Jasmine Rimani
email: jasmine.rimani@polito.it

Charles Lesire
email: charles.lesire@onera.fr

Stéphanie Lizy-Destrez
email: stephanie.lizy-destrez@isae-supaero.fr

Nicole Viola
email: nicole.viola@polito.it

Application of MBSE to model Hierarchical AI Planning problems in HDDL

The recent improvements of hierarchical AI planning open the path to new and exciting application in different areas of expertise. One domain with daring and complex planning and scheduling problems is the definition of operations for space exploration systems. For this specific application, the Hierarchical Definition Domain Language (HDDL) may be the most suitable AI planning language to be adopted. However, the design and writing of problems and domain files for HDDL is a complex task. They require a skilful designer to write and check the consistency of the syntax. Moreover, sharing and modifying HDDL files can be a complicated task, and it may lack traceability of the modifications, making the overall process prone to errors. On the other hand, planning languages like HDDL and PDDL are hardly ever studied in the university curricula by most space systems engineers, the architects of the concepts of operations of space systems. The work proposed in this paper contributes to filling the gap between space operations engineers and the AI planning potentialities to solve planning and scheduling problems applied to space exploration systems. The problem and domain files typical of HDDL are built up from the formalism of SysML, a general-purpose architecture modelling language for System Engineering. SysML is effectively used as modelling language in Model-Based System Engineering (MBSE) to study and design the mission architecture of a space mission. The methodology presented is applied to an analogue space robotic mission, where a collaborative drone and a rover need to explore an unknown environment. The final aim of the method is to transfer the "human knowledge" in the planning problem and showing the capabilities of MBSE applied to Knowledge Engineering (KE) of AI planning problems.

Introduction

Regardless of the strengths and capabilities of Artificial Intelligence (AI) planning, it still fails to be used as a routine planner for complex scenarios, like space missions. As evoked in [START_REF] Strobel | Planning in the Wild: Modeling Tools for PDDL[END_REF], possible reasons can be found in the complexity of the domain and problem file redaction. The predicates, types, methods, tasks, and actions do not scale up easily as the considered problem becomes more and more complex. Another significant throwback is linked to the knowledge of the engineers that take care of scheduling and planning operations: their background usually lies in space system engineering. Therefore, formalisms linked to PDDL (Planning Domain Definition Language) [START_REF] Fox | PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains[END_REF] and HDDL (Hierarchical Domain Definition Language) [START_REF] Höller | HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems[END_REF] are not usually well known or heard during the university curriculum regardless of their powerful applications. Moreover, complex problems to be analysed by the AI planners need skilful engineers to capture and pass their knowledge of the problem..

Usually, HDDL files are created with a bottom-up approach. Given a series of possible actions that the system can execute, they are organised together to write methods that can accomplish the tasks based on the designer expertise. However, thanks to the use of System Modeling Language (SysML) formalisms, it is possible to simplify the redaction of HDDL problem and domain files for complex scenarios with a top-down approach. SysML is the base architecture of Model Base System Engineering (MBSE), a well-known design process for system engineers. This paper focuses on the "functional layer", called logical architecture, of the MBSE, where functions are used to describe the behaviours of the systems under study.

In this study, two MBSE standard schemes will be used to write the domain and problem files: the Enchanted Functional Flow Block Diagram (EFFBD) and the IDEF0 (Icam DEFinition for Function Modeling, where Icam stands for Integrated Computer-Aided Manufacturing). The first highlights the succession of events when designing methods of HDDL, and the second helps to visualize the flow of the predicates, inputs and outputs of actions, methods and tasks. The main objective of this methodology is to facilitate the transfer of information from the designer to the HDDL file straightforwardly using a well-known and routed methodology. Vitech Genesys [START_REF] Corporation | Genesys: Enhancing systems engineering effectiveness[END_REF], have been used as a modelling tool for the MBSE analysis. The benchmarks of the IPC2020 (Behnke et al. 2021) for hierarchical planning have been used as a starting point to define the predicates, tasks, actions and method in a consistent and correct formalism. The case study for this paper is an analogue mission organised by Space Innovation in Switzerland called IGLUNA 1 . The objective of the ISAE-SUPAERO team, CoRoDro 2 , is to explore an unknown environment with a rover and a drone (Figure 1). In the first phase, the drone is in charge of mapping the environment autonomously. While in the second phase, both systems move autonomously, exploring the environment. Both systems should go to a target, read an arTag [START_REF] Fiala | Artag, a fiducial marker system using digital techniques[END_REF]) and take a picture of it.

