to explore an unknown environment
with a rover and a drone (Figure 1).

Start o
f th

e

miss
ion

End of the
mission

Ro
ve

r
tim

el
in

e
Dr

on
e

tim
el

in
e Deploys

Sends data
to rover

Sends data
to CC

CC generates grid map
and send it to the rover

Runs task
planning

algorithm

Sends action
plan to the

drone

Plans its path to
the next target

Goes to
target

Takes a
photo

Sends data to CC
(whenever requested)

Goes to
target

Takes a
photo

Sends data to the rover
(whenever requested)

Maps the
environ-
nement

Mapping Planning and information exchange
Fulfilment of tasks according to the action plan: The
rover and the drone work independently. The cycle

repeats for each task.

1 2 3

4

5

6 7 9’ 10’ 11’

11109

Sta
rt

En
d

Control Center (CC)

Drone

8’

8

Plans its path to
the next target

1

2

3

4

5

6

7

8

8’

9

9’

10

10’
11

11’

Figure 1: CoRoDro Design Reference Mission (DRM). In
the first phase, the drone is in charge of mapping the envi-
ronment autonomously. While in the second phase, both sys-
tems move autonomously, exploring the environment. Both
systems should go to a target, read an arTag (Fiala 2005) and
take a picture of it.

The systems may act as totally independent entities with
different capabilities or co-dependent systems where the
drone extends the rover’s capabilities. The following sec-
tions will focus on illustrating the methodology used fol-
lowing some examples from the case study. The conclusion
will highlight the main outcomes of this work and the future
work envisioned to automatise the methodology.

Related Work
To address these limitations and help the designers transfer
their knowledge and correctly write PDDL files, different
research teams analysed and created tools that should assist
the designer in creating the domain and problem files of AI
planners. Domain files capture system behaviour using a set
of actions and predicates, true or false sentences. Problem
files indicate the goals to be accomplished and give some
information on the environment and constraints that the sys-
tem under study has to deal with. When solving a PDDL
problem, or an HDDL problem, the files are parsed and anal-
ysed to find the best plan, that answers the problem, given
the goals and initial conditions in the problem file. How-
ever, practical applications have many types, objects, pred-
icates and actions (Strobel and Kirsch 2014). Therefore, as
the project grows in size, designers need to be assisted with
tools that help them keep track of changes and deal with the
increased complexity of domain and problem files.

Focusing on the PDDL languange, different tools have
been created as helpful hand for the designer. However, most
of them focus on providing a suite to check the syntax and
constructions of predicates and actions. Therefore, even if
relevant, they lack a pre-design phase where the engineer
design the problem before start writing the files. Therefore

2http://corodro.ae-isae-supaero.fr/

tools, like PDDL studio (Plch et al. 2012) and the PDDL-
mode of Emacs editor (Singhi 2005) focus more on ensur-
ing the correctness of the PDDL syntax and semantic of
the PDDL files. On the other hand, myPDDL (Strobel and
Kirsch 2014) provides an intuitive IDE (Integrated Develop-
ment Environment), code template to initialize PDDL con-
structs and diagrams of the domain file that show the con-
nection between predicates, types and actions.

An interesting work that uses SysML for designing plan-
ning problem has been proposed in (Huckaby, Vassos, and
Christensen 2013). The study applies the sequence diagram
and SysML taxonomy to the study of manufacturing robots.
However, the final planning language is still PDDL. Further-
more, the analysis is not backed up by a set of requirements,
as it is the usual standard in system engineering to maintain
traceability and justify design choices.

Among the most known tools, itSimple helps the designer
model PDDL files starting from the Unified Modeling
Language (UML) formalism (Silva and Silva 2019). In this
work, the authors based their design process on UML Use
Case diagrams, starting from the definition of requirements.
In the early version of itSIMPLE, the translation between the
UML scheme and the PDDL files where manual (Vaquero
et al. 2006). In the latest versions, the process has been
automatized with an ad-hoc IDE integrating UML (Silva
and Silva 2019). However, it is not possible to track back
the changes done in the PDDL files to the starting UML
schemes (Strobel and Kirsch 2014). On the other hand,
the last version of the program integrated hierarchical task
network (HTN) planning to model more complex scenarios
(Silva and Silva 2019). In general, hierarchical methods
permits a higher level of abstraction. To sustain HTN
planning modelling, the itSIMPLE designer introduced
Petri Nets to check the consistency of requirements and
verify the decomposition of the plan. The latest version
of itSIMPLE makes also use of more UML schemes like
class diagrams and state machines. Therefore, introducing
the complexity of hierarchy, the tool loses in simplicity.
However, the integrated IDE helps the designer keep track
of the changes, given previous knowledge in UML.