The systems may act as totally independent entities with different capabilities or co-dependent systems where the drone extends the rover's capabilities. The following sections will focus on illustrating the methodology used following some examples from the case study. The conclusion will highlight the main outcomes of this work and the future work envisioned to automatise the methodology.

Related Work

To address these limitations and help the designers transfer their knowledge and correctly write PDDL files, different research teams analysed and created tools that should assist the designer in creating the domain and problem files of AI planners. Domain files capture system behaviour using a set of actions and predicates, true or false sentences. Problem files indicate the goals to be accomplished and give some information on the environment and constraints that the system under study has to deal with. When solving a PDDL problem, or an HDDL problem, the files are parsed and analysed to find the best plan, that answers the problem, given the goals and initial conditions in the problem file. However, practical applications have many types, objects, predicates and actions [START_REF] Strobel | Planning in the Wild: Modeling Tools for PDDL[END_REF]. Therefore, as the project grows in size, designers need to be assisted with tools that help them keep track of changes and deal with the increased complexity of domain and problem files.

Focusing on the PDDL languange, different tools have been created as helpful hand for the designer. However, most of them focus on providing a suite to check the syntax and constructions of predicates and actions. Therefore, even if relevant, they lack a pre-design phase where the engineer design the problem before start writing the files. Therefore 2 http://corodro.ae-isae-supaero.fr/ tools, like PDDL studio [START_REF] Plch | Inspect, edit and debug PDDL documents: Simply and efficiently with PDDL studio[END_REF]) and the PDDLmode of Emacs editor [START_REF] Singhi | Emacs mode for PDDL[END_REF]) focus more on ensuring the correctness of the PDDL syntax and semantic of the PDDL files. On the other hand, myPDDL [START_REF] Strobel | Planning in the Wild: Modeling Tools for PDDL[END_REF] provides an intuitive IDE (Integrated Development Environment), code template to initialize PDDL constructs and diagrams of the domain file that show the connection between predicates, types and actions.

An interesting work that uses SysML for designing planning problem has been proposed in [START_REF] Huckaby | Planning with a task modeling framework in manufacturing robotics[END_REF]. The study applies the sequence diagram and SysML taxonomy to the study of manufacturing robots. However, the final planning language is still PDDL. Furthermore, the analysis is not backed up by a set of requirements, as it is the usual standard in system engineering to maintain traceability and justify design choices.

Among the most known tools, itSimple helps the designer model PDDL files starting from the Unified Modeling Language (UML) formalism [START_REF] Silva | A new hierarchical approach to requirement analysis of problems in automated planning[END_REF]. In this work, the authors based their design process on UML Use Case diagrams, starting from the definition of requirements. In the early version of itSIMPLE, the translation between the UML scheme and the PDDL files where manual [START_REF] Vaquero | On the Use of UML.P for Modeling a Real Application as a Planning Problem[END_REF]). In the latest versions, the process has been automatized with an ad-hoc IDE integrating UML [START_REF] Silva | A new hierarchical approach to requirement analysis of problems in automated planning[END_REF]. However, it is not possible to track back the changes done in the PDDL files to the starting UML schemes [START_REF] Strobel | Planning in the Wild: Modeling Tools for PDDL[END_REF]. On the other hand, the last version of the program integrated hierarchical task network (HTN) planning to model more complex scenarios [START_REF] Silva | A new hierarchical approach to requirement analysis of problems in automated planning[END_REF]. In general, hierarchical methods permits a higher level of abstraction. To sustain HTN planning modelling, the itSIMPLE designer introduced Petri Nets to check the consistency of requirements and verify the decomposition of the plan. The latest version of itSIMPLE makes also use of more UML schemes like class diagrams and state machines. Therefore, introducing the complexity of hierarchy, the tool loses in simplicity. However, the integrated IDE helps the designer keep track of the changes, given previous knowledge in UML.

Similarly, the work presented in this paper starts from requirements and a hierarchical planner. However, with SysML instead of UML, it is possible to simplify the number of schemes needed to frame the problem. SysML introduced the requirement scheme, which can be directly linked to the functions to be performed by the systems. Moreover, the use of EFFBDs instead of Use Case diagrams introduces a hierarchy of tasks without the need for a Petri net. Furthermore, using EFFBD makes possible to check the flow of predicates and how the plan evolves on the different levels of abstraction. The following section will give an overview of the methodology and its application to HDDL.

Modelling HDDL files from MBSE

Both HDDL problems and functional analysis of MBSE are based on task decomposition. Both methods start from an idea of what the system should do and go down to how the system can perform the what. However, before diving into the methodology and translation from MBSE to HDDL, a brief introduction on the most useful concepts is needed for the two.

HDDL modelling language

The HDDL language [START_REF] Höller | HDDL: An Extension to PDDL for Expressing Hierarchical Planning Problems[END_REF]) is heavily based on PDDL. It starts from the same concepts of types, predicates and actions, and it extends them with the use of tasks and methods in the domain file (see Listing 1 for an example). The new entries in the domain file permit a higher level of abstraction: tasks and methods do not have a direct effect on predicates. They assemble actions to get a structured answer to a higher system functional need. Therefore, more complex scenarios can be modelled. More in detail, a task is an instance that should be accomplished. It indicate what the system should do. Usually, a task is defined by a unique name and some parameters that are needed to accomplish it. The how this task should be executed is usually defined thanks to a method. methods define how to achieve a task given a set of ordered subtasks. If a subtask can be further decomposed by a method, that subtask is called a compound task or simply task. If the subtask can be directly defined with a set of precondition and effects without a method, then the subtask is called primitive task or, more commonly, action (see Listing 1). For the same task, it is possible to define different methods that can satisfy it. Different methods have different preconditions, defined as predicates, that lead to a different organization of sub-tasks. Similarly to the domain file, the problem file of the HDDL domains changes a bit in respect to the PDDL language [START_REF] Haslum | An Introduction to the Planning Domain Definition Language[END_REF]). An initial hierarchical network should be laid out. It is based on which tasks should the system accomplish and in which order.)

: o r d e r i n g (and (< t a s k 0 t a s k 1) (< t a s k 0 t a s k 2) (< t a s k 0 t a s k 3) (< t a s k 0 t a s k 4) (< t a s k 2 t a s k 5) (< t a s k 3 t a s k 5) (< t a s k 1 t a s k 5) (< t a s k 4 t a s k 5) (< t a s k 5 t a s k 6) (< t a s k 6 t a s k 7)

))

Overall, the logical structure of the problem and domain files of HDDL describes the behavior of a system with some given formalism.

MBSE functional layer

This notion of tasks that represent what a system can do and its division in subtasks resembles the notion of functions in system engineering. Most operations in the space domain are engineered and designed by system engineers with little to no notion about AI planning, its applications and strength. Moreover, there is usually a reticence in adopting any new tool if it cannot be well documented or translated in a modelbased database. However, leveraging on the function/tasks similarity, it is possible to use system engineering methodologies to design and track changes in the HDDL domain and problem file. Exploiting the formalism of SysML and the capabilities of MBSE, a designer can study and simulate the behavioural layer of a system before exporting the modeling in the HDDL language and plan the system's operations. The backbone of the method relays in the functional analysis, where the the expected behaviours of the system are analysed. Starting from the goal "functions", it is possible to create a breakdown structure with all the subfunctions that effectively "answer" to the question how to perform the goal "function" (Fig. 2). The goal "functions" are the tasks derived from the requirement analysis. They are the "objective behaviors" of the system. The designer identifies the sub-functions that will satisfy the main function. The breakdown goes down to the leaf functions, entities that can directly be performed by the system under study, like move to a destination. This hierarchy of functions is the fundamental process of any functional analysis of MBSE. The process has been detailed in both [START_REF] Walden | Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities[END_REF] and [START_REF] Shishko | Nasa systems engineering handbook[END_REF]. The top-down process is usually represented as a functional tree or a functional block diagram. The first method represents a simple hierarchical decomposition that usually ends with the indication of a system, subsystem or component that can accomplish the task [START_REF] Wertz | Space mission engineering: the new SMAD[END_REF]. The second one includes both a top-down decomposition and an information on the sequence of the functions to be performed [START_REF] Wertz | Space mission engineering: the new SMAD[END_REF].