Similarly, the work presented in this paper starts from
requirements and a hierarchical planner. However, with
SysML instead of UML, it is possible to simplify the num-
ber of schemes needed to frame the problem. SysML intro-
duced the requirement scheme, which can be directly linked
to the functions to be performed by the systems. Moreover,
the use of EFFBDs instead of Use Case diagrams introduces
a hierarchy of tasks without the need for a Petri net. Fur-
thermore, using EFFBD makes possible to check the flow of
predicates and how the plan evolves on the different levels
of abstraction. The following section will give an overview
of the methodology and its application to HDDL.

Modelling HDDL files from MBSE
Both HDDL problems and functional analysis of MBSE are
based on task decomposition. Both methods start from an
idea of what the system should do and go down to how the
system can perform the what. However, before diving into

the methodology and translation from MBSE to HDDL, a
brief introduction on the most useful concepts is needed for
the two.

HDDL modelling language
The HDDL language (Höller et al. 2020) is heavily based
on PDDL. It starts from the same concepts of types, predi-
cates and actions, and it extends them with the use of tasks
and methods in the domain file (see Listing 1 for an exam-
ple). The new entries in the domain file permit a higher level
of abstraction: tasks and methods do not have a direct ef-
fect on predicates. They assemble actions to get a structured
answer to a higher system functional need. Therefore, more
complex scenarios can be modelled. More in detail, a task
is an instance that should be accomplished. It indicate what
the system should do. Usually, a task is defined by a unique
name and some parameters that are needed to accomplish
it. The how this task should be executed is usually defined
thanks to a method. methods define how to achieve a task
given a set of ordered subtasks. If a subtask can be further
decomposed by a method, that subtask is called a compound
task or simply task. If the subtask can be directly defined
with a set of precondition and effects without a method, then
the subtask is called primitive task or, more commonly, ac-
tion (see Listing 1). For the same task, it is possible to define
different methods that can satisfy it. Different methods have
different preconditions, defined as predicates, that lead to a
different organization of sub-tasks.

Listing 1: HDDL domain file example of task, method and
action

(: t a s k n a v i g a t e a b s
: p a r a m e t e r s (? sys tem − sys tem ? t o − waypo in t)
: p r e c o n d i t i o n ()
: e f f e c t ()

)
(: method m n a v i g a t e a b s 1 o r d e r i n g 0

: p a r a m e t e r s (? from − waypo in t ? sys tem − sys tem ? t o
− waypo in t)

: t a s k (n a v i g a t e a b s ? sys tem ? t o)
: p r e c o n d i t i o n (and

(a t ? sys tem ? from)
)
: s u b t a s k s (and

(t a s k 0 (v i s i t ? from ? sys tem))
(t a s k 1 (n a v i g a t e ? sys tem ? from ? t o))
(t a s k 2 (u n v i s i t ? from ? sys tem))

)
: o r d e r i n g (and

(< t a s k 0 t a s k 1)
(< t a s k 1 t a s k 2)

)
)
(: a c t i o n n a v i g a t e

: p a r a m e t e r s (? x − sys tem ? y − waypo in t ? z −
waypo in t)

: p r e c o n d i t i o n
(and

(c a n t r a v e r s e ? x ? y ? z)
(a v a i l a b l e ? x)
(a t ? x ? y)

)
: e f f e c t

(and
(n o t (a t ? x ? y))
(a t ? x ? z)

)
)

Similarly to the domain file, the problem file of the
HDDL domains changes a bit in respect to the PDDL lan-
guage (Haslum et al. 2019). An initial hierarchical network

should be laid out. It is based on which tasks should the sys-
tem accomplish and in which order.

Listing 2: Problem file task definition.
(: h t n

: p a r a m e t e r s ()
: s u b t a s k s (and

(t a s k 0 (r e l e a s e s e c o n d s y s t e m drone1 r o v e r 0))
(t a s k 1 (g e t i m a g e d a t a o b j e c t i v e 0 d e p t h))
(t a s k 2 (g e t i m a g e d a t a o b j e c t i v e 1 d e p t h))
(t a s k 3 (g e t i m a g e d a t a o b j e c t i v e 0 f i s h e y e))
(t a s k 4 (g e t i m a g e d a t a o b j e c t i v e 2 f i s h e y e))
(t a s k 5 (c a l l b a c k drone1 r o v e r 0))
(t a s k 6 (e v a l u a t e a v a i l a b l e r e s o u r c e s r o v e r 0))
(t a s k 7 (e v a l u a t e a v a i l a b l e r e s o u r c e s drone1))

)
: o r d e r i n g (and

(< t a s k 0 t a s k 1)
(< t a s k 0 t a s k 2)
(< t a s k 0 t a s k 3)
(< t a s k 0 t a s k 4)
(< t a s k 2 t a s k 5)
(< t a s k 3 t a s k 5)
(< t a s k 1 t a s k 5)
(< t a s k 4 t a s k 5)
(< t a s k 5 t a s k 6)
(< t a s k 6 t a s k 7)

)
)

Overall, the logical structure of the problem and domain
files of HDDL describes the behavior of a system with some
given formalism.

MBSE functional layer
This notion of tasks that represent what a system can do and
its division in subtasks resembles the notion of functions in
system engineering. Most operations in the space domain
are engineered and designed by system engineers with little
to no notion about AI planning, its applications and strength.
Moreover, there is usually a reticence in adopting any new
tool if it cannot be well documented or translated in a model-
based database. However, leveraging on the function/tasks
similarity, it is possible to use system engineering method-
ologies to design and track changes in the HDDL domain
and problem file. Exploiting the formalism of SysML and
the capabilities of MBSE, a designer can study and simu-
late the behavioural layer of a system before exporting the
modeling in the HDDL language and plan the system’s op-
erations. The backbone of the method relays in the func-
tional analysis, where the the expected behaviours of the
system are analysed. Starting from the goal ”functions”, it
is possible to create a breakdown structure with all the sub-
functions that effectively ”answer” to the question how to
perform the goal ”function” (Fig. 2). The goal ”functions”
are the tasks derived from the requirement analysis. They
are the ”objective behaviors” of the system. The designer
identifies the sub-functions that will satisfy the main func-
tion. The breakdown goes down to the leaf functions, en-
tities that can directly be performed by the system under
study, like move to a destination. This hierarchy of func-
tions is the fundamental process of any functional analysis
of MBSE. The process has been detailed in both (Walden et
al. 2015) and (Shishko and Aster 1995). The top-down pro-
cess is usually represented as a functional tree or a functional
block diagram. The first method represents a simple hierar-
chical decomposition that usually ends with the indication of

a system, subsystem or component that can accomplish the
task (Wertz, Everett, and Puschell 2011). The second one
includes both a top-down decomposition and an information
on the sequence of the functions to be performed (Wertz,
Everett, and Puschell 2011).

To visualize the logic flow of sub-functions, how they are
related and their input/outputs, designers use two principal
schemes: the activity diagram in SysML and the Enchanted
Flow Functional Block Diagram (EFFBD)3 in MBSE. In this
study, we would use the latter. It is important to highlight
that SysML is the foundation of MBSE, however, the lat-
ter is usually more expressive and facilitates the design of
the system. The EFFBD shows the succession or parallelism
of functions. It indicates if functions should be executed si-
multaneously, if the flow can take different branches or if a
function or set of functions should be iterated or replicated.
The main difference between a standard Flow Functional
Block Diagram and the EFFBD is the possibility of visu-
alizing inputs and outputs of a function. However, another
helpful scheme to check the flow of inputs and outputs is the
IDEF04. The scheme does not give any information on the
order of functions, just on the flow of the items. It can be
used to check that the output of the leaf-functions is effec-
tively the expected one of the high-level function.

MBSE to HDDL translation
The parallelism between HDDL and MBSE is relatively
straightforward: tasks can be analysed as high-level func-
tions, methods can be modelled as second-level tasks that
contain the other compound tasks and actions (Fig 3). On
the other hand, actions can be compared to leaf functions.