To visualize the logic flow of sub-functions, how they are related and their input/outputs, designers use two principal schemes: the activity diagram in SysML and the Enchanted Flow Functional Block Diagram (EFFBD)3 in MBSE. In this study, we would use the latter. It is important to highlight that SysML is the foundation of MBSE, however, the latter is usually more expressive and facilitates the design of the system. The EFFBD shows the succession or parallelism of functions. It indicates if functions should be executed simultaneously, if the flow can take different branches or if a function or set of functions should be iterated or replicated. The main difference between a standard Flow Functional Block Diagram and the EFFBD is the possibility of visualizing inputs and outputs of a function. However, another helpful scheme to check the flow of inputs and outputs is the IDEF04 . The scheme does not give any information on the order of functions, just on the flow of the items. It can be used to check that the output of the leaf-functions is effectively the expected one of the high-level function.

MBSE to HDDL translation

The parallelism between HDDL and MBSE is relatively straightforward: tasks can be analysed as high-level functions, methods can be modelled as second-level tasks that contain the other compound tasks and actions (Fig 3). On the other hand, actions can be compared to leaf functions.

Figure 3 shows this parallelism. The tasks, methods and actions of the HDDL problems can be compared to the functions of MBSE. At the same time, the predicates that advance the HDDL plan are related to the output and inputs of functions, usually modelled as items in MBSE.

The objects and their types can be modelled as components or items. The latter is preferred: it is possible to associate multiple items to a function but not multiple components.

Usually, the MBSE model is designed. Then, the parallelism between the HDDL entries and the functional analysis is used to easily translate the MBSE model to the HDDL domain and problem files, as shown in Fig. 4. The red arrows represent the manual translation from MBSE instances to HDDL language entries. The blue arrows show the logical flow of MBSE functional analysis.

The logical step of this MBSE-HDDL translation are:

1. Define the system functional requirements. This is done using the Requirement Scheme. Functional requirements are all the ones that define what the system should do [START_REF] Wertz | Space mission engineering: the new SMAD[END_REF], i.e., the actions it should perform.

2. Define the high-level functions that are generated from the functional requirements. Those functions are the translation of the requirement in the form of a verb followed by a complement. For example, the functional requirement The involved systems shall be able to take photos of the point of interest. can be translated in the high-level function Get a picture of the goal. 3. Define the first set of tasks in the HDDL domain file. The high-level functional requirements are the first set of tasks that the system should perform. 4. Assemble the high-level function in a EFFBD. The scheme should show if there is a hierarchy of functions. This analysis will be then translated in the initial hierarchical network in the HDDL problem file. It is even helpful to understand if a function can be incorporated into another one because, for example, it always precedes it.

In the EFFBD, it is possible to start highlighting the inputs of each function and the expected outputs. That process helps understand the hierarchy of functions as well. It is possible that a function should always precede another because its output is an essential input of the following one. To easily visualise this flow of inputs and outputs, the IDEF0 scheme can be used. The IDEF0 highlights which outputs of a function are the input of another. These inputs and outputs will then be translated as the predicates used in HDDL to advance a plan. 5. Decompose the high-level functions into sub-functions, answering the question how do we accomplish the function. This decomposition in ordered subtasks will define a method. If different decompositions are possible starting from different inputs, we will define different methods for the same function. Again, the prefered scheme to be used is the EFFBD to highlight the ordering of the subtasks.

The input/output flow can be studied with an IDEF0 diagram. In the case of the methods, it is possible to verify that the expected output of the high-level function is effectively the one in output from the subtask. 6. Define the methods from the decomposition in ordered subtasks. The :precondition() of the method are the inputs of the high-level function (defined in step 4) and the specific inputs of each method. The predicates for each method can be easily visualised in the IDEF0 diagram. 7. Analyse the sub-functions. For each sub-function evaluate if it can be further decomposed or if it is a leaf-level function (a function that the system can directly implement).

If a function can be further decomposed, consider it as a compound task and go back to step five. 8. Translate the leaf functions in HDDL actions. If the subfunction is a leaf function, it is possible to write it as an HDDL action. In this case, only the IDEF0 diagram can be used for the translation to analyse the :preconditions() (input predicates) and the :effects() (output predicates) of the action. At the end of the steps, the domain files' task, methods, and actions should be defined. The list of predicates will be written from the :preconditions() and :effects() of methods and actions. The problem file initial hierarchical network can be defined by step 4 using the EFFBD. The initial conditions of the problem file, :init(), can be derived from the preconditions of the methods. At this moment the translation from the MBSE model to the HDDL language is manual.