Figure 3 shows this parallelism. The tasks, methods and
actions of the HDDL problems can be compared to the func-
tions of MBSE. At the same time, the predicates that ad-
vance the HDDL plan are related to the output and inputs of
functions, usually modelled as items in MBSE.

The objects and their types can be modelled as compo-
nents or items. The latter is preferred: it is possible to asso-
ciate multiple items to a function but not multiple compo-
nents.

Usually, the MBSE model is designed. Then, the paral-
lelism between the HDDL entries and the functional analy-
sis is used to easily translate the MBSE model to the HDDL
domain and problem files, as shown in Fig. 4. The red ar-
rows represent the manual translation from MBSE instances
to HDDL language entries. The blue arrows show the logical
flow of MBSE functional analysis.

The logical step of this MBSE-HDDL translation are:

1. Define the system functional requirements. This is done
using the Requirement Scheme. Functional requirements
are all the ones that define what the system should
do (Wertz, Everett, and Puschell 2011), i.e., the actions
it should perform.

3http://www.vitechcorp.com/resources/
GENESYS/onlinehelp/desktop/Views/Enhanced_
Function_Flow_Block_Diagram_(EFBD).htm

4https://www.vitechcorp.com/resources/
core/onlinehelp/desktop/Views/IDEF0.htm

2. Define the high-level functions that are generated from the
functional requirements. Those functions are the transla-
tion of the requirement in the form of a verb followed by
a complement. For example, the functional requirement
The involved systems shall be able to take photos of the
point of interest. can be translated in the high-level func-
tion Get a picture of the goal.

3. Define the first set of tasks in the HDDL domain file. The
high-level functional requirements are the first set of tasks
that the system should perform.

4. Assemble the high-level function in a EFFBD. The
scheme should show if there is a hierarchy of functions.
This analysis will be then translated in the initial hierar-
chical network in the HDDL problem file. It is even help-
ful to understand if a function can be incorporated into
another one because, for example, it always precedes it.
In the EFFBD, it is possible to start highlighting the in-
puts of each function and the expected outputs. That pro-
cess helps understand the hierarchy of functions as well. It
is possible that a function should always precede another
because its output is an essential input of the following
one. To easily visualise this flow of inputs and outputs, the
IDEF0 scheme can be used. The IDEF0 highlights which
outputs of a function are the input of another. These in-
puts and outputs will then be translated as the predicates
used in HDDL to advance a plan.

5. Decompose the high-level functions into sub-functions,
answering the question how do we accomplish the func-
tion. This decomposition in ordered subtasks will define a
method. If different decompositions are possible starting
from different inputs, we will define different methods for
the same function. Again, the prefered scheme to be used
is the EFFBD to highlight the ordering of the subtasks.
The input/output flow can be studied with an IDEF0 dia-
gram. In the case of the methods, it is possible to verify
that the expected output of the high-level function is ef-
fectively the one in output from the subtask.

6. Define the methods from the decomposition in ordered
subtasks. The :precondition() of the method are the in-
puts of the high-level function (defined in step 4) and the
specific inputs of each method. The predicates for each
method can be easily visualised in the IDEF0 diagram.

7. Analyse the sub-functions. For each sub-function evaluate
if it can be further decomposed or if it is a leaf-level func-
tion (a function that the system can directly implement).
If a function can be further decomposed, consider it as a
compound task and go back to step five.

8. Translate the leaf functions in HDDL actions. If the sub-
function is a leaf function, it is possible to write it as an
HDDL action. In this case, only the IDEF0 diagram can
be used for the translation to analyse the :preconditions()
(input predicates) and the :effects() (output predicates) of
the action.

At the end of the steps, the domain files’ task, methods, and
actions should be defined. The list of predicates will be writ-
ten from the :preconditions() and :effects() of methods and
actions. The problem file initial hierarchical network can be

Figure 2: Hierarchical visualization of functions for the IGLUNA campaign. Only the functions related to the functions Get
Picture of the Goal have been extended to show the hierarchical structure of the problem.

Figure 3: Parallellism between MBSE and HDDL files’ en-
tries.

defined by step 4 using the EFFBD. The initial conditions
of the problem file, :init(), can be derived from the precon-
ditions of the methods. At this moment the translation from
the MBSE model to the HDDL language is manual.

The following section shows an example of applying the
explained methodology to an analogue mission starting from
the functional requirements.

Example of Application: The IGLUNA mission
The design of every mission starts with a set of requirements
that have to be satisfied. In system engineering, the require-
ments are divided into different categories: mission, configu-

Figure 4: Logical flow of the methodology that exports
MBSE model to HDDL files.

rations, operational, functional, interface, environmental and
logistic support (Walden et al. 2015). In our specific case of
designing the activities that systems should perform, we are
interested in functional requirements. In the IGLUNA mis-
sion, the system has five principal functional requirements to
accomplish: (i) recognize points of interest, (ii) take a pic-
ture of the recognized point of interest, (iii) evaluate remain-
ing resources, (iv) release drone, (v) call back the drone.

Therefore following step 1 and 2 of the methodology, we
can define the goal functions that the systems have to ac-
complish from those functional requirements, as shown in
Fig. 5.

Figure 5: From the functional requirements analysis of
IGLUNA to its high-level functions (step 1 and 2 of the
methodology).

The defined high-level functions will be the first set of
tasks in the domain files, Fig. 4, Listing 3.

At the same time, those tasks are the ones that will ap-
pear on the problem file as goal functions to be executed.
However, to set up the initial task network definition of the
HDDL problem file an ordering between the tasks may be
needed. Therefore, the notion of EFFBD becomes quite use-
ful to analyse the problem as explained in step 4 of the
methodology (Fig. 6, Listing 2).

Listing 3: Domain file task definition.
(: t a s k g e t i m a g e d a t a

: p a r a m e t e r s (? o b j e c t i v e − o b j e c t i v e ?mode − mode)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k r e a d a r T a g d a t a
: p a r a m e t e r s (? o b j e c t i v e − o b j e c t i v e)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k e v a l u a t e a v a i l a b l e r e s o u r c e s
: p a r a m e t e r s (? sys tem − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k c a l l b a c k
: p a r a m e t e r s (? sys tem2 − sys tem ? sys tem1 − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k r e l e a s e s e c o n d s y s t e m
: p a r a m e t e r s (? sys tem2 − sys tem ? sys tem1 − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

In the EFFBD, the designer can already visualize the
predicates linked to each task as the inputs and outputs of a
functions. However, as previously suggested in step 4 of the

Figure 6: EFFBD of the problem file with high-level func-
tions. The diagram shows the expected succession of tasks
that should be translated in the initial hierarchical network
of the problem file as explained in step 4 of the methodology.

methodology, the IDEF0 can help better visualize the pred-
icate flow. Fig. 7 shows the IDEF0 linked to the problem
EFFBD, Fig. 6. Moreover, from Fig.s 6 and 8 is it possible
to visualize that the expected output of a high-level function
becomes the effect of a leaf-function, therefore the effect of
the action (steps 5 and 6 of the methodology).

Furthermore, from the analysis of the problem EFFBD is
possible to conclude that the function ”Read ArTag Data”
always come before the ”Get Picture of the Target” function
and that those tasks are replicated during the overall mis-
sion. Therefore as illustrated in step 4 of the methodology,
to simplify the redaction of the problem file, the first func-
tion can be included in the second function using a method,
Fig.s 8 and 9. In the example of the function ”Get Picture of
the Target”, only one method was needed to satisfy it. How-
ever, it is possible to have different methods that may satisfy
a task, as for the function ”Navigate to goal”, Fig. 10. Start-
ing from different predicates, the plan solver may take one
or the other branch, as briefly laid out in step 5.

The process of top-down functional analysis is replicated
for all the tasks and their subtasks, as described in step 7 of
the methodology. In the end, it is possible to manually export

Figure 7: IDEF0 of the problem file. As outlined in step 4 and 5 of the methodology, from the high-level function is already
possible to associate the main expected end output.

Figure 8: EFFBD of the ”Get Picture of the Target” method
(step 5 of the methodology). The sub-functions with a black
square on the top-left corner are the ones that can be further
decomposed. Those will be translates as compound tasks,
while the others are actions.

the structure of the MBSE model to the HDDL file follow-
ing the breakdown of the EFFBD and checking the predicate
flow with the IDEF0. At the conclusion of the design pro-
cess, the designer can check the consistency and correctness
of the problem and domain files against the creating MBSE
model. In the case of the IGLUNA mission, the executable
plan for the exploration of a terrain of 9m2 with three ob-
jectives is shown in Listing 4. HiPOP (Bechon, Lesire, and

Barbier 2020; Lesire and Albore 2021) was used as solver
for the HDDL problem.