The following section shows an example of applying the explained methodology to an analogue mission starting from the functional requirements.

Example of Application: The IGLUNA mission

The design of every mission starts with a set of requirements that have to be satisfied. In system engineering, the requirements are divided into different categories: mission, configu- rations, operational, functional, interface, environmental and logistic support [START_REF] Walden | Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities[END_REF]. In our specific case of designing the activities that systems should perform, we are interested in functional requirements. In the IGLUNA mission, the system has five principal functional requirements to accomplish: (i) recognize points of interest, (ii) take a picture of the recognized point of interest, (iii) evaluate remaining resources, (iv) release drone, (v) call back the drone.

Therefore following step 1 and 2 of the methodology, we can define the goal functions that the systems have to accomplish from those functional requirements, as shown in Fig. 5.

Figure 5: From the functional requirements analysis of IGLUNA to its high-level functions (step 1 and 2 of the methodology).

The defined high-level functions will be the first set of tasks in the domain files, Fig. 4, Listing 3.

At the same time, those tasks are the ones that will appear on the problem file as goal functions to be executed. However, to set up the initial task network definition of the HDDL problem file an ordering between the tasks may be needed. Therefore, the notion of EFFBD becomes quite useful to analyse the problem as explained in step 4 of the methodology (Fig. 6, Listing 2). In the EFFBD, the designer can already visualize the predicates linked to each task as the inputs and outputs of a functions. However, as previously suggested in step 4 of the Furthermore, from the analysis of the problem EFFBD is possible to conclude that the function "Read ArTag Data" always come before the "Get Picture of the Target" function and that those tasks are replicated during the overall mission. Therefore as illustrated in step 4 of the methodology, to simplify the redaction of the problem file, the first function can be included in the second function using a method, Fig.s 8 and 9. In the example of the function "Get Picture of the Target", only one method was needed to satisfy it. However, it is possible to have different methods that may satisfy a task, as for the function "Navigate to goal", Fig. 10. Starting from different predicates, the plan solver may take one or the other branch, as briefly laid out in step 5.

The process of top-down functional analysis is replicated for all the tasks and their subtasks, as described in step 7 of the methodology. In the end, it is possible to manually export Figure 8: EFFBD of the "Get Picture of the Target" method (step 5 of the methodology). The sub-functions with a black square on the top-left corner are the ones that can be further decomposed. Those will be translates as compound tasks, while the others are actions.

the structure of the MBSE model to the HDDL file following the breakdown of the EFFBD and checking the predicate flow with the IDEF0. At the conclusion of the design process, the designer can check the consistency and correctness of the problem and domain files against the creating MBSE model. In the case of the IGLUNA mission, the executable plan for the exploration of a terrain of 9m 2 with three objectives is shown in Listing 4. HiPOP (Bechon, Lesire, and Barbier 2020; Lesire and Albore 2021) was used as solver for the HDDL problem.

Listing 4: Output plan for a 3x3 map with 3 objetives Figure 9: IDEF0 of the "Get Picture of the Target" method. From the IDEF0 of the problem file (Fig. 7) it is possible to see that the expected output of the functions are sent picture ?objective ?control center and take picture ?objective ?system. With this IDEF0, it is possible to verify that these outputs are effectively the end effects of the last two actions of this method as described in step 5 of the methodology.

Figure 10: EFFBD of the "navigate to goal" methods. The image visually summarizes step 6 of the methodology. Thanks to the functional analysis, defining different methods for a single task with an "or" logical structure is possible. The chosen branch will depend on the "active" predicates in the problem file.