Listing 4: Output plan for a 3x3 map with 3 objetives
==>
0 (m a k e a v a i l a b l e d rone1)
1 (v i s i t waypo in t0 drone1)
2 (n a v i g a t e drone1 waypo in t0 waypo in t1)
3 (u n v i s i t waypo in t0 drone1)
4 (r e a d a r T a g r o v e r 0 waypo in t0 o b j e c t i v e 2 camera0)
5 (c o m m u n i c a t e a r T a g d a t a r o v e r 0 g e n e r a l o b j e c t i v e 2)
6 (t a k e i m a g e drone1 waypoin t1 o b j e c t i v e 2 camera3 f i s h e y e)
7 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 2 f i s h e y e)
8 (n a v i g a t e drone1 waypo in t1 waypo in t4)
9 (v i s i t waypo in t4 drone1)
10 (n a v i g a t e drone1 waypo in t4 waypo in t6)
11 (u n v i s i t waypo in t4 drone1)
12 (r e a d a r T a g drone1 waypoin t6 o b j e c t i v e 0 camera2)
13 (c o m m u n i c a t e a r T a g d a t a drone1 g e n e r a l o b j e c t i v e 0)
14 (t a k e i m a g e drone1 waypo in t6 o b j e c t i v e 0 camera3 f i s h e y e)
15 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 0 f i s h e y e)
16 (n a v i g a t e drone1 waypo in t6 waypo in t4)
17 (v i s i t waypo in t4 drone1)
18 (n a v i g a t e drone1 waypo in t4 waypo in t8)
19 (u n v i s i t waypo in t4 drone1)
20 (r e a d a r T a g drone1 waypoin t8 o b j e c t i v e 1 camera2)
21 (c o m m u n i c a t e a r T a g d a t a drone1 g e n e r a l o b j e c t i v e 1)
22 (t a k e i m a g e drone1 waypo in t8 o b j e c t i v e 1 camera2 d e p t h)
23 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 1 d e p t h)
24 (v i s i t waypo in t0 r o v e r 0)
25 (n a v i g a t e r o v e r 0 waypo in t0 waypo in t5)
26 (u n v i s i t waypo in t0 r o v e r 0)
27 (r e a d a r T a g r o v e r 0 waypo in t5 o b j e c t i v e 0 camera0)
28 (c o m m u n i c a t e a r T a g d a t a r o v e r 0 g e n e r a l o b j e c t i v e 0)
29 (t a k e i m a g e r o v e r 0 waypo in t5 o b j e c t i v e 0 camera0 d e p t h)
30 (c o m m u n i c a t e i m a g e d a t a r o v e r 0 g e n e r a l o b j e c t i v e 0 d e p t h)
31 (n a v i g a t e drone1 waypo in t8 waypo in t4)
32 (v i s i t waypo in t4 drone1)
33 (n a v i g a t e drone1 waypo in t4 waypo in t5)
34 (u n v i s i t waypo in t4 drone1)
35 (g e t d a t a f r o m s e n s o r s r o v e r 0)
36 (s e n d s y s t e m s t a t e r o v e r 0 g e n e r a l)
37 (g e t d a t a f r o m s e n s o r s drone1)
38 (s e n d s y s t e m s t a t e d rone1 g e n e r a l)
<==

Figure 9: IDEF0 of the ”Get Picture of the Target” method. From the IDEF0 of the problem file (Fig. 7) it is possible to see
that the expected output of the functions are sent picture ?objective ?control center and take picture ?objective ?system. With
this IDEF0, it is possible to verify that these outputs are effectively the end effects of the last two actions of this method as
described in step 5 of the methodology.

Figure 10: EFFBD of the ”navigate to goal” methods. The
image visually summarizes step 6 of the methodology.
Thanks to the functional analysis, defining different methods
for a single task with an ”or” logical structure is possible.
The chosen branch will depend on the ”active” predicates in
the problem file.