Main Results and Conclusions

This paper presented a methodology to simplify the writing of HDDL problem and domain files starting from the functional layer of MBSE. The modelling starts from defining the goals of the mission as functional requirements. It continues with the definition of the high-level functions linked to the requirements. Those first set of functions will define the first tasks of the domain file. Then the high-level functions are further broken down into leaf functions. The different sub-functions constitutes the other compound and primitive tasks. The EFFBD and IDEF0 schemes show this decomposition and the predicate flow of each function. The overall process permits a fast prototyping and writing of HDDL files, while verifying the consistency of the design. However, the work still lacks a comprehensive tool that can rapidly translate the functions and items into ready-to-run HDDL files. The translation from MBSE to HDDL is still manually executed, reporting the MBSE outputs to ".hddl" files. Therefore, future work will focus on creating an integrated framework from the MBSE to the definition of ready to be used domain and problem files. In the specific case of the problem files for space robotic application, a partial knowledge of the environment is usually a must-know. However, this can be easily included if a map is available. In the specifics of the IGLUNA analogue mission, a python script that translates a given map in predicates that can be used for the navigation tasks has already been implemented and used for the problem file definition. At the same time, the team will be dedicated time to a more in-depth study of the formalism of MBSE and SySML and how to better used them as assets for Knowledge Engineering. The final aim is to define a logical and operational architecture usable in spacerelated scenarios, from rovers to satellites to define operations with AI planning.

Figure 1 :

 1 Figure1: CoRoDro Design Reference Mission (DRM). In the first phase, the drone is in charge of mapping the environment autonomously. While in the second phase, both systems move autonomously, exploring the environment. Both systems should go to a target, read an arTag[START_REF] Fiala | Artag, a fiducial marker system using digital techniques[END_REF]) and take a picture of it.

Listing 2 :

 2 Problem file task definition. (: h t n : p a r a m e t e r s () : s u b t a s k s (and (t a s k 0 (r e l e a s e s e c o n d s y s t e m d r o n e 1 r o v e r 0)) (t a s k 1 (g e t i m a g e d a t a o b j e c t i v e 0 d e p t h)) (t a s k 2 (g e t i m a g e d a t a o b j e c t i v e 1 d e p t h)) (t a s k 3 (g e t i m a g e d a t a o b j e c t i v e 0 f i s h e y e)) (t a s k 4 (g e t i m a g e d a t a o b j e c t i v e 2 f i s h e y e)) (t a s k 5 (c a l l b a c k d r o n e 1 r o v e r 0)) (t a s k 6 (e v a l u a t e a v a i l a b l e r e s o u r c e s r o v e r 0)) (t a s k 7 (e v a l u a t e a v a i l a b l e r e s o u r c e s d r o n e 1))

Figure 2 :

 2 Figure 2: Hierarchical visualization of functions for the IGLUNA campaign. Only the functions related to the functions Get Picture of the Goal have been extended to show the hierarchical structure of the problem.

Figure 3 :

 3 Figure 3: Parallellism between MBSE and HDDL files' entries.

Figure 4 :

 4 Figure 4: Logical flow of the methodology that exports MBSE model to HDDL files.

Listing 3 :

 3 Domain file task definition. (: t a s k g e t i m a g e d a t a : p a r a m e t e r s (? o b j e c t i v e -o b j e c t i v e ? mode -mode) : p r e c o n d i t i o n () : e f f e c t ()) (: t a s k r e a d a r T a g d a t a : p a r a m e t e r s (? o b j e c t i v e -o b j e c t i v e) : p r e c o n d i t i o n () : e f f e c t ()) (: t a s k e v a l u a t e a v a i l a b l e r e s o u r c e s : p a r a m e t e r s (? s y s t e m -s y s t e m) : p r e c o n d i t i o n () : e f f e c t ()) (: t a s k c a l l b a c k : p a r a m e t e r s (? s y s t e m 2 -s y s t e m ? s y s t e m 1 -s y s t e m) : p r e c o n d i t i o n () : e f f e c t ()) (: t a s k r e l e a s e s e c o n d s y s t e m : p a r a m e t e r s (? s y s t e m 2 -s y s t e m ? s y s t e m 1 -s y s t e m) : p r e c o n d i t i o n () : e f f e c t ())

Figure 6 :

 6 Figure 6: EFFBD of the problem file with high-level functions. The diagram shows the expected succession of tasks that should be translated in the initial hierarchical network of the problem file as explained in step 4 of the methodology.

Figure 7 :

 7 Figure 7: IDEF0 of the problem file. As outlined in step 4 and 5 of the methodology, from the high-level function is already possible to associate the main expected end output.

https://space-innovation.ch/igluna/

http://www.vitechcorp.com/resources/ GENESYS/onlinehelp/desktop/Views/Enhanced_ Function_Flow_Block_Diagram_(EFBD).htm

https://www.vitechcorp.com/resources/ core/onlinehelp/desktop/Views/IDEF0.htm