Main Results and Conclusions
This paper presented a methodology to simplify the writing
of HDDL problem and domain files starting from the func-
tional layer of MBSE. The modelling starts from defining
the goals of the mission as functional requirements. It con-
tinues with the definition of the high-level functions linked

to the requirements. Those first set of functions will define
the first tasks of the domain file. Then the high-level func-
tions are further broken down into leaf functions. The differ-
ent sub-functions constitutes the other compound and prim-
itive tasks. The EFFBD and IDEF0 schemes show this de-
composition and the predicate flow of each function. The
overall process permits a fast prototyping and writing of
HDDL files, while verifying the consistency of the design.
However, the work still lacks a comprehensive tool that can
rapidly translate the functions and items into ready-to-run
HDDL files. The translation from MBSE to HDDL is still
manually executed, reporting the MBSE outputs to ”.hddl”
files. Therefore, future work will focus on creating an inte-
grated framework from the MBSE to the definition of ready
to be used domain and problem files. In the specific case
of the problem files for space robotic application, a partial
knowledge of the environment is usually a must-know. How-
ever, this can be easily included if a map is available. In the
specifics of the IGLUNA analogue mission, a python script
that translates a given map in predicates that can be used for
the navigation tasks has already been implemented and used
for the problem file definition. At the same time, the team
will be dedicated time to a more in-depth study of the for-
malism of MBSE and SySML and how to better used them
as assets for Knowledge Engineering. The final aim is to de-
fine a logical and operational architecture usable in space-
related scenarios, from rovers to satellites to define opera-
tions with AI planning.

References
Bechon, P.; Lesire, C.; and Barbier, M. 2020. Hybrid
planning and distributed iterative repair for multi-robot mis-
sions with communication losses. Autonomous Robots 44(3-
4):505–531.
Behnke, G.; ; Höller, D.; and Bercher, P., eds. 2021. Pro-
ceedings of 10th International Planning Competition: Plan-
ner and Domain Abstracts – Hierarchical Task Network
(HTN) Planning Track (IPC 2020).
Corporation, V. 2020. Genesys: Enhancing systems engi-
neering effectiveness.
Fiala, M. 2005. Artag, a fiducial marker system using digital
techniques. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 2, 590–596 vol. 2.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research (JAIR) 20.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Morgan&Claypool.
Huckaby, J.; Vassos, S.; and Christensen, H. I. 2013. Plan-
ning with a task modeling framework in manufacturing
robotics. In International Conference on Intelligent Robots
and Systems (IROS).
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI Conference on Artificial Intelligence (AAAI).
Lesire, C., and Albore, A. 2021. pyHiPOP – Hierarchical
partial-order planner. In Proceedings of 10th International
Planning Competition: Planner and Domain Abstracts – Hi-
erarchical Task Network (HTN) Planning Track (IPC 2020).
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL studio. In International Conference on
Automated Planning and Scheduling (ICAPS), Demonstra-
tion Paper.
Shishko, R., and Aster, R. 1995. Nasa systems engineering
handbook. NASA Special Publication 6105.
Silva, J. M., and Silva, J. R. 2019. A new hierarchical
approach to requirement analysis of problems in automated
planning. Engineering Applications of Artificial Intelligence
81:373–386.
Singhi, S. 2005. Emacs mode for PDDL,
http://rakaposhi.eas.asu.edu/
f04-cse574-mailarchive/msg00088.html.
Strobel, V., and Kirsch, A. 2014. Planning in the Wild: Mod-
eling Tools for PDDL. In German Conference on Artificial
Intelligence (KI).
Vaquero, T. S.; Tonidandel, F.; de Barros, L. N.; and Silva,
J. R. 2006. On the Use of UML.P for Modeling a Real
Application as a Planning Problem. In International Con-
ference on Automated Planning and Scheduling (ICAPS).

Walden, D. D.; Roedler, G. J.; Forsberg, K.; Hamelin, R. D.;
and Shortell, T. M., eds. 2015. Systems Engineering Hand-
book: A Guide for System Life Cycle Processes and Activi-
ties. Hoboken, NJ: Wiley, 4 edition.
Wertz, J. R.; Everett, D. F.; and Puschell, J. J. 2011. Space
mission engineering: the new SMAD. Microcosm Press.